ccm_pll2.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. /*
  2. * Copyright (c) 2011-2012, Freescale Semiconductor, Inc.
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without modification,
  6. * are permitted provided that the following conditions are met:
  7. *
  8. * o Redistributions of source code must retain the above copyright notice, this list
  9. * of conditions and the following disclaimer.
  10. *
  11. * o Redistributions in binary form must reproduce the above copyright notice, this
  12. * list of conditions and the following disclaimer in the documentation and/or
  13. * other materials provided with the distribution.
  14. *
  15. * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
  16. * contributors may be used to endorse or promote products derived from this
  17. * software without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  21. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  22. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
  23. * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  24. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  25. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  26. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  28. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. */
  30. #include "sdk.h"
  31. #include "registers/regsccm.h"
  32. #include "registers/regsccmanalog.h"
  33. #include "registers/regsuart.h"
  34. #include "registers/regsepit.h"
  35. #include "registers/regsspba.h"
  36. #include "registers/regssdmaarm.h"
  37. #include "registers/regsgpt.h"
  38. #include "registers/regsi2c.h"
  39. #include "registers/regsecspi.h"
  40. #include "ccm_pll.h"
  41. //#include "hardware.h"
  42. //#include "soc_memory_map.h"
  43. #define HW_ANADIG_REG_CORE (ANATOP_IPS_BASE_ADDR + 0x140)
  44. #define HW_ANADIG_PLL_SYS_RW (ANATOP_IPS_BASE_ADDR + 0x000)
  45. #define HW_ANADIG_REG_CORE_V_CORE_VALUE_mv(x) ((((x)-700)/25) << 0)
  46. #define HW_ANADIG_REG_CORE_V_SOC_VALUE_mv(x) ((((x)-700)/25) << 18)
  47. #define HW_ANADIG_REG_CORE_V_CORE_MSK 0x1F
  48. #define HW_ANADIG_REG_CORE_V_SOC_MSK (0x1F << 18)
  49. uint32_t g_arm_clk = 528000000;
  50. const uint32_t PLL2_OUTPUT[] = { 528000000, 396000000, 352000000, 198000000 };
  51. const uint32_t PLL3_OUTPUT[] = { 480000000, 720000000, 540000000, 508235294, 454736842 };
  52. const uint32_t PLL4_OUTPUT = 650000000;
  53. const uint32_t PLL5_OUTPUT = 650000000;
  54. ////////////////////////////////////////////////////////////////////////////////
  55. // Code
  56. ////////////////////////////////////////////////////////////////////////////////
  57. void set_soc_core_voltage(unsigned int v_core_mv, unsigned int v_soc_mv)
  58. {
  59. unsigned int val, val_v_core, val_v_soc;
  60. val = reg32_read(HW_ANADIG_REG_CORE);
  61. val &= ~HW_ANADIG_REG_CORE_V_CORE_MSK;
  62. val &= ~HW_ANADIG_REG_CORE_V_SOC_MSK;
  63. val_v_core = HW_ANADIG_REG_CORE_V_CORE_VALUE_mv(v_core_mv);
  64. val_v_soc = HW_ANADIG_REG_CORE_V_SOC_VALUE_mv(v_soc_mv);
  65. val |= val_v_core | val_v_soc;
  66. reg32_write(HW_ANADIG_REG_CORE, val);
  67. }
  68. void setup_clk(void)
  69. {
  70. uint32_t div_select;
  71. uint32_t temp;
  72. uint32_t arm_clk = g_arm_clk/1000000;
  73. switch(arm_clk)
  74. {
  75. case 400:
  76. div_select = 33;
  77. set_soc_core_voltage(1150, 1175);
  78. return;
  79. case 528:
  80. div_select = 44;
  81. set_soc_core_voltage(1250, 1250);
  82. break;
  83. case 756:
  84. div_select = 63;
  85. set_soc_core_voltage(1250, 1250);
  86. printf("ARM Clock set to 756MHz\r\n");
  87. break;
  88. default:
  89. return;
  90. }
  91. // first, make sure ARM_PODF is clear
  92. HW_CCM_CACRR_WR(0);
  93. // write the div_select value into HW_ANADIG_PLL_SYS_RW
  94. // this will re-program the PLL to the new freq
  95. temp = readl(HW_ANADIG_PLL_SYS_RW);
  96. temp |= 0x10000;// set BYBASS
  97. writel(temp, HW_ANADIG_PLL_SYS_RW);
  98. temp = readl(HW_ANADIG_PLL_SYS_RW);
  99. temp &= ~(0x0000007F);
  100. temp |= div_select; // Update div
  101. writel(temp, HW_ANADIG_PLL_SYS_RW);
  102. /* Wait for PLL to lock */
  103. while(!(readl(HW_ANADIG_PLL_SYS_RW) & 0x80000000));
  104. /*disable BYPASS*/
  105. temp = readl(HW_ANADIG_PLL_SYS_RW);
  106. temp &= ~0x10000;
  107. writel(temp, HW_ANADIG_PLL_SYS_RW);
  108. }
  109. void ccm_init(void)
  110. {
  111. HW_CCM_CCGR0_WR(0xffffffff);
  112. HW_CCM_CCGR1_WR(0xffffffff); // EPIT, ESAI, GPT enabled by driver
  113. HW_CCM_CCGR2_WR(0xffffffff); // I2C enabled by driver
  114. HW_CCM_CCGR3_WR(0xffffffff);
  115. HW_CCM_CCGR4_WR(0xffffffff); // GPMI, Perfmon enabled by driver
  116. HW_CCM_CCGR5_WR(0xffffffff); // UART, SATA enabled by driver
  117. HW_CCM_CCGR6_WR(0xffffffff);
  118. /*
  119. * Keep default settings at reset.
