drv_can.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. * Copyright (c) 2022, Xiaohua Semiconductor Co., Ltd.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2022-04-28 CDT first version
  10. * 2022-06-07 xiaoxiaolisunny add hc32f460 series
  11. * 2022-06-08 CDT fix a bug of RT_CAN_CMD_SET_FILTER
  12. * 2022-06-15 lianghongquan fix bug, FILTER_COUNT, RT_CAN_CMD_SET_FILTER, interrupt setup and processing.
  13. */
  14. #include "drv_can.h"
  15. #include <drv_config.h>
  16. #include <board_config.h>
  17. #ifdef BSP_USING_CAN
  18. #define LOG_TAG "drv_can"
  19. #if !defined(BSP_USING_CAN1) && !defined(BSP_USING_CAN2)
  20. #error "Please define at least one BSP_USING_CANx"
  21. #endif
  22. #if defined (HC32F4A0)
  23. #define FILTER_COUNT (16)
  24. #define CAN1_INT_SRC (INT_SRC_CAN1_HOST)
  25. #define CAN2_INT_SRC (INT_SRC_CAN2_HOST)
  26. #endif
  27. #if defined (HC32F460)
  28. #define FILTER_COUNT (8)
  29. #define CAN1_INT_SRC (INT_SRC_CAN_INT)
  30. #endif
  31. enum
  32. {
  33. #ifdef BSP_USING_CAN1
  34. CAN1_INDEX,
  35. #endif
  36. #ifdef BSP_USING_CAN2
  37. CAN2_INDEX,
  38. #endif
  39. CAN_INDEX_MAX,
  40. };
  41. struct can_baud_rate_tab
  42. {
  43. rt_uint32_t baud_rate;
  44. stc_can_bit_time_config_t ll_sbt;
  45. };
  46. static const struct can_baud_rate_tab g_baudrate_tab[] =
  47. {
  48. {CAN1MBaud, CAN_BIT_TIME_CONFIG_1M_BAUD},
  49. {CAN800kBaud, CAN_BIT_TIME_CONFIG_800K_BAUD},
  50. {CAN500kBaud, CAN_BIT_TIME_CONFIG_500K_BAUD},
  51. {CAN250kBaud, CAN_BIT_TIME_CONFIG_250K_BAUD},
  52. {CAN125kBaud, CAN_BIT_TIME_CONFIG_125K_BAUD},
  53. {CAN100kBaud, CAN_BIT_TIME_CONFIG_100K_BAUD},
  54. {CAN50kBaud, CAN_BIT_TIME_CONFIG_50K_BAUD},
  55. {CAN20kBaud, CAN_BIT_TIME_CONFIG_20K_BAUD},
  56. {CAN10kBaud, CAN_BIT_TIME_CONFIG_10K_BAUD},
  57. };
  58. typedef struct
  59. {
  60. struct rt_can_device rt_can;
  61. struct can_dev_init_params init;
  62. CM_CAN_TypeDef *instance;
  63. stc_can_init_t ll_init;
  64. } can_device;
  65. static can_device g_can_dev_array[] =
  66. {
  67. #if defined (HC32F4A0)
  68. #ifdef BSP_USING_CAN1
  69. {
  70. {0},
  71. CAN1_INIT_PARAMS,
  72. .instance = CM_CAN1,
  73. },
  74. #endif
  75. #ifdef BSP_USING_CAN2
  76. {
  77. {0},
  78. CAN2_INIT_PARAMS,
  79. .instance = CM_CAN2,
  80. },
  81. #endif
  82. #endif
  83. #if defined (HC32F460)
  84. #ifdef BSP_USING_CAN1
  85. {
  86. {0},
  87. CAN1_INIT_PARAMS,
  88. .instance = CM_CAN,
  89. },
  90. #endif
  91. #endif
  92. };
  93. static rt_uint32_t _get_can_baud_index(rt_uint32_t baud)
  94. {
  95. rt_uint32_t len, index;
  96. len = sizeof(g_baudrate_tab) / sizeof(g_baudrate_tab[0]);
  97. for (index = 0; index < len; index++)
  98. {
  99. if (g_baudrate_tab[index].baud_rate == baud)
  100. return index;
  101. }
  102. return 0; /* default baud is CAN1MBaud */
  103. }
  104. static rt_uint32_t _get_can_work_mode(rt_uint32_t mode)
  105. {
  106. rt_uint32_t work_mode;
  107. switch (mode)
  108. {
  109. case RT_CAN_MODE_NORMAL:
  110. work_mode = CAN_WORK_MD_NORMAL;
  111. break;
  112. case RT_CAN_MODE_LISEN:
  113. work_mode = CAN_WORK_MD_SILENT;
  114. break;
  115. case RT_CAN_MODE_LOOPBACK:
  116. work_mode = CAN_WORK_MD_ELB;
  117. break;
  118. case RT_CAN_MODE_LOOPBACKANLISEN:
  119. work_mode = CAN_WORK_MD_ELB_SILENT;
