drv_uart.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-10-10 Tanek the first version
  9. * 2019-5-10 misonyo add DMA TX and RX function
  10. */
  11. #include <rtthread.h>
  12. #ifdef BSP_USING_LPUART
  13. #include "rthw.h"
  14. #include <rtdevice.h>
  15. #include "drv_uart.h"
  16. #include "board.h"
  17. #include "fsl_lpuart.h"
  18. #include "fsl_lpuart_edma.h"
  19. #include "fsl_dmamux.h"
  20. #define LOG_TAG "drv.usart"
  21. #include <drv_log.h>
  22. #if defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
  23. #error "Please don't define 'FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL'!"
  24. #endif
  25. enum
  26. {
  27. #ifdef BSP_USING_LPUART1
  28. LPUART1_INDEX,
  29. #endif
  30. #ifdef BSP_USING_LPUART2
  31. LPUART2_INDEX,
  32. #endif
  33. #ifdef BSP_USING_LPUART3
  34. LPUART3_INDEX,
  35. #endif
  36. #ifdef BSP_USING_LPUART4
  37. LPUART4_INDEX,
  38. #endif
  39. #ifdef BSP_USING_LPUART5
  40. LPUART5_INDEX,
  41. #endif
  42. #ifdef BSP_USING_LPUART6
  43. LPUART6_INDEX,
  44. #endif
  45. #ifdef BSP_USING_LPUART7
  46. LPUART7_INDEX,
  47. #endif
  48. #ifdef BSP_USING_LPUART8
  49. LPUART8_INDEX,
  50. #endif
  51. };
  52. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  53. struct dma_rx_config
  54. {
  55. edma_handle_t edma;
  56. dma_request_source_t request;
  57. rt_uint8_t channel;
  58. rt_uint32_t last_index;
  59. };
  60. struct dma_tx_config
  61. {
  62. edma_handle_t edma;
  63. lpuart_edma_handle_t uart_edma;
  64. dma_request_source_t request;
  65. rt_uint8_t channel;
  66. };
  67. #endif
  68. struct imxrt_uart
  69. {
  70. char *name;
  71. LPUART_Type *uart_base;
  72. IRQn_Type irqn;
  73. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  74. struct dma_rx_config *dma_rx;
  75. struct dma_tx_config *dma_tx;
  76. #endif
  77. rt_uint16_t dma_flag;
  78. struct rt_serial_device serial;
  79. };
  80. static struct imxrt_uart uarts[] =
  81. {
  82. #ifdef BSP_USING_LPUART1
  83. {
  84. .name = "uart1",
  85. .uart_base = LPUART1,
  86. .irqn = LPUART1_IRQn,
  87. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  88. .dma_rx = RT_NULL,
  89. .dma_tx = RT_NULL,
  90. #endif
  91. .dma_flag = 0,
  92. },
  93. #endif
  94. #ifdef BSP_USING_LPUART2
  95. {
  96. .name = "uart2",
  97. .uart_base = LPUART2,
  98. .irqn = LPUART2_IRQn,
  99. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  100. .dma_rx = RT_NULL,
  101. .dma_tx = RT_NULL,
  102. #endif
  103. .dma_flag = 0,
  104. },
  105. #endif
  106. #ifdef BSP_USING_LPUART3
  107. {
  108. .name = "uart3",
  109. .uart_base = LPUART3,
  110. .irqn = LPUART3_IRQn,
  111. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  112. .dma_rx = RT_NULL,
  113. .dma_tx = RT_NULL,
  114. #endif
  115. .dma_flag = 0,
  116. },
  117. #endif
  118. #ifdef BSP_USING_LPUART4
  119. {
  120. .name = "uart4",
  121. .uart_base = LPUART4,
  122. .irqn = LPUART4_IRQn,
  123. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  124. .dma_rx = RT_NULL,
  125. .dma_tx = RT_NULL,
  126. #endif
  127. .dma_flag = 0,
  128. },
  129. #endif
  130. #ifdef BSP_USING_LPUART5
  131. {
  132. .name = "uart5",
  133. .uart_base = LPUART5,
  134. .irqn = LPUART5_IRQn,
  135. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  136. .dma_rx = RT_NULL,
