drv_crypto.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /**************************************************************************//**
  2. *
  3. * @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2021-4-22 Wayne First version
  10. *
  11. ******************************************************************************/
  12. #include <rtconfig.h>
  13. #if (defined(BSP_USING_CRYPTO) && defined(RT_USING_HWCRYPTO))
  14. #include <rtdevice.h>
  15. #include <rtdbg.h>
  16. #include <board.h>
  17. #include "NuMicro.h"
  18. #include "drv_sys.h"
  19. #include <nu_bitutil.h>
  20. /* Private typedef --------------------------------------------------------------*/
  21. #define CACHE_LINE_SIZE 32
  22. typedef struct
  23. {
  24. uint8_t *pu8SHATempBuf;
  25. uint32_t u32SHATempBufLen;
  26. uint32_t u32DMAMode;
  27. uint32_t u32BlockSize;
  28. } S_SHA_CONTEXT;
  29. /* Private functions ------------------------------------------------------------*/
  30. static rt_err_t nu_hwcrypto_create(struct rt_hwcrypto_ctx *ctx);
  31. static void nu_hwcrypto_destroy(struct rt_hwcrypto_ctx *ctx);
  32. static rt_err_t nu_hwcrypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src);
  33. static void nu_hwcrypto_reset(struct rt_hwcrypto_ctx *ctx);
  34. /* Private variables ------------------------------------------------------------*/
  35. static const struct rt_hwcrypto_ops nu_hwcrypto_ops =
  36. {
  37. .create = nu_hwcrypto_create,
  38. .destroy = nu_hwcrypto_destroy,
  39. .copy = nu_hwcrypto_clone,
  40. .reset = nu_hwcrypto_reset,
  41. };
  42. /* Crypto engine operation ------------------------------------------------------------*/
  43. #define NU_HWCRYPTO_DES_3KEYS 1
  44. #define NU_HWCRYPTO_DES_NO3KEYS 0
  45. #define NU_HWCRYPTO_AES_NAME "nu_AES"
  46. #define NU_HWCRYPTO_TDES_NAME "nu_TDES"
  47. #define NU_HWCRYPTO_SHA_NAME "nu_SHA"
  48. #define NU_HWCRYPTO_PRNG_NAME "nu_PRNG"
  49. static struct rt_mutex s_AES_mutex;
  50. static struct rt_mutex s_TDES_mutex;
  51. static struct rt_mutex s_SHA_mutex;
  52. static struct rt_mutex s_PRNG_mutex;
  53. //Crypto engine IRQ handler
  54. static void nu_crypto_isr(int vector, void *param)
  55. {
  56. if (TDES_GET_INT_FLAG())
  57. {
  58. TDES_CLR_INT_FLAG();
  59. }
  60. }
  61. static rt_err_t nu_aes_crypt_run(
  62. rt_bool_t bEncrypt,
  63. uint32_t u32OpMode,
  64. uint8_t *pu8Key,
  65. uint32_t u32KeySize,
  66. uint8_t *pu8IV,
  67. uint8_t *pu8InData,
  68. uint8_t *pu8OutData,
  69. uint32_t u32DataLen
  70. )
  71. {
  72. uint32_t au32SwapKey[8];
  73. uint32_t au32SwapIV[4];
  74. rt_err_t result;
  75. au32SwapKey[0] = nu_get32_be(&pu8Key[0]);
  76. au32SwapKey[1] = nu_get32_be(&pu8Key[4]);
