drv_ecap.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /**************************************************************************//**
  2. *
  3. * @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2020-5-21 Philo First version
  10. *
  11. ******************************************************************************/
  12. #include <rtconfig.h>
  13. #if defined(BSP_USING_ECAP)
  14. #if ((BSP_USING_ECAP0_CHMSK+BSP_USING_ECAP1_CHMSK)!=0)
  15. #include <rtdevice.h>
  16. #include "NuMicro.h"
  17. #define ECAP_CH0_POS (0)
  18. #define ECAP_CH1_POS (1)
  19. #define ECAP_CH2_POS (2)
  20. #define ECAP_CHANNEL_NUM 0x3
  21. #define ECAP_CLK_DIV ECAP_CAPTURE_TIMER_CLKDIV_32
  22. /* Private typedef --------------------------------------------------------------*/
  23. typedef struct _ecap_dev
  24. {
  25. ECAP_T *ecap_base;
  26. float fUsPerTick;
  27. } nu_ecap_dev_t;
  28. typedef struct _ecap
  29. {
  30. struct rt_inputcapture_device parent;
  31. nu_ecap_dev_t *ecap_dev;
  32. uint8_t u8Channel;
  33. rt_bool_t bfirstData;
  34. uint32_t u32CurrentCnt;
  35. uint32_t u32LastCnt;
  36. rt_bool_t input_data_level;
  37. } nu_capture_t;
  38. /* Private functions ------------------------------------------------------------*/
  39. static rt_err_t nu_capture_init(struct rt_inputcapture_device *inputcapture);
  40. static rt_err_t nu_capture_open(struct rt_inputcapture_device *inputcapture);
  41. static rt_err_t nu_capture_close(struct rt_inputcapture_device *inputcapture);
  42. static rt_err_t nu_capture_get_pulsewidth(struct rt_inputcapture_device *inputcapture, rt_uint32_t *pulsewidth_us);
  43. /* Private define ---------------------------------------------------------------*/
  44. #define NU_ECAP_GET_LEVEL(status, channel) ((status&(ECAP_STATUS_CAP0_Msk<<channel))?1:0)
  45. #define ECAP_GET_CLK_DIV_INDEX(ecap) ((ecap)->CTL1 = ((ecap)->CTL1 & ECAP_CTL1_CLKSEL_Msk)>>ECAP_CTL1_CLKSEL_Pos)
  46. /* Public functions -------------------------------------------------------------*/
  47. /* Private variables ------------------------------------------------------------*/
  48. #if (BSP_USING_ECAP0_CHMSK!=0)
  49. static const char *nu_ecap0_device_name[ECAP_CHANNEL_NUM] = { "ecap0i0", "ecap0i1", "ecap0i2" };
  50. static nu_capture_t *nu_ecap0_capture[ECAP_CHANNEL_NUM] = {0};
  51. static nu_ecap_dev_t nu_ecap0_dev = {.ecap_base = ECAP0};
  52. #endif
  53. #if (BSP_USING_ECAP1_CHMSK!=0)
  54. static const char *nu_ecap1_device_name[ECAP_CHANNEL_NUM] = { "ecap1i0", "ecap1i1", "ecap1i2" };
  55. static nu_capture_t *nu_ecap1_capture[ECAP_CHANNEL_NUM] = {0};
  56. static nu_ecap_dev_t nu_ecap1_dev = {.ecap_base = ECAP1};
  57. #endif
  58. static struct rt_inputcapture_ops nu_capture_ops =
  59. {
  60. .init = nu_capture_init,
  61. .open = nu_capture_open,
  62. .close = nu_capture_close,
  63. .get_pulsewidth = nu_capture_get_pulsewidth,
  64. };
  65. /* Functions define ------------------------------------------------------------*/