  137. .dma_tx = RT_NULL,
  138. #endif
  139. .dma_flag = 0,
  140. },
  141. #endif
  142. #ifdef BSP_USING_LPUART6
  143. {
  144. .name = "uart6",
  145. .uart_base = LPUART6,
  146. .irqn = LPUART6_IRQn,
  147. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  148. .dma_rx = RT_NULL,
  149. .dma_tx = RT_NULL,
  150. #endif
  151. .dma_flag = 0,
  152. },
  153. #endif
  154. #ifdef BSP_USING_LPUART7
  155. {
  156. .name = "uart7",
  157. .uart_base = LPUART7,
  158. .irqn = LPUART7_IRQn,
  159. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  160. .dma_rx = RT_NULL,
  161. .dma_tx = RT_NULL,
  162. #endif
  163. .dma_flag = 0,
  164. },
  165. #endif
  166. #ifdef BSP_USING_LPUART8
  167. {
  168. .name = "uart8",
  169. .uart_base = LPUART8,
  170. .irqn = LPUART8_IRQn,
  171. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  172. .dma_rx = RT_NULL,
  173. .dma_tx = RT_NULL,
  174. #endif
  175. .dma_flag = 0,
  176. },
  177. #endif
  178. };
  179. static void uart_get_dma_config(void)
  180. {
  181. #ifdef BSP_LPUART1_RX_USING_DMA
  182. static struct dma_rx_config uart1_dma_rx = {.request = kDmaRequestMuxLPUART1Rx, .channel = BSP_LPUART1_RX_DMA_CHANNEL, .last_index = 0};
  183. uarts[LPUART1_INDEX].dma_rx = &uart1_dma_rx;
  184. uarts[LPUART1_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  185. #endif
  186. #ifdef BSP_LPUART1_TX_USING_DMA
  187. static struct dma_tx_config uart1_dma_tx = {.request = kDmaRequestMuxLPUART1Tx, .channel = BSP_LPUART1_TX_DMA_CHANNEL};
  188. uarts[LPUART1_INDEX].dma_tx = &uart1_dma_tx;
  189. uarts[LPUART1_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  190. #endif
  191. #ifdef BSP_LPUART2_RX_USING_DMA
  192. static struct dma_rx_config uart2_dma_rx = {.request = kDmaRequestMuxLPUART2Rx, .channel = BSP_LPUART2_RX_DMA_CHANNEL, .last_index = 0};
  193. uarts[LPUART2_INDEX].dma_rx = &uart2_dma_rx;
  194. uarts[LPUART2_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  195. #endif
  196. #ifdef BSP_LPUART2_TX_USING_DMA
  197. static struct dma_tx_config uart2_dma_tx = {.request = kDmaRequestMuxLPUART2Tx, .channel = BSP_LPUART2_TX_DMA_CHANNEL};
  198. uarts[LPUART2_INDEX].dma_tx = &uart2_dma_tx;
  199. uarts[LPUART2_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  200. #endif
  201. #ifdef BSP_LPUART3_RX_USING_DMA
  202. static struct dma_rx_config uart3_dma_rx = {.request = kDmaRequestMuxLPUART3Rx, .channel = BSP_LPUART3_RX_DMA_CHANNEL, .last_index = 0};
  203. uarts[LPUART3_INDEX].dma_rx = &uart3_dma_rx;
  204. uarts[LPUART3_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  205. #endif
  206. #ifdef BSP_LPUART3_TX_USING_DMA
  207. static struct dma_tx_config uart3_dma_tx = {.request = kDmaRequestMuxLPUART3Tx, .channel = BSP_LPUART3_TX_DMA_CHANNEL};
  208. uarts[LPUART3_INDEX].dma_tx = &uart3_dma_tx;
  209. uarts[LPUART3_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  210. #endif
  211. #ifdef BSP_LPUART4_RX_USING_DMA
  212. static struct dma_rx_config uart4_dma_rx = {.request = kDmaRequestMuxLPUART4Rx, .channel = BSP_LPUART4_RX_DMA_CHANNEL, .last_index = 0};
  213. uarts[LPUART4_INDEX].dma_rx = &uart4_dma_rx;
  214. uarts[LPUART4_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  215. #endif
  216. #ifdef BSP_LPUART4_TX_USING_DMA