  120. break;
  121. default:
  122. work_mode = CAN_WORK_MD_NORMAL;
  123. break;
  124. }
  125. return work_mode;
  126. }
  127. static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
  128. {
  129. rt_uint32_t baud_index;
  130. can_device *p_can_dev;
  131. rt_err_t rt_ret = RT_EOK;
  132. RT_ASSERT(can);
  133. RT_ASSERT(cfg);
  134. p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
  135. RT_ASSERT(p_can_dev);
  136. p_can_dev->ll_init.u8WorkMode = _get_can_work_mode(cfg->mode);
  137. baud_index = _get_can_baud_index(cfg->baud_rate);
  138. p_can_dev->ll_init.stcBitCfg = g_baudrate_tab[baud_index].ll_sbt;
  139. /* init can */
  140. int32_t ret = CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  141. if (ret != LL_OK)
  142. {
  143. rt_ret = RT_EINVAL;
  144. }
  145. return rt_ret;
  146. }
  147. static uint16_t _get_filter_idx(struct rt_can_filter_config *filter_cfg)
  148. {
  149. uint16_t u16FilterSelected = 0;
  150. for (int i = 0; i < filter_cfg->count; i++)
  151. {
  152. if (filter_cfg->items[i].hdr != -1)
  153. {
  154. u16FilterSelected |= 1 << filter_cfg->items[i].hdr;
  155. }
  156. }
  157. for (int i = 0; i < filter_cfg->count; i++)
  158. {
  159. if (filter_cfg->items[i].hdr == -1)
  160. {
  161. for (int j = 0; j < FILTER_COUNT; j++)
  162. {
  163. if ((u16FilterSelected & 1 << j) == 0)
  164. {
  165. filter_cfg->items[i].hdr = j;
  166. u16FilterSelected |= 1 << filter_cfg->items[i].hdr;
  167. break;
  168. }
  169. }
  170. }
  171. }
  172. return u16FilterSelected;
  173. }
  174. static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
  175. {
  176. can_device *p_can_dev;
  177. rt_uint32_t argval;
  178. struct rt_can_filter_config *filter_cfg;
  179. RT_ASSERT(can != RT_NULL);
  180. p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
  181. RT_ASSERT(p_can_dev);
  182. switch (cmd)
  183. {
  184. case RT_DEVICE_CTRL_CLR_INT:
  185. argval = (rt_uint32_t) arg;
  186. switch (argval)
  187. {
  188. case RT_DEVICE_FLAG_INT_RX:
  189. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX, DISABLE);
  190. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_WARN, DISABLE);
  191. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_FULL, DISABLE);
  192. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_OVERRUN, DISABLE);
  193. break;
  194. case RT_DEVICE_FLAG_INT_TX:
  195. CAN_IntCmd(p_can_dev->instance, CAN_INT_STB_TX, DISABLE);
  196. CAN_IntCmd(p_can_dev->instance, CAN_INT_PTB_TX, DISABLE);
  197. break;
  198. case RT_DEVICE_CAN_INT_ERR:
  199. CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_INT, DISABLE);
  200. CAN_IntCmd(p_can_dev->instance, CAN_INT_ARBITR_LOST, DISABLE);
  201. CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_PASSIVE, DISABLE);
  202. CAN_IntCmd(p_can_dev->instance, CAN_INT_BUS_ERR, DISABLE);
  203. break;
  204. default:
  205. break;
  206. }
  207. break;
  208. case RT_DEVICE_CTRL_SET_INT:
  209. argval = (rt_uint32_t) arg;
  210. switch (argval)
  211. {
  212. case RT_DEVICE_FLAG_INT_RX:
  213. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX, ENABLE);
  214. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_WARN, ENABLE);
  215. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_FULL, ENABLE);
  216. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_OVERRUN, ENABLE);