  77. au32SwapKey[2] = nu_get32_be(&pu8Key[8]);
  78. au32SwapKey[3] = nu_get32_be(&pu8Key[12]);
  79. if ((u32KeySize == AES_KEY_SIZE_192) || (u32KeySize == AES_KEY_SIZE_256))
  80. {
  81. au32SwapKey[4] = nu_get32_be(&pu8Key[16]);
  82. au32SwapKey[5] = nu_get32_be(&pu8Key[20]);
  83. }
  84. if (u32KeySize == AES_KEY_SIZE_256)
  85. {
  86. au32SwapKey[6] = nu_get32_be(&pu8Key[24]);
  87. au32SwapKey[7] = nu_get32_be(&pu8Key[28]);
  88. }
  89. au32SwapIV[0] = nu_get32_be(&pu8IV[0]);
  90. au32SwapIV[1] = nu_get32_be(&pu8IV[4]);
  91. au32SwapIV[2] = nu_get32_be(&pu8IV[8]);
  92. au32SwapIV[3] = nu_get32_be(&pu8IV[12]);
  93. result = rt_mutex_take(&s_AES_mutex, RT_WAITING_FOREVER);
  94. RT_ASSERT(result == RT_EOK);
  95. //Using Channel 0
  96. AES_Open(0, bEncrypt, u32OpMode, u32KeySize, AES_IN_OUT_SWAP);
  97. AES_SetKey(0, (uint32_t *)au32SwapKey, u32KeySize);
  98. AES_SetInitVect(0, (uint32_t *)au32SwapIV);
  99. //Setup AES DMA
  100. AES_SetDMATransfer(0, (uint32_t)pu8InData, (uint32_t)pu8OutData, u32DataLen);
  101. #if defined(BSP_USING_MMU)
  102. /* Writeback data in dcache to memory before transferring. */
  103. {
  104. /* Flush Src buffer into memory. */
  105. if (pu8InData)
  106. mmu_clean_invalidated_dcache((uint32_t)pu8InData, u32DataLen);
  107. /* Flush Dst buffer into memory. */
  108. if (pu8OutData)
  109. mmu_clean_invalidated_dcache((uint32_t)pu8OutData, u32DataLen);
  110. }
  111. #endif
  112. /* Clear AES interrupt status */
  113. AES_CLR_INT_FLAG();
  114. /* Start AES encryption/decryption */
  115. AES_Start(0, CRYPTO_DMA_ONE_SHOT);
  116. /* Wait done */
  117. while (!(CRPT->INTSTS & CRPT_INTEN_AESIEN_Msk)) {};
  118. if ((u32DataLen % 16) && (CRPT->AES_STS & (CRPT_AES_STS_OUTBUFEMPTY_Msk | CRPT_AES_STS_INBUFEMPTY_Msk)))
  119. rt_kprintf("AES WARNING - AES Data length(%d) is not enough. -> %d \n", u32DataLen, RT_ALIGN(u32DataLen, 16));
  120. else if (CRPT->INTSTS & (CRPT_INTSTS_AESERRIF_Msk) || (CRPT->AES_STS & (CRPT_AES_STS_BUSERR_Msk | CRPT_AES_STS_CNTERR_Msk)))
  121. rt_kprintf("AES ERROR - CRPT->INTSTS-%08x, CRPT->AES_STS-%08x\n", CRPT->INTSTS, CRPT->AES_STS);
  122. /* Clear AES interrupt status */
  123. AES_CLR_INT_FLAG();
  124. result = rt_mutex_release(&s_AES_mutex);
  125. RT_ASSERT(result == RT_EOK);
  126. return RT_EOK;
  127. }
  128. static void nu_prng_open(uint32_t u32Seed)
  129. {
  130. rt_err_t result;
  131. result = rt_mutex_take(&s_PRNG_mutex, RT_WAITING_FOREVER);
  132. RT_ASSERT(result == RT_EOK);
  133. //Open PRNG 64 bits. But always return 32 bits
  134. PRNG_Open(PRNG_KEY_SIZE_64, PRNG_SEED_RELOAD, u32Seed);
  135. result = rt_mutex_release(&s_PRNG_mutex);
  136. RT_ASSERT(result == RT_EOK);
  137. }
  138. static rt_uint32_t nu_prng_run(void)