  217. static struct dma_tx_config uart4_dma_tx = {.request = kDmaRequestMuxLPUART4Tx, .channel = BSP_LPUART4_TX_DMA_CHANNEL};
  218. uarts[LPUART4_INDEX].dma_tx = &uart4_dma_tx;
  219. uarts[LPUART4_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  220. #endif
  221. #ifdef BSP_LPUART5_RX_USING_DMA
  222. static struct dma_rx_config uart5_dma_rx = {.request = kDmaRequestMuxLPUART5Rx, .channel = BSP_LPUART5_RX_DMA_CHANNEL, .last_index = 0};
  223. uarts[LPUART5_INDEX].dma_rx = &uart5_dma_rx;
  224. uarts[LPUART5_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  225. #endif
  226. #ifdef BSP_LPUART5_TX_USING_DMA
  227. static struct dma_tx_config uart5_dma_tx = {.request = kDmaRequestMuxLPUART5Tx, .channel = BSP_LPUART5_TX_DMA_CHANNEL};
  228. uarts[LPUART5_INDEX].dma_tx = &uart5_dma_tx;
  229. uarts[LPUART5_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  230. #endif
  231. #ifdef BSP_LPUART6_RX_USING_DMA
  232. static struct dma_rx_config uart6_dma_rx = {.request = kDmaRequestMuxLPUART6Rx, .channel = BSP_LPUART6_RX_DMA_CHANNEL, .last_index = 0};
  233. uarts[LPUART6_INDEX].dma_rx = &uart6_dma_rx;
  234. uarts[LPUART6_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  235. #endif
  236. #ifdef BSP_LPUART6_TX_USING_DMA
  237. static struct dma_tx_config uart6_dma_tx = {.request = kDmaRequestMuxLPUART6Tx, .channel = BSP_LPUART6_TX_DMA_CHANNEL};
  238. uarts[LPUART6_INDEX].dma_tx = &uart6_dma_tx;
  239. uarts[LPUART6_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  240. #endif
  241. #ifdef BSP_LPUART7_RX_USING_DMA
  242. static struct dma_rx_config uart7_dma_rx = {.request = kDmaRequestMuxLPUART7Rx, .channel = BSP_LPUART7_RX_DMA_CHANNEL, .last_index = 0};
  243. uarts[LPUART7_INDEX].dma_rx = &uart7_dma_rx;
  244. uarts[LPUART7_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  245. #endif
  246. #ifdef BSP_LPUART7_TX_USING_DMA
  247. static struct dma_tx_config uart7_dma_tx = {.request = kDmaRequestMuxLPUART7Tx, .channel = BSP_LPUART7_TX_DMA_CHANNEL};
  248. uarts[LPUART7_INDEX].dma_tx = &uart7_dma_tx;
  249. uarts[LPUART7_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  250. #endif
  251. #ifdef BSP_LPUART8_RX_USING_DMA
  252. static struct dma_rx_config uart8_dma_rx = {.request = kDmaRequestMuxLPUART8Rx, .channel = BSP_LPUART8_RX_DMA_CHANNEL, .last_index = 0};
  253. uarts[LPUART8_INDEX].dma_rx = &uart8_dma_rx;
  254. uarts[LPUART8_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  255. #endif
  256. #ifdef BSP_LPUART8_TX_USING_DMA
  257. static struct dma_tx_config uart8_dma_tx = {.request = kDmaRequestMuxLPUART8Tx, .channel = BSP_LPUART8_TX_DMA_CHANNEL};
  258. uarts[LPUART8_INDEX].dma_tx = &uart8_dma_tx;
  259. uarts[LPUART8_INDEX].dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  260. #endif
  261. }
  262. static void uart_isr(struct imxrt_uart *uart);
  263. #if defined(BSP_USING_LPUART1)
  264. void LPUART1_IRQHandler(void)
  265. {
  266. rt_interrupt_enter();
  267. uart_isr(&uarts[LPUART1_INDEX]);
  268. rt_interrupt_leave();
  269. }
  270. #endif /* BSP_USING_LPUART1 */
  271. #if defined(BSP_USING_LPUART2)
  272. struct rt_serial_device serial2;
  273. void LPUART2_IRQHandler(void)
  274. {
  275. rt_interrupt_enter();
  276. uart_isr(&uarts[LPUART2_INDEX]);