  66. #if (BSP_USING_ECAP0_CHMSK!=0)
  67. void ECAP0_IRQHandler(void)
  68. {
  69. /* enter interrupt */
  70. rt_interrupt_enter();
  71. uint32_t u32Status;
  72. /* Get input Capture status */
  73. u32Status = ECAP_GET_INT_STATUS(ECAP0);
  74. #if (BSP_USING_ECAP0_CHMSK & (0x1<<ECAP_CH0_POS))
  75. /* Check input capture channel flag */
  76. if ((u32Status & ECAP_STATUS_CAPTF0_Msk) == ECAP_STATUS_CAPTF0_Msk)
  77. {
  78. /* Clear input capture channel flag */
  79. ECAP_CLR_CAPTURE_FLAG(ECAP0, ECAP_STATUS_CAPTF0_Msk);
  80. if (NU_ECAP_GET_LEVEL(u32Status, 0))
  81. {
  82. nu_ecap0_capture[0]->input_data_level = RT_FALSE;
  83. }
  84. else
  85. {
  86. nu_ecap0_capture[0]->input_data_level = RT_TRUE;
  87. }
  88. nu_ecap0_capture[0]->u32CurrentCnt = ECAP_GET_CNT_HOLD_VALUE(ECAP0, ECAP_IC0);
  89. rt_hw_inputcapture_isr(&nu_ecap0_capture[0]->parent, nu_ecap0_capture[0]->input_data_level);
  90. }
  91. #endif
  92. #if (BSP_USING_ECAP0_CHMSK & (0x1<<ECAP_CH1_POS))
  93. /* Check input capture channel flag */
  94. if ((u32Status & ECAP_STATUS_CAPTF1_Msk) == ECAP_STATUS_CAPTF1_Msk)
  95. {
  96. /* Clear input capture channel flag */
  97. ECAP_CLR_CAPTURE_FLAG(ECAP0, ECAP_STATUS_CAPTF1_Msk);
  98. if (NU_ECAP_GET_LEVEL(u32Status, 1))
  99. {
  100. nu_ecap0_capture[1]->input_data_level = RT_FALSE;
  101. }
  102. else
  103. {
  104. nu_ecap0_capture[1]->input_data_level = RT_TRUE;
  105. }
  106. nu_ecap0_capture[1]->u32CurrentCnt = ECAP_GET_CNT_HOLD_VALUE(ECAP0, ECAP_IC1);
  107. rt_hw_inputcapture_isr(&nu_ecap0_capture[1]->parent, nu_ecap0_capture[1]->input_data_level);
  108. }
  109. #endif
  110. #if (BSP_USING_ECAP0_CHMSK & (0x1<<ECAP_CH2_POS))
  111. /* Check input capture channel flag */
  112. if ((u32Status & ECAP_STATUS_CAPTF2_Msk) == ECAP_STATUS_CAPTF2_Msk)
  113. {
  114. /* Clear input capture channel flag */
  115. ECAP_CLR_CAPTURE_FLAG(ECAP0, ECAP_STATUS_CAPTF2_Msk);
  116. if (NU_ECAP_GET_LEVEL(u32Status, 2))
  117. {
  118. nu_ecap0_capture[2]->input_data_level = RT_FALSE;
  119. }
  120. else
  121. {
  122. nu_ecap0_capture[2]->input_data_level = RT_TRUE;
  123. }
  124. nu_ecap0_capture[2]->u32CurrentCnt = ECAP_GET_CNT_HOLD_VALUE(ECAP0, ECAP_IC2);
  125. rt_hw_inputcapture_isr(&nu_ecap0_capture[2]->parent, nu_ecap0_capture[2]->input_data_level);
  126. }
  127. #endif
  128. /* leave interrupt */
  129. rt_interrupt_leave();
  130. }
  131. #endif //(BSP_USING_ECAP0_CHMSK!=0)
  132. #if (BSP_USING_ECAP1_CHMSK!=0)
  133. void ECAP1_IRQHandler(void)
  134. {
  135. /* enter interrupt */
  136. rt_interrupt_enter();
  137. uint32_t u32Status;
  138. /* Get input Capture status */
  139. u32Status = ECAP_GET_INT_STATUS(ECAP1);
  140. #if (BSP_USING_ECAP1_CHMSK & (0x1<<ECAP_CH0_POS))
  141. /* Check input capture channel flag */
  142. if ((u32Status & ECAP_STATUS_CAPTF0_Msk) == ECAP_STATUS_CAPTF0_Msk)
  143. {
  144. /* Clear input capture channel flag */