  139. {
  140. uint32_t au32RNGValue[2];
  141. rt_err_t result;
  142. static uint32_t s_u32PRNG_Counter = 0;
  143. result = rt_mutex_take(&s_PRNG_mutex, RT_WAITING_FOREVER);
  144. RT_ASSERT(result == RT_EOK);
  145. #if !defined(NU_PRNG_USE_SEED)
  146. nu_prng_open(rt_tick_get() + s_u32PRNG_Counter++);
  147. #endif
  148. PRNG_Start();
  149. while ((CRPT->PRNG_CTL & CRPT_PRNG_CTL_BUSY_Msk)) {};
  150. /* Clear PRNG interrupt status */
  151. PRNG_CLR_INT_FLAG();
  152. PRNG_Read(&au32RNGValue[0]);
  153. result = rt_mutex_release(&s_PRNG_mutex);
  154. RT_ASSERT(result == RT_EOK);
  155. return au32RNGValue[0];
  156. }
  157. static rt_err_t nu_aes_crypt(struct hwcrypto_symmetric *symmetric_ctx, struct hwcrypto_symmetric_info *symmetric_info)
  158. {
  159. uint32_t u32AESOpMode;
  160. uint32_t u32AESKeySize;
  161. unsigned char *in, *out;
  162. unsigned char in_align_flag = 0;
  163. unsigned char out_align_flag = 0;
  164. unsigned char iv_temp[16];
  165. RT_ASSERT(symmetric_ctx != RT_NULL);
  166. RT_ASSERT(symmetric_info != RT_NULL);
  167. if ((symmetric_info->length % 4) != 0)
  168. {
  169. return -RT_EINVAL;
  170. }
  171. //Checking key length
  172. if (symmetric_ctx->key_bitlen == 128)
  173. {
  174. u32AESKeySize = AES_KEY_SIZE_128;
  175. }
  176. else if (symmetric_ctx->key_bitlen == 192)
  177. {
  178. u32AESKeySize = AES_KEY_SIZE_192;
  179. }
  180. else if (symmetric_ctx->key_bitlen == 256)
  181. {
  182. u32AESKeySize = AES_KEY_SIZE_256;
  183. }
  184. else
  185. {
  186. return -RT_EINVAL;
  187. }
  188. //Select AES operation mode
  189. switch (symmetric_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
  190. {
  191. case HWCRYPTO_TYPE_AES_ECB:
  192. u32AESOpMode = AES_MODE_ECB;
  193. break;
  194. case HWCRYPTO_TYPE_AES_CBC:
  195. u32AESOpMode = AES_MODE_CBC;
  196. break;
  197. case HWCRYPTO_TYPE_AES_CFB:
  198. u32AESOpMode = AES_MODE_CFB;
  199. break;
  200. case HWCRYPTO_TYPE_AES_OFB:
  201. u32AESOpMode = AES_MODE_OFB;
  202. break;
  203. case HWCRYPTO_TYPE_AES_CTR:
  204. u32AESOpMode = AES_MODE_CTR;
  205. break;
  206. default :
  207. return -RT_ERROR;
  208. }
  209. in = (unsigned char *)symmetric_info->in;
  210. out = (unsigned char *)symmetric_info->out;
  211. //Checking in/out data buffer address not alignment
  212. if (((rt_uint32_t)in % CACHE_LINE_SIZE) != 0)
  213. {
  214. in = rt_malloc_align(symmetric_info->length, CACHE_LINE_SIZE);
  215. if (in == RT_NULL)
  216. {
  217. LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
  218. return -RT_ENOMEM;
  219. }
  220. rt_memcpy(in, symmetric_info->in, symmetric_info->length);
  221. in_align_flag = 1;
  222. }
  223. if (((rt_uint32_t)out % CACHE_LINE_SIZE) != 0)
  224. {