  217. break;
  218. case RT_DEVICE_FLAG_INT_TX:
  219. CAN_IntCmd(p_can_dev->instance, CAN_INT_STB_TX, ENABLE);
  220. CAN_IntCmd(p_can_dev->instance, CAN_INT_PTB_TX, ENABLE);
  221. break;
  222. case RT_DEVICE_CAN_INT_ERR:
  223. CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_INT, ENABLE);
  224. CAN_IntCmd(p_can_dev->instance, CAN_INT_ARBITR_LOST, ENABLE);
  225. CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_PASSIVE, ENABLE);
  226. CAN_IntCmd(p_can_dev->instance, CAN_INT_BUS_ERR, ENABLE);
  227. break;
  228. default:
  229. break;
  230. }
  231. break;
  232. case RT_CAN_CMD_SET_FILTER:
  233. if (RT_NULL != arg)
  234. {
  235. filter_cfg = (struct rt_can_filter_config *)arg;
  236. if (filter_cfg->count == 0)
  237. {
  238. return -RT_EINVAL;
  239. }
  240. RT_ASSERT(filter_cfg->count <= FILTER_COUNT);
  241. /* get default filter */
  242. if (p_can_dev->ll_init.pstcFilter)
  243. {
  244. p_can_dev->ll_init.u16FilterSelect = _get_filter_idx(filter_cfg);
  245. for (int i = 0; i < filter_cfg->count; i++)
  246. {
  247. p_can_dev->ll_init.pstcFilter[i].u32ID = filter_cfg->items[i].id & 0x1FFFFFFF;
  248. /* rt-thread CAN mask, 1 mean filer, 0 mean ignore. *
  249. * HDSC HC32 CAN mask, 0 mean filer, 1 mean ignore. */
  250. p_can_dev->ll_init.pstcFilter[i].u32IDMask = (~filter_cfg->items[i].mask) & 0x1FFFFFFF;
  251. switch (filter_cfg->items[i].ide)
  252. {
  253. case (RT_CAN_STDID):
  254. p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_STD;
  255. break;
  256. case (RT_CAN_EXTID):
  257. p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_EXT;
  258. break;
  259. default:
  260. p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_STD_EXT;
  261. break;
  262. }
  263. }
  264. }
  265. (void)CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  266. break;
  267. }
  268. case RT_CAN_CMD_SET_MODE:
  269. argval = (rt_uint32_t) arg;
  270. if (argval != RT_CAN_MODE_NORMAL &&
  271. argval != RT_CAN_MODE_LISEN &&
  272. argval != RT_CAN_MODE_LOOPBACK &&
  273. argval != RT_CAN_MODE_LOOPBACKANLISEN)
  274. {
  275. return -RT_ERROR;
  276. }
  277. if (argval != p_can_dev->rt_can.config.mode)
  278. {
  279. p_can_dev->rt_can.config.mode = argval;
  280. _can_config(can, &p_can_dev->rt_can.config);
  281. }
  282. break;
  283. case RT_CAN_CMD_SET_BAUD:
  284. argval = (rt_uint32_t) arg;
  285. if (argval != CAN1MBaud &&
  286. argval != CAN800kBaud &&
  287. argval != CAN500kBaud &&
  288. argval != CAN250kBaud &&
  289. argval != CAN125kBaud &&
  290. argval != CAN100kBaud &&
  291. argval != CAN50kBaud &&
  292. argval != CAN20kBaud &&
  293. argval != CAN10kBaud)
  294. {
  295. return -RT_ERROR;
  296. }
  297. if (argval != p_can_dev->rt_can.config.baud_rate)
  298. {
  299. p_can_dev->rt_can.config.baud_rate = argval;
  300. _can_config(can, &p_can_dev->rt_can.config);
  301. }
  302. break;
  303. case RT_CAN_CMD_SET_PRIV:
  304. argval = (rt_uint32_t) arg;
  305. if (argval != RT_CAN_MODE_PRIV &&
  306. argval != RT_CAN_MODE_NOPRIV)
  307. {
  308. return -RT_ERROR;
  309. }
  310. if (argval != p_can_dev->rt_can.config.privmode)
  311. {
  312. p_can_dev->rt_can.config.privmode = argval;
  313. return _can_config(can, &p_can_dev->rt_can.config);
  314. }
  315. break;
  316. case RT_CAN_CMD_GET_STATUS:
  317. {
  318. struct rt_can_status *rt_can_stat = (struct rt_can_status *)arg;
  319. stc_can_error_info_t stcErr = {0};
  320. CAN_GetErrorInfo(p_can_dev->instance, &stcErr);
  321. rt_can_stat->rcverrcnt = stcErr.u8RxErrorCount;
  322. rt_can_stat->snderrcnt = stcErr.u8TxErrorCount;
  323. rt_can_stat->lasterrtype = stcErr.u8ErrorType;
  324. rt_can_stat->errcode = CAN_GetStatusValue(p_can_dev->instance);
  325. }
  326. break;
  327. default:
  328. break;
  329. }
  330. return RT_EOK;
  331. }
  332. static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  333. {
  334. struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
  335. stc_can_tx_frame_t stc_tx_frame = {0};
  336. int32_t ll_ret;
  337. RT_ASSERT(can != RT_NULL);
  338. can_device *p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
  339. RT_ASSERT(p_can_dev);
  340. stc_tx_frame.u32ID = pmsg->id;
  341. if (RT_CAN_DTR == pmsg->rtr)
  342. {
  343. stc_tx_frame.RTR = 0;
  344. }
  345. else
  346. {
  347. stc_tx_frame.RTR = 1;
  348. }
  349. /* Set up the DLC */
  350. stc_tx_frame.DLC = pmsg->len & 0x0FU;
  351. /* Set up the IDE */
  352. stc_tx_frame.IDE = pmsg->ide;
  353. /* Set up the data field */
  354. rt_memcpy(&stc_tx_frame.au8Data, pmsg->data, sizeof(stc_tx_frame.au8Data));
  355. ll_ret = CAN_FillTxFrame(p_can_dev->instance, CAN_TX_BUF_PTB, &stc_tx_frame);
  356. if (ll_ret != LL_OK)
  357. {
  358. return RT_ERROR;
  359. }
  360. /* Request transmission */
  361. CAN_StartTx(p_can_dev->instance, CAN_TX_REQ_PTB);
  362. return RT_EOK;
  363. }
  364. static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  365. {
  366. int32_t ll_ret;
  367. struct rt_can_msg *pmsg;
  368. stc_can_rx_frame_t ll_rx_frame;
  369. RT_ASSERT(can != RT_NULL);
  370. can_device *p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
  371. RT_ASSERT(p_can_dev);
  372. pmsg = (struct rt_can_msg *) buf;
  373. /* get data */
  374. ll_ret = CAN_GetRxFrame(p_can_dev->instance, &ll_rx_frame);
  375. if (ll_ret != LL_OK)
  376. return -RT_ERROR;
  377. /* get id */
  378. if (0 == ll_rx_frame.IDE)
  379. {
  380. pmsg->ide = RT_CAN_STDID;
  381. }
  382. else
  383. {
  384. pmsg->ide = RT_CAN_EXTID;
  385. }
  386. pmsg->id = ll_rx_frame.u32ID;
  387. /* get type */
  388. if (0 == ll_rx_frame.RTR)
  389. {
  390. pmsg->rtr = RT_CAN_DTR;
  391. }
  392. else
  393. {
  394. pmsg->rtr = RT_CAN_RTR;
  395. }
  396. /* get len */
  397. pmsg->len = ll_rx_frame.DLC;
  398. /* get hdr */
  399. pmsg->hdr = 0;
  400. rt_memcpy(pmsg->data, &ll_rx_frame.au8Data, ll_rx_frame.DLC);
  401. return RT_EOK;
  402. }
  403. static const struct rt_can_ops _can_ops =
  404. {
  405. _can_config,
  406. _can_control,
  407. _can_sendmsg,
  408. _can_recvmsg,
  409. };
  410. static void _can_isr(can_device *p_can_dev)
  411. {
  412. stc_can_error_info_t stcErr;
  413. (void)CAN_GetErrorInfo(p_can_dev->instance, &stcErr);
  414. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_OFF) == SET)
  415. {
  416. /* BUS OFF. */
  417. }
  418. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ERR_INT) == SET)
  419. {
  420. /* ERROR. */
  421. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ERR_INT);
  422. }
  423. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR) == SET)
  424. {