  277. rt_interrupt_leave();
  278. }
  279. #endif /* BSP_USING_LPUART2 */
  280. #if defined(BSP_USING_LPUART3)
  281. struct rt_serial_device serial3;
  282. void LPUART3_IRQHandler(void)
  283. {
  284. rt_interrupt_enter();
  285. uart_isr(&uarts[LPUART3_INDEX]);
  286. rt_interrupt_leave();
  287. }
  288. #endif /* BSP_USING_LPUART3 */
  289. #if defined(BSP_USING_LPUART4)
  290. void LPUART4_IRQHandler(void)
  291. {
  292. rt_interrupt_enter();
  293. uart_isr(&uarts[LPUART4_INDEX]);
  294. rt_interrupt_leave();
  295. }
  296. #endif /* BSP_USING_LPUART4 */
  297. #if defined(BSP_USING_LPUART5)
  298. struct rt_serial_device serial5;
  299. void LPUART5_IRQHandler(void)
  300. {
  301. rt_interrupt_enter();
  302. uart_isr(&uarts[LPUART5_INDEX]);
  303. rt_interrupt_leave();
  304. }
  305. #endif /* BSP_USING_LPUART5 */
  306. #if defined(BSP_USING_LPUART6)
  307. struct rt_serial_device serial6;
  308. void LPUART6_IRQHandler(void)
  309. {
  310. rt_interrupt_enter();
  311. uart_isr(&uarts[LPUART6_INDEX]);
  312. rt_interrupt_leave();
  313. }
  314. #endif /* BSP_USING_LPUART6 */
  315. #if defined(BSP_USING_LPUART7)
  316. struct rt_serial_device serial7;
  317. void LPUART7_IRQHandler(void)
  318. {
  319. rt_interrupt_enter();
  320. uart_isr(&uarts[LPUART7_INDEX]);
  321. rt_interrupt_leave();
  322. }
  323. #endif /* BSP_USING_LPUART7 */
  324. #if defined(BSP_USING_LPUART8)
  325. struct rt_serial_device serial8;
  326. void LPUART8_IRQHandler(void)
  327. {
  328. rt_interrupt_enter();
  329. uart_isr(&uarts[LPUART8_INDEX]);
  330. rt_interrupt_leave();
  331. }
  332. #endif /* BSP_USING_LPUART8 */
  333. static void uart_isr(struct imxrt_uart *uart)
  334. {
  335. RT_ASSERT(uart != RT_NULL);
  336. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  337. rt_size_t total_index, recv_len;
  338. rt_base_t level;
  339. #endif
  340. /* kLPUART_RxDataRegFullFlag can only cleared or set by hardware */
  341. if (LPUART_GetStatusFlags(uart->uart_base) & kLPUART_RxDataRegFullFlag)
  342. {
  343. rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_IND);
  344. }
  345. if (LPUART_GetStatusFlags(uart->uart_base) & kLPUART_RxOverrunFlag)
  346. {
  347. /* Clear overrun flag, otherwise the RX does not work. */
  348. LPUART_ClearStatusFlags(uart->uart_base, kLPUART_RxOverrunFlag);
  349. }
  350. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  351. if ((LPUART_GetStatusFlags(uart->uart_base) & kLPUART_IdleLineFlag) && (uart->dma_rx != RT_NULL))
  352. {
  353. LPUART_ClearStatusFlags(uart->uart_base, kLPUART_IdleLineFlag);
  354. level = rt_hw_interrupt_disable();
  355. total_index = uart->serial.config.bufsz - EDMA_GetRemainingMajorLoopCount(DMA0, uart->dma_rx->channel);
  356. if (total_index > uart->dma_rx->last_index)
  357. {
  358. recv_len = total_index - uart->dma_rx->last_index;
  359. }
  360. else
  361. {
  362. recv_len = total_index + (uart->serial.config.bufsz - uart->dma_rx->last_index);
  363. }
  364. if ((recv_len > 0) && (recv_len < uart->serial.config.bufsz))
  365. {
  366. uart->dma_rx->last_index = total_index;
  367. rt_hw_interrupt_enable(level);
  368. rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  369. }
  370. else
  371. {
  372. rt_hw_interrupt_enable(level);
  373. }
  374. }