  145. ECAP_CLR_CAPTURE_FLAG(ECAP1, ECAP_STATUS_CAPTF0_Msk);
  146. if (NU_ECAP_GET_LEVEL(u32Status, 0))
  147. {
  148. nu_ecap1_capture[0]->input_data_level = RT_FALSE;
  149. }
  150. else
  151. {
  152. nu_ecap1_capture[0]->input_data_level = RT_TRUE;
  153. }
  154. nu_ecap1_capture[0]->u32CurrentCnt = ECAP_GET_CNT_HOLD_VALUE(ECAP1, ECAP_IC0);
  155. rt_hw_inputcapture_isr(&nu_ecap1_capture[0]->parent, nu_ecap1_capture[0]->input_data_level);
  156. }
  157. #endif
  158. #if (BSP_USING_ECAP1_CHMSK & (0x1<<ECAP_CH1_POS))
  159. /* Check input capture channel flag */
  160. if ((u32Status & ECAP_STATUS_CAPTF1_Msk) == ECAP_STATUS_CAPTF1_Msk)
  161. {
  162. /* Clear input capture channel flag */
  163. ECAP_CLR_CAPTURE_FLAG(ECAP1, ECAP_STATUS_CAPTF1_Msk);
  164. if (NU_ECAP_GET_LEVEL(u32Status, 1))
  165. {
  166. nu_ecap1_capture[1]->input_data_level = RT_FALSE;
  167. }
  168. else
  169. {
  170. nu_ecap1_capture[1]->input_data_level = RT_TRUE;
  171. }
  172. nu_ecap1_capture[1]->u32CurrentCnt = ECAP_GET_CNT_HOLD_VALUE(ECAP1, ECAP_IC1);
  173. rt_hw_inputcapture_isr(&nu_ecap1_capture[1]->parent, nu_ecap1_capture[1]->input_data_level);
  174. }
  175. #endif
  176. #if (BSP_USING_ECAP1_CHMSK & (0x1<<ECAP_CH2_POS))
  177. /* Check input capture channel flag */
  178. if ((u32Status & ECAP_STATUS_CAPTF2_Msk) == ECAP_STATUS_CAPTF2_Msk)
  179. {
  180. /* Clear input capture channel flag */
  181. ECAP_CLR_CAPTURE_FLAG(ECAP1, ECAP_STATUS_CAPTF2_Msk);
  182. if (NU_ECAP_GET_LEVEL(u32Status, 2))
  183. {
  184. nu_ecap1_capture[2]->input_data_level = RT_FALSE;
  185. }
  186. else
  187. {
  188. nu_ecap1_capture[2]->input_data_level = RT_TRUE;
  189. }
  190. nu_ecap1_capture[2]->u32CurrentCnt = ECAP_GET_CNT_HOLD_VALUE(ECAP1, ECAP_IC2);
  191. rt_hw_inputcapture_isr(&nu_ecap1_capture[2]->parent, nu_ecap1_capture[2]->input_data_level);
  192. }
  193. #endif
  194. /* leave interrupt */
  195. rt_interrupt_leave();
  196. }
  197. #endif //(BSP_USING_ECAP1_CHMSK!=0)
  198. static rt_err_t nu_capture_get_pulsewidth(struct rt_inputcapture_device *inputcapture, rt_uint32_t *pulsewidth_us)
  199. {
  200. rt_err_t ret = RT_EOK;
  201. nu_capture_t *nu_capture;
  202. float fTempCnt;
  203. nu_capture = (nu_capture_t *)inputcapture;
  204. if (nu_capture->bfirstData)
  205. {
  206. nu_capture->bfirstData = RT_FALSE;
  207. ret = RT_ERROR;
  208. return -(ret);
  209. }
  210. if (nu_capture->u32CurrentCnt > nu_capture->u32LastCnt)
  211. fTempCnt = nu_capture->u32CurrentCnt - nu_capture->u32LastCnt;
  212. else /* Overrun case */
  213. fTempCnt = nu_capture->u32CurrentCnt + ((0x1000000 - nu_capture->u32LastCnt) + 1);
  214. *pulsewidth_us = (int)(fTempCnt * nu_capture->ecap_dev->fUsPerTick);
  215. nu_capture->u32LastCnt = nu_capture->u32CurrentCnt;
  216. return -(ret);
  217. }
  218. static float get_ecap_tick_time_us(nu_capture_t *nu_capture)
  219. {
  220. uint8_t u8ClockDivider[8] = { 1, 4, 16, 32, 64, 96, 112, 128};