  120. * pre_periph_clk_sel is by default at 0, so the selected output
  121. * of PLL2 is the main output at 528MHz.
  122. * => by default, ahb_podf divides by 4 => AHB_CLK@132MHz.
  123. * => by default, ipg_podf divides by 2 => IPG_CLK@66MHz.
  124. */
  125. HW_CCM_CBCDR.U = BF_CCM_CBCDR_AHB_PODF(3)
  126. | BF_CCM_CBCDR_AXI_PODF(1)
  127. | BF_CCM_CBCDR_IPG_PODF(1);
  128. setup_clk();
  129. /* Power up 480MHz PLL */
  130. reg32_write_mask(HW_CCM_ANALOG_PLL_USB1_ADDR, 0x00001000, 0x00001000);
  131. /* Enable 480MHz PLL */
  132. reg32_write_mask(HW_CCM_ANALOG_PLL_USB1_ADDR, 0x00002000, 0x00002000);
  133. reg32_write_mask(HW_CCM_CSCDR1_ADDR, 0x00000000, 0x0000003F);
  134. }
  135. uint32_t get_main_clock(main_clocks_t clock)
  136. {
  137. uint32_t ret_val = 0;
  138. uint32_t pre_periph_clk_sel = HW_CCM_CBCMR.B.PRE_PERIPH_CLK_SEL;
  139. switch (clock) {
  140. case CPU_CLK:
  141. ret_val = g_arm_clk;
  142. break;
  143. case AXI_CLK:
  144. ret_val = PLL2_OUTPUT[pre_periph_clk_sel] / (HW_CCM_CBCDR.B.AXI_PODF + 1);
  145. break;
  146. case MMDC_CH0_AXI_CLK:
  147. ret_val = PLL2_OUTPUT[pre_periph_clk_sel] / (HW_CCM_CBCDR.B.MMDC_CH0_AXI_PODF + 1);
  148. break;
  149. case AHB_CLK:
  150. ret_val = PLL2_OUTPUT[pre_periph_clk_sel] / (HW_CCM_CBCDR.B.AHB_PODF + 1);
  151. break;
  152. case IPG_CLK:
  153. ret_val =
  154. PLL2_OUTPUT[pre_periph_clk_sel] / (HW_CCM_CBCDR.B.AHB_PODF +
  155. 1) / (HW_CCM_CBCDR.B.IPG_PODF + 1);
  156. break;
  157. case IPG_PER_CLK:
  158. ret_val =
  159. PLL2_OUTPUT[pre_periph_clk_sel] / (HW_CCM_CBCDR.B.AHB_PODF +
  160. 1) / (HW_CCM_CBCDR.B.IPG_PODF +
  161. 1) / (HW_CCM_CSCMR1.B.PERCLK_PODF + 1);
  162. break;
  163. default:
  164. break;
  165. }
  166. return ret_val;
  167. }
  168. uint32_t get_peri_clock(peri_clocks_t clock)
  169. {
  170. uint32_t ret_val = 0;
  171. switch (clock)
  172. {
  173. case UART1_MODULE_CLK:
  174. case UART2_MODULE_CLK:
  175. case UART3_MODULE_CLK:
  176. case UART4_MODULE_CLK:
  177. case UART5_MODULE_CLK:
  178. case UART6_MODULE_CLK:
  179. case UART7_MODULE_CLK:
  180. case UART8_MODULE_CLK:
  181. // UART source clock is a fixed PLL3 / 6
  182. ret_val = PLL3_OUTPUT[0] / 6 / (HW_CCM_CSCDR1.B.UART_CLK_PODF + 1);
  183. break;
  184. case SPI_CLK:
  185. ret_val = PLL3_OUTPUT[0] / 8 / (HW_CCM_CSCDR2.B.ECSPI_CLK_PODF + 1);
  186. break;
  187. case RAWNAND_CLK:
  188. ret_val =
  189. PLL3_OUTPUT[0] / (HW_CCM_CS2CDR.B.ENFC_CLK_PRED + 1) / (HW_CCM_CS2CDR.B.ENFC_CLK_PODF +
  190. 1);
  191. break;
  192. case CAN_CLK:
  193. // For i.mx6dq/sdl CAN source clock is a fixed PLL3 / 8
  194. ret_val = PLL3_OUTPUT[0] / 8 / (HW_CCM_CSCMR2.B.CAN_CLK_PODF + 1);
  195. break;
  196. default:
  197. break;
  198. }
  199. return ret_val;
  200. }
  201. void ccm_ccgr_config(uint32_t ccm_ccgrx, uint32_t cgx_offset, uint32_t gating_mode)
  202. {
  203. if (gating_mode == CLOCK_ON)
  204. {
  205. *(volatile uint32_t *)(ccm_ccgrx) |= cgx_offset;
  206. }
  207. else
  208. {