  375. #endif
  376. }
  377. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  378. void edma_rx_callback(struct _edma_handle *handle, void *userData, bool transferDone, uint32_t tcds)
  379. {
  380. rt_size_t total_index, recv_len;
  381. rt_base_t level;
  382. struct imxrt_uart *uart = (struct imxrt_uart *)userData;
  383. RT_ASSERT(uart != RT_NULL);
  384. if (transferDone)
  385. {
  386. level = rt_hw_interrupt_disable();
  387. if ((EDMA_GetChannelStatusFlags(DMA0, uart->dma_rx->channel) & kEDMA_DoneFlag) != 0U)
  388. {
  389. /* clear full interrupt */
  390. EDMA_ClearChannelStatusFlags(DMA0, uart->dma_rx->channel,kEDMA_DoneFlag);
  391. recv_len = uart->serial.config.bufsz - uart->dma_rx->last_index;
  392. uart->dma_rx->last_index = 0;
  393. }
  394. else
  395. {
  396. /* clear half interrupt */
  397. EDMA_ClearChannelStatusFlags(DMA0, uart->dma_rx->channel,kEDMA_InterruptFlag);
  398. total_index = uart->serial.config.bufsz - EDMA_GetRemainingMajorLoopCount(DMA0, uart->dma_rx->channel);
  399. if (total_index > uart->dma_rx->last_index)
  400. {
  401. recv_len = total_index - uart->dma_rx->last_index;
  402. }
  403. else
  404. {
  405. recv_len = total_index + (uart->serial.config.bufsz - uart->dma_rx->last_index);
  406. }
  407. uart->dma_rx->last_index = total_index;
  408. }
  409. rt_hw_interrupt_enable(level);
  410. if (recv_len)
  411. {
  412. rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  413. }
  414. }
  415. }
  416. void edma_tx_callback(LPUART_Type *base, lpuart_edma_handle_t *handle, status_t status, void *userData)
  417. {
  418. struct imxrt_uart *uart = (struct imxrt_uart *)userData;
  419. RT_ASSERT(uart != RT_NULL);
  420. if (kStatus_LPUART_TxIdle == status)
  421. {
  422. rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE);
  423. }
  424. }
  425. static void imxrt_dma_rx_config(struct imxrt_uart *uart)
  426. {
  427. RT_ASSERT(uart != RT_NULL);
  428. edma_transfer_config_t xferConfig;
  429. struct rt_serial_rx_fifo *rx_fifo;
  430. DMAMUX_SetSource(DMAMUX, uart->dma_rx->channel, uart->dma_rx->request);
  431. DMAMUX_EnableChannel(DMAMUX, uart->dma_rx->channel);
  432. EDMA_CreateHandle(&uart->dma_rx->edma, DMA0, uart->dma_rx->channel);
  433. EDMA_SetCallback(&uart->dma_rx->edma, edma_rx_callback, uart);
  434. rx_fifo = (struct rt_serial_rx_fifo *)uart->serial.serial_rx;
  435. EDMA_PrepareTransfer(&xferConfig,
  436. (void *)LPUART_GetDataRegisterAddress(uart->uart_base),
  437. sizeof(uint8_t),
  438. rx_fifo->buffer,
  439. sizeof(uint8_t),
  440. sizeof(uint8_t),
  441. uart->serial.config.bufsz,
  442. kEDMA_PeripheralToMemory);
  443. EDMA_SubmitTransfer(&uart->dma_rx->edma, &xferConfig);
  444. EDMA_EnableChannelInterrupts(DMA0, uart->dma_rx->channel, kEDMA_MajorInterruptEnable | kEDMA_HalfInterruptEnable);
  445. EDMA_EnableAutoStopRequest(DMA0, uart->dma_rx->channel, false);
  446. /* complement to adjust final destination address */
  447. uart->dma_rx->edma.base->TCD[uart->dma_rx->channel].DLAST_SGA = -(uart->serial.config.bufsz);
  448. EDMA_StartTransfer(&uart->dma_rx->edma);
  449. LPUART_EnableRxDMA(uart->uart_base, true);
  450. LPUART_EnableInterrupts(uart->uart_base, kLPUART_IdleLineInterruptEnable);
  451. NVIC_SetPriority(uart->irqn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 4, 0));