  221. if (nu_capture->ecap_dev->ecap_base == ECAP0)
  222. return ((float)1000000 / ((float)CLK_GetPCLK0Freq() / u8ClockDivider[(nu_capture->ecap_dev->ecap_base->CTL1 & ECAP_CTL1_CLKSEL_Msk) >> ECAP_CTL1_CLKSEL_Pos]));
  223. else
  224. return ((float)1000000 / ((float)CLK_GetPCLK1Freq() / u8ClockDivider[(nu_capture->ecap_dev->ecap_base->CTL1 & ECAP_CTL1_CLKSEL_Msk) >> ECAP_CTL1_CLKSEL_Pos]));
  225. }
  226. static rt_err_t nu_ecap_init(nu_capture_t *nu_capture)
  227. {
  228. rt_err_t ret = RT_ERROR;
  229. static rt_bool_t bECAP0Inited = RT_FALSE;
  230. static rt_bool_t bECAP1Inited = RT_FALSE;
  231. if (nu_capture->ecap_dev->ecap_base == ECAP0)
  232. {
  233. if (bECAP0Inited == RT_FALSE)
  234. {
  235. /* Enable ECAP0 clock */
  236. SYS_UnlockReg();
  237. CLK_EnableModuleClock(ECAP0_MODULE);
  238. SYS_LockReg();
  239. NVIC_EnableIRQ(ECAP0_IRQn);
  240. bECAP0Inited = RT_TRUE;
  241. }
  242. else
  243. {
  244. return ret = RT_EOK;
  245. }
  246. }
  247. else if (nu_capture->ecap_dev->ecap_base == ECAP1)
  248. {
  249. if (bECAP1Inited == RT_FALSE)
  250. {
  251. /* Enable ECAP1 clock */
  252. SYS_UnlockReg();
  253. CLK_EnableModuleClock(ECAP1_MODULE);
  254. SYS_LockReg();
  255. NVIC_EnableIRQ(ECAP1_IRQn);
  256. bECAP1Inited = RT_TRUE;
  257. }
  258. else
  259. {
  260. return ret = RT_EOK;
  261. }
  262. }
  263. else
  264. {
  265. return ret;
  266. }
  267. /* Enable ECAP */
  268. ECAP_Open(nu_capture->ecap_dev->ecap_base, ECAP_DISABLE_COMPARE);
  269. ECAP_SEL_TIMER_CLK_DIV(nu_capture->ecap_dev->ecap_base, ECAP_CLK_DIV);
  270. /* Select Reload function */
  271. ECAP_SET_CNT_CLEAR_EVENT(nu_capture->ecap_dev->ecap_base, ECAP_CTL1_OVRLDEN_Msk);
  272. /* Enable ECAP0 source IC */
  273. ECAP_SEL_INPUT_SRC(nu_capture->ecap_dev->ecap_base, ECAP_IC0, ECAP_CAP_INPUT_SRC_FROM_IC);
  274. ECAP_SEL_INPUT_SRC(nu_capture->ecap_dev->ecap_base, ECAP_IC1, ECAP_CAP_INPUT_SRC_FROM_IC);
  275. ECAP_SEL_INPUT_SRC(nu_capture->ecap_dev->ecap_base, ECAP_IC2, ECAP_CAP_INPUT_SRC_FROM_IC);
  276. /* Select IC detect rising edge */
  277. ECAP_SEL_CAPTURE_EDGE(nu_capture->ecap_dev->ecap_base, ECAP_IC0, ECAP_RISING_FALLING_EDGE);
  278. ECAP_SEL_CAPTURE_EDGE(nu_capture->ecap_dev->ecap_base, ECAP_IC1, ECAP_RISING_FALLING_EDGE);
  279. ECAP_SEL_CAPTURE_EDGE(nu_capture->ecap_dev->ecap_base, ECAP_IC2, ECAP_RISING_FALLING_EDGE);
  280. ret = RT_EOK;
  281. return -(ret);
  282. }
  283. static rt_err_t nu_capture_init(struct rt_inputcapture_device *inputcapture)
  284. {
  285. rt_err_t ret = RT_EOK;
  286. nu_capture_t *nu_capture;
  287. RT_ASSERT(inputcapture != RT_NULL);
  288. nu_capture = (nu_capture_t *) inputcapture;
  289. if (nu_ecap_init(nu_capture) != RT_EOK)
  290. {
  291. rt_kprintf("Failed to initialize ECAP.\n");
  292. ret = RT_ERROR;
  293. }
  294. return -(ret);
  295. }
  296. static rt_err_t nu_capture_open(struct rt_inputcapture_device *inputcapture)