  209. *(volatile uint32_t *)(ccm_ccgrx) &= ~cgx_offset;
  210. }
  211. }
  212. void clock_gating_config(uint32_t base_address, uint32_t gating_mode)
  213. {
  214. uint32_t ccm_ccgrx = 0;
  215. uint32_t cgx_offset = 0;
  216. switch (base_address)
  217. {
  218. case REGS_UART1_BASE:
  219. ccm_ccgrx = HW_CCM_CCGR5_ADDR;
  220. cgx_offset = CG(12);
  221. break;
  222. case REGS_UART2_BASE:
  223. ccm_ccgrx = HW_CCM_CCGR0_ADDR;
  224. cgx_offset = CG(14);
  225. break;
  226. case REGS_UART3_BASE:
  227. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  228. cgx_offset = CG(5);
  229. break;
  230. case REGS_UART4_BASE:
  231. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  232. cgx_offset = CG(12);
  233. break;
  234. case REGS_UART5_BASE:
  235. ccm_ccgrx = HW_CCM_CCGR3_ADDR;
  236. cgx_offset = CG(1);
  237. break;
  238. case REGS_UART6_BASE:
  239. ccm_ccgrx = HW_CCM_CCGR3_ADDR;
  240. cgx_offset = CG(3);
  241. break;
  242. case REGS_UART7_BASE:
  243. ccm_ccgrx = HW_CCM_CCGR5_ADDR;
  244. cgx_offset = CG(13);
  245. break;
  246. case REGS_UART8_BASE:
  247. ccm_ccgrx = HW_CCM_CCGR6_ADDR;
  248. cgx_offset = CG(7);
  249. break;
  250. case REGS_SPBA_BASE:
  251. ccm_ccgrx = HW_CCM_CCGR5_ADDR;
  252. cgx_offset = CG(6);
  253. break;
  254. case REGS_SDMAARM_BASE:
  255. ccm_ccgrx = HW_CCM_CCGR5_ADDR;
  256. cgx_offset = CG(3);
  257. break;
  258. case REGS_EPIT1_BASE:
  259. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  260. cgx_offset = CG(6);
  261. break;
  262. case REGS_EPIT2_BASE:
  263. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  264. cgx_offset = CG(7);
  265. break;
  266. case REGS_GPT1_BASE:
  267. case REGS_GPT2_BASE:
  268. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  269. cgx_offset = CG(10)|CG(11);
  270. break;
  271. case REGS_I2C1_BASE:
  272. ccm_ccgrx = HW_CCM_CCGR2_ADDR;
  273. cgx_offset = CG(3);
  274. break;
  275. case REGS_I2C2_BASE:
  276. ccm_ccgrx = HW_CCM_CCGR2_ADDR;
  277. cgx_offset = CG(4);
  278. break;
  279. case REGS_I2C3_BASE:
  280. ccm_ccgrx = HW_CCM_CCGR2_ADDR;
  281. cgx_offset = CG(5);
  282. break;
  283. case REGS_ECSPI1_BASE:
  284. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  285. cgx_offset = CG(0);
  286. break;
  287. case REGS_ECSPI2_BASE:
  288. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  289. cgx_offset = CG(1);
  290. break;
  291. case REGS_ECSPI3_BASE:
  292. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  293. cgx_offset = CG(2);
  294. break;
  295. case REGS_ECSPI4_BASE:
  296. ccm_ccgrx = HW_CCM_CCGR1_ADDR;
  297. cgx_offset = CG(3);
  298. break;
  299. default:
  300. break;
  301. }
  302. // apply changes only if a valid address was found
  303. if (ccm_ccgrx != 0)
  304. {
  305. ccm_ccgr_config(ccm_ccgrx, cgx_offset, gating_mode);
  306. }
  307. }
  308. ////////////////////////////////////////////////////////////////////////////////
  309. // End of file
  310. ////////////////////////////////////////////////////////////////////////////////