  452. EnableIRQ(uart->irqn);
  453. LOG_D("%s dma rx config done\n", uart->name);
  454. }
  455. static void imxrt_dma_tx_config(struct imxrt_uart *uart)
  456. {
  457. RT_ASSERT(uart != RT_NULL);
  458. DMAMUX_SetSource(DMAMUX, uart->dma_tx->channel, uart->dma_tx->request);
  459. DMAMUX_EnableChannel(DMAMUX, uart->dma_tx->channel);
  460. EDMA_CreateHandle(&uart->dma_tx->edma, DMA0, uart->dma_tx->channel);
  461. LPUART_TransferCreateHandleEDMA(uart->uart_base,
  462. &uart->dma_tx->uart_edma,
  463. edma_tx_callback,
  464. uart,
  465. &uart->dma_tx->edma,
  466. RT_NULL);
  467. LOG_D("%s dma tx config done\n", uart->name);
  468. }
  469. #endif
  470. uint32_t GetUartSrcFreq(LPUART_Type *uart_base)
  471. {
  472. uint32_t freq;
  473. uint32_t base = (uint32_t) uart_base;
  474. #ifdef SOC_IMXRT1170_SERIES
  475. switch (base)
  476. {
  477. case LPUART1_BASE:
  478. freq = CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart1);
  479. break;
  480. case LPUART12_BASE:
  481. freq = CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart12);
  482. break;
  483. default:
  484. freq = CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart2);
  485. break;
  486. }
  487. #else
  488. /* To make it simple, we assume default PLL and divider settings, and the only variable
  489. from application is use PLL3 source or OSC source */
  490. if (CLOCK_GetMux(kCLOCK_UartMux) == 0) /* PLL3 div6 80M */
  491. {
  492. freq = (CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6U) / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U);
  493. }
  494. else
  495. {
  496. freq = CLOCK_GetOscFreq() / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U);
  497. }
  498. #endif
  499. return freq;
  500. }
  501. static rt_err_t imxrt_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
  502. {
  503. struct imxrt_uart *uart;
  504. lpuart_config_t config;
  505. RT_ASSERT(serial != RT_NULL);
  506. RT_ASSERT(cfg != RT_NULL);
  507. uart = rt_container_of(serial, struct imxrt_uart, serial);
  508. LPUART_GetDefaultConfig(&config);
  509. config.baudRate_Bps = cfg->baud_rate;
  510. switch (cfg->data_bits)
  511. {
  512. case DATA_BITS_7:
  513. config.dataBitsCount = kLPUART_SevenDataBits;
  514. break;
  515. default:
  516. config.dataBitsCount = kLPUART_EightDataBits;
  517. break;
  518. }
  519. switch (cfg->stop_bits)
  520. {
  521. case STOP_BITS_2:
  522. config.stopBitCount = kLPUART_TwoStopBit;
  523. break;
  524. default:
  525. config.stopBitCount = kLPUART_OneStopBit;
  526. break;
  527. }
  528. switch (cfg->parity)
  529. {
  530. case PARITY_ODD:
  531. config.parityMode = kLPUART_ParityOdd;
  532. break;
  533. case PARITY_EVEN:
  534. config.parityMode = kLPUART_ParityEven;
  535. break;
  536. default:
  537. config.parityMode = kLPUART_ParityDisabled;
  538. break;
  539. }
  540. config.enableTx = true;
  541. config.enableRx = true;
  542. LPUART_Init(uart->uart_base, &config, GetUartSrcFreq(uart->uart_base));
  543. return RT_EOK;
  544. }
  545. static rt_err_t imxrt_control(struct rt_serial_device *serial, int cmd, void *arg)
  546. {
  547. struct imxrt_uart *uart;
  548. RT_ASSERT(serial != RT_NULL);
  549. uart = rt_container_of(serial, struct imxrt_uart, serial);