  225. out = rt_malloc_align(symmetric_info->length, CACHE_LINE_SIZE);
  226. if (out == RT_NULL)
  227. {
  228. if (in_align_flag)
  229. rt_free_align(in);
  230. LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
  231. return -RT_ENOMEM;
  232. }
  233. out_align_flag = 1;
  234. }
  235. if ((u32AESOpMode == AES_MODE_CBC) && (symmetric_info->mode == HWCRYPTO_MODE_DECRYPT))
  236. {
  237. uint32_t loop;
  238. loop = (symmetric_info->length - 1) / 16;
  239. rt_memcpy(iv_temp, in + (loop * 16), 16);
  240. }
  241. nu_aes_crypt_run(symmetric_info->mode == HWCRYPTO_MODE_ENCRYPT ? TRUE : FALSE, u32AESOpMode, symmetric_ctx->key, u32AESKeySize, symmetric_ctx->iv, in, out, symmetric_info->length);
  242. if (u32AESOpMode == AES_MODE_CBC)
  243. {
  244. if (symmetric_info->mode == HWCRYPTO_MODE_DECRYPT)
  245. {
  246. rt_memcpy(symmetric_ctx->iv, iv_temp, 16);
  247. }
  248. else
  249. {
  250. uint32_t loop;
  251. loop = (symmetric_info->length - 1) / 16;
  252. rt_memcpy(symmetric_ctx->iv, out + (loop * 16), 16);
  253. }
  254. }
  255. if (out_align_flag)
  256. {
  257. rt_memcpy(symmetric_info->out, out, symmetric_info->length);
  258. rt_free_align(out);
  259. }
  260. if (in_align_flag)
  261. {
  262. rt_free_align(in);
  263. }
  264. return RT_EOK;
  265. }
  266. static rt_err_t nu_des_crypt_run(
  267. rt_bool_t bEncrypt,
  268. uint32_t u32OpMode,
  269. uint8_t *pu8Key,
  270. uint32_t u32KeySize,
  271. uint8_t *pu8IV,
  272. uint8_t *pu8InData,
  273. uint8_t *pu8OutData,
  274. uint32_t u32DataLen
  275. )
  276. {
  277. rt_err_t result;
  278. uint32_t au32SwapKey[3][2];
  279. uint32_t au32SwapIV[2];
  280. au32SwapKey[0][0] = nu_get32_be(&pu8Key[0]);
  281. au32SwapKey[0][1] = nu_get32_be(&pu8Key[4]);
  282. au32SwapKey[1][0] = nu_get32_be(&pu8Key[8]);
  283. au32SwapKey[1][1] = nu_get32_be(&pu8Key[12]);
  284. if (u32KeySize == NU_HWCRYPTO_DES_3KEYS)
  285. {
  286. au32SwapKey[2][0] = nu_get32_be(&pu8Key[16]);
  287. au32SwapKey[2][1] = nu_get32_be(&pu8Key[20]);
  288. }
  289. au32SwapIV[0] = nu_get32_be(&pu8IV[0]);
  290. au32SwapIV[1] = nu_get32_be(&pu8IV[4]);
  291. result = rt_mutex_take(&s_TDES_mutex, RT_WAITING_FOREVER);
  292. RT_ASSERT(result == RT_EOK);
  293. //Using Channel 0
  294. TDES_Open(0, bEncrypt, (u32OpMode & CRPT_TDES_CTL_TMODE_Msk), u32KeySize, u32OpMode, TDES_IN_OUT_WHL_SWAP);
  295. TDES_SetKey(0, au32SwapKey);
  296. TDES_SetInitVect(0, au32SwapIV[0], au32SwapIV[1]);
  297. //Setup TDES DMA
  298. TDES_SetDMATransfer(0, (uint32_t)pu8InData, (uint32_t)pu8OutData, u32DataLen);
  299. #if defined(BSP_USING_MMU)
  300. /* Writeback data in dcache to memory before transferring. */
  301. {
  302. /* Flush Src buffer into memory. */
  303. if (pu8InData)