  297. {
  298. rt_err_t ret = RT_EOK;
  299. nu_capture_t *nu_capture;
  300. RT_ASSERT(inputcapture != RT_NULL);
  301. nu_capture = (nu_capture_t *) inputcapture;
  302. nu_capture->ecap_dev->fUsPerTick = get_ecap_tick_time_us(nu_capture);
  303. /* Enable ECAP Input Channel */
  304. ECAP_ENABLE_INPUT_CHANNEL(nu_capture->ecap_dev->ecap_base, 0x1 << (ECAP_CTL0_IC0EN_Pos + nu_capture->u8Channel));
  305. /* Input Channel interrupt enabled */
  306. ECAP_EnableINT(nu_capture->ecap_dev->ecap_base, 0x1 << (ECAP_CTL0_CAPIEN0_Pos + nu_capture->u8Channel));
  307. /* ECAP_CNT starts up-counting */
  308. ECAP_CNT_START(nu_capture->ecap_dev->ecap_base);
  309. return ret;
  310. }
  311. static rt_err_t nu_capture_close(struct rt_inputcapture_device *inputcapture)
  312. {
  313. rt_err_t ret = RT_EOK;
  314. nu_capture_t *nu_capture;
  315. RT_ASSERT(inputcapture != RT_NULL);
  316. nu_capture = (nu_capture_t *) inputcapture;
  317. /* Input Channel interrupt disabled */
  318. ECAP_DisableINT(nu_capture->ecap_dev->ecap_base, 0x1 << (ECAP_CTL0_CAPIEN0_Pos + nu_capture->u8Channel));
  319. /* Disable ECAP Input Channel */
  320. ECAP_DISABLE_INPUT_CHANNEL(nu_capture->ecap_dev->ecap_base, 0x1 << (ECAP_CTL0_IC0EN_Pos + nu_capture->u8Channel));
  321. /* Clear input capture channel flag */
  322. ECAP_CLR_CAPTURE_FLAG(nu_capture->ecap_dev->ecap_base, 0x1 << (ECAP_STATUS_CAPTF0_Pos + nu_capture->u8Channel));
  323. return ret;
  324. }
  325. static void ecap_init(nu_capture_t *nu_capture, uint8_t u8Channel, nu_ecap_dev_t *ecap_dev, const char *device_name)
  326. {
  327. nu_capture->ecap_dev = ecap_dev;
  328. nu_capture->u8Channel = u8Channel;
  329. nu_capture->bfirstData = RT_TRUE;
  330. nu_capture->u32CurrentCnt = 0;
  331. nu_capture->u32LastCnt = 0;
  332. nu_capture->parent.ops = &nu_capture_ops;
  333. /* register inputcapture device */
  334. rt_device_inputcapture_register(&nu_capture->parent, device_name, &nu_capture);
  335. }
  336. /* Init and register ecap capture */
  337. static int nu_ecap_capture_device_init(void)
  338. {
  339. for (int i = 0; i < ECAP_CHANNEL_NUM; i++)
  340. {
  341. #if (BSP_USING_ECAP0_CHMSK!=0)
  342. if (BSP_USING_ECAP0_CHMSK & (0x1 << i))
  343. {
  344. nu_ecap0_capture[i] = (nu_capture_t *)rt_malloc(sizeof(nu_capture_t));
  345. ecap_init(nu_ecap0_capture[i], i, &nu_ecap0_dev, nu_ecap0_device_name[i]);
  346. }
  347. #endif //#if (BSP_USING_ECAP0_CHMSK!=0)
  348. #if (BSP_USING_ECAP1_CHMSK!=0)
  349. if (BSP_USING_ECAP1_CHMSK & (0x1 << i))
  350. {
  351. nu_ecap1_capture[i] = (nu_capture_t *)rt_malloc(sizeof(nu_capture_t));
  352. ecap_init(nu_ecap1_capture[i], i, &nu_ecap1_dev, nu_ecap1_device_name[i]);
  353. }
  354. #endif //#if (BSP_USING_ECAP1_CHMSK!=0)
  355. }
  356. return 0;
  357. }
  358. INIT_DEVICE_EXPORT(nu_ecap_capture_device_init);
  359. #endif //#if ((BSP_USING_ECAP0_CHMSK+BSP_USING_ECAP1_CHMSK)!=0)
  360. #endif //#if defined(BSP_USING_ECAP)