  550. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  551. rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
  552. #endif
  553. switch (cmd)
  554. {
  555. case RT_DEVICE_CTRL_CLR_INT:
  556. DisableIRQ(uart->irqn);
  557. break;
  558. case RT_DEVICE_CTRL_SET_INT:
  559. LPUART_EnableInterrupts(uart->uart_base, kLPUART_RxDataRegFullInterruptEnable);
  560. NVIC_SetPriority(uart->irqn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 4, 0));
  561. EnableIRQ(uart->irqn);
  562. break;
  563. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  564. case RT_DEVICE_CTRL_CONFIG:
  565. if (RT_DEVICE_FLAG_DMA_RX == ctrl_arg)
  566. {
  567. imxrt_dma_rx_config(uart);
  568. }
  569. else if (RT_DEVICE_FLAG_DMA_TX == ctrl_arg)
  570. {
  571. imxrt_dma_tx_config(uart);
  572. }
  573. break;
  574. #endif
  575. }
  576. return RT_EOK;
  577. }
  578. static int imxrt_putc(struct rt_serial_device *serial, char ch)
  579. {
  580. struct imxrt_uart *uart;
  581. RT_ASSERT(serial != RT_NULL);
  582. uart = rt_container_of(serial, struct imxrt_uart, serial);
  583. LPUART_WriteByte(uart->uart_base, ch);
  584. while (!(LPUART_GetStatusFlags(uart->uart_base) & kLPUART_TxDataRegEmptyFlag));
  585. return 1;
  586. }
  587. static int imxrt_getc(struct rt_serial_device *serial)
  588. {
  589. int ch;
  590. struct imxrt_uart *uart;
  591. RT_ASSERT(serial != RT_NULL);
  592. uart = rt_container_of(serial, struct imxrt_uart, serial);
  593. ch = -1;
  594. if (LPUART_GetStatusFlags(uart->uart_base) & kLPUART_RxDataRegFullFlag)
  595. {
  596. ch = LPUART_ReadByte(uart->uart_base);
  597. }
  598. return ch;
  599. }
  600. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  601. rt_size_t dma_tx_xfer(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
  602. {
  603. struct imxrt_uart *uart;
  604. lpuart_transfer_t xfer;
  605. rt_size_t xfer_size = 0;
  606. RT_ASSERT(serial != RT_NULL);
  607. uart = rt_container_of(serial, struct imxrt_uart, serial);
  608. if (0 != size)
  609. {
  610. if (RT_SERIAL_DMA_TX == direction)
  611. {
  612. xfer.data = buf;
  613. xfer.dataSize = size;
  614. if (LPUART_SendEDMA(uart->uart_base, &uart->dma_tx->uart_edma, &xfer) == kStatus_Success)
  615. {
  616. xfer_size = size;
  617. }
  618. }
  619. }
  620. return xfer_size;
  621. }
  622. #endif
  623. static const struct rt_uart_ops imxrt_uart_ops =
  624. {
  625. imxrt_configure,
  626. imxrt_control,
  627. imxrt_putc,
  628. imxrt_getc,
  629. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_USING_DMA)
  630. dma_tx_xfer
  631. #else
  632. RT_NULL
  633. #endif
  634. };
  635. int rt_hw_uart_init(void)
  636. {
  637. int i;
  638. rt_uint32_t flag;
  639. rt_err_t ret = RT_EOK;
  640. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  641. flag = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX;
  642. uart_get_dma_config();
  643. for (i = 0; i < sizeof(uarts) / sizeof(uarts[0]); i++)
  644. {
  645. uarts[i].serial.ops = &imxrt_uart_ops;
  646. uarts[i].serial.config = config;
  647. ret = rt_hw_serial_register(&uarts[i].serial, uarts[i].name, flag | uarts[i].dma_flag, NULL);
  648. }
  649. return ret;
  650. }
  651. INIT_BOARD_EXPORT(rt_hw_uart_init);
  652. #endif /* BSP_USING_LPUART */