  425. /* BUS ERROR. */
  426. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR);
  427. }
  428. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ERR_PASSIVE) == SET)
  429. {
  430. /* error-passive to error-active or error-active to error-passive. */
  431. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ERR_PASSIVE);
  432. }
  433. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_OVF) == SET)
  434. {
  435. /* RX overflow. */
  436. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_RXOF_IND);
  437. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_OVF);
  438. }
  439. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TX_BUF_FULL) == SET)
  440. {
  441. /* TX buffer full. */
  442. }
  443. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TX_ABORTED) == SET)
  444. {
  445. /* TX aborted. */
  446. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_TX_ABORTED);
  447. }
  448. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST) == SET)
  449. {
  450. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_FAIL);
  451. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST);
  452. }
  453. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_STB_TX) == SET)
  454. {
  455. /* STB transmitted. */
  456. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_STB_TX);
  457. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_DONE);
  458. }
  459. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_PTB_TX) == SET)
  460. {
  461. /* PTB transmitted. */
  462. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_PTB_TX);
  463. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_DONE);
  464. }
  465. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX) == SET)
  466. {
  467. /* Received a frame. */
  468. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX);
  469. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_RX_IND);
  470. }
  471. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_WARN) == SET)
  472. {
  473. /* RX buffer warning. */
  474. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_WARN);
  475. }
  476. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_FULL) == SET)
  477. {
  478. /* RX buffer full. */
  479. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_FULL);
  480. }
  481. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_OVERRUN) == SET)
  482. {
  483. /* RX buffer overrun. */
  484. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_OVERRUN);
  485. }
  486. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TEC_REC_WARN) == SET)
  487. {
  488. /* TEC or REC reached warning limit. */
  489. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_TEC_REC_WARN);
  490. }
  491. if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_TIME_TRIG) == SET)
  492. {
  493. /* Time trigger interrupt. */
  494. CAN_TTC_ClearStatus(p_can_dev->instance, CAN_TTC_FLAG_TIME_TRIG);
  495. }
  496. if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_TRIG_ERR) == SET)
  497. {
  498. /* Trigger error interrupt. */
  499. }
  500. if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_WATCH_TRIG) == SET)
  501. {
  502. /* Watch trigger interrupt. */
  503. CAN_TTC_ClearStatus(p_can_dev->instance, CAN_TTC_FLAG_WATCH_TRIG);
  504. }
  505. }
  506. #if defined(BSP_USING_CAN1)
  507. static void _can1_irq_handler(void)