  304. mmu_clean_invalidated_dcache((uint32_t)pu8InData, u32DataLen);
  305. /* Flush Dst buffer into memory. */
  306. if (pu8OutData)
  307. mmu_clean_invalidated_dcache((uint32_t)pu8OutData, u32DataLen);
  308. }
  309. #endif
  310. TDES_CLR_INT_FLAG();
  311. //Start TDES encryption/decryption
  312. TDES_Start(0, CRYPTO_DMA_ONE_SHOT);
  313. /* Wait done */
  314. while (!(CRPT->INTSTS & CRPT_INTEN_TDESIEN_Msk)) {};
  315. if ((u32DataLen % 16) && (CRPT->TDES_STS & (CRPT_TDES_STS_OUTBUFEMPTY_Msk | CRPT_TDES_STS_INBUFEMPTY_Msk)))
  316. rt_kprintf("TDES WARNING - TDES Data length(%d) is not enough. -> %d \n", u32DataLen, RT_ALIGN(u32DataLen, 16));
  317. else if (CRPT->INTSTS & (CRPT_INTSTS_TDESERRIF_Msk) || (CRPT->TDES_STS & (CRPT_TDES_STS_BUSERR_Msk)))
  318. rt_kprintf("AES ERROR - CRPT->INTSTS-%08x, CRPT->AES_STS-%08x\n", CRPT->INTSTS, CRPT->AES_STS);
  319. /* Clear TDES interrupt status */
  320. TDES_CLR_INT_FLAG();
  321. result = rt_mutex_release(&s_TDES_mutex);
  322. RT_ASSERT(result == RT_EOK);
  323. return RT_EOK;
  324. }
  325. static rt_err_t nu_des_crypt(struct hwcrypto_symmetric *symmetric_ctx, struct hwcrypto_symmetric_info *symmetric_info)
  326. {
  327. uint32_t u32DESOpMode;
  328. uint32_t u32DESKeySize;
  329. unsigned char *in, *out;
  330. unsigned char in_align_flag = 0;
  331. unsigned char out_align_flag = 0;
  332. if ((symmetric_info->length % 8) != 0)
  333. {
  334. return -RT_EINVAL;
  335. }
  336. //Checking key length
  337. if (symmetric_ctx->key_bitlen == 128 || symmetric_ctx->key_bitlen == 64)
  338. {
  339. u32DESKeySize = NU_HWCRYPTO_DES_NO3KEYS;
  340. }
  341. else if (symmetric_ctx->key_bitlen == 192)
  342. {
  343. u32DESKeySize = NU_HWCRYPTO_DES_3KEYS;
  344. }
  345. else
  346. {
  347. return -RT_EINVAL;
  348. }
  349. //Select DES operation mode
  350. switch (symmetric_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
  351. {
  352. case HWCRYPTO_TYPE_DES_ECB:
  353. u32DESOpMode = DES_MODE_ECB;
  354. break;
  355. case HWCRYPTO_TYPE_DES_CBC:
  356. u32DESOpMode = DES_MODE_CBC;
  357. break;
  358. case HWCRYPTO_TYPE_3DES_ECB:
  359. u32DESOpMode = TDES_MODE_ECB;
  360. break;
  361. case HWCRYPTO_TYPE_3DES_CBC:
  362. u32DESOpMode = TDES_MODE_CBC;
  363. break;
  364. default :
  365. return -RT_ERROR;
  366. }
  367. in = (unsigned char *)symmetric_info->in;
  368. out = (unsigned char *)symmetric_info->out;
  369. //Checking in/out data buffer address not alignment or out of SRAM
  370. if (((rt_uint32_t)in % CACHE_LINE_SIZE) != 0)
  371. {
  372. in = rt_malloc_align(symmetric_info->length, CACHE_LINE_SIZE);
  373. if (in == RT_NULL)
  374. {
  375. LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
  376. return -RT