  508. {
  509. rt_interrupt_enter();
  510. _can_isr(&g_can_dev_array[CAN1_INDEX]);
  511. rt_interrupt_leave();
  512. }
  513. #endif
  514. #if defined(BSP_USING_CAN2)
  515. static void _can2_irq_handler(void)
  516. {
  517. rt_interrupt_enter();
  518. _can_isr(&g_can_dev_array[CAN2_INDEX]);
  519. rt_interrupt_leave();
  520. }
  521. #endif
  522. static void _can_clock_enable(void)
  523. {
  524. #if defined(HC32F4A0)
  525. #if defined(BSP_USING_CAN1)
  526. FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN1, ENABLE);
  527. #endif
  528. #if defined(BSP_USING_CAN2)
  529. FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN2, ENABLE);
  530. #endif
  531. #endif
  532. #if defined(HC32F460)
  533. #if defined(BSP_USING_CAN1)
  534. FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN, ENABLE);
  535. #endif
  536. #endif
  537. }
  538. static void _can_irq_config(void)
  539. {
  540. struct hc32_irq_config irq_config;
  541. #if defined(BSP_USING_CAN1)
  542. irq_config.irq_num = BSP_CAN1_IRQ_NUM;
  543. irq_config.int_src = CAN1_INT_SRC;
  544. irq_config.irq_prio = BSP_CAN1_IRQ_PRIO;
  545. /* register interrupt */
  546. hc32_install_irq_handler(&irq_config,
  547. _can1_irq_handler,
  548. RT_TRUE);
  549. #endif
  550. #if defined(BSP_USING_CAN2)
  551. irq_config.irq_num = BSP_CAN2_IRQ_NUM;
  552. irq_config.int_src = CAN2_INT_SRC;
  553. irq_config.irq_prio = BSP_CAN2_IRQ_PRIO;
  554. /* register interrupt */
  555. hc32_install_irq_handler(&irq_config,
  556. _can2_irq_handler,
  557. RT_TRUE);
  558. #endif
  559. }
  560. extern rt_err_t rt_hw_board_can_init(CM_CAN_TypeDef *CANx);
  561. extern void CanPhyEnable(void);
  562. int rt_hw_can_init(void)
  563. {
  564. struct can_configure rt_can_config = CANDEFAULTCONFIG;
  565. rt_can_config.privmode = RT_CAN_MODE_NOPRIV;
  566. rt_can_config.ticks = 50;
  567. #ifdef RT_CAN_USING_HDR
  568. rt_can_config.maxhdr = FILTER_COUNT;
  569. #endif
  570. _can_irq_config();
  571. _can_clock_enable();
  572. CanPhyEnable();
  573. int result = RT_EOK;
  574. uint32_t i = 0;
  575. for (; i < CAN_INDEX_MAX; i++)
  576. {
  577. CAN_StructInit(&g_can_dev_array[i].ll_init);
  578. if (g_can_dev_array[i].ll_init.pstcFilter == RT_NULL)
  579. {
  580. g_can_dev_array[i].ll_init.pstcFilter = (stc_can_filter_config_t *)rt_malloc(sizeof(stc_can_filter_config_t) * FILTER_COUNT);
  581. }
  582. RT_ASSERT((g_can_dev_array[i].ll_init.pstcFilter != RT_NULL));
  583. rt_memset(g_can_dev_array[i].ll_init.pstcFilter, 0, sizeof(stc_can_filter_config_t) * FILTER_COUNT);
  584. g_can_dev_array[i].ll_init.pstcFilter[0].u32ID = 0U;
  585. g_can_dev_array[i].ll_init.pstcFilter[0].u32IDMask = 0x1FFFFFFF;
  586. g_can_dev_array[i].ll_init.pstcFilter[0].u32IDType = CAN_ID_STD_EXT;
  587. g_can_dev_array[i].ll_init.u16FilterSelect = CAN_FILTER1;
  588. g_can_dev_array[i].rt_can.config = rt_can_config;
  589. /* register CAN device */
  590. rt_hw_board_can_init(g_can_dev_array[i].instance);
  591. rt_hw_can_register(&g_can_dev_array[i].rt_can,
  592. g_can_dev_array[i].init.name,
  593. &_can_ops,
  594. &g_can_dev_array[i]);
  595. }
  596. return result;
  597. }
  598. INIT_DEVICE_EXPORT(rt_hw_can_init);
  599. #endif /* BSP_USING_CAN */
  600. /************************** end of file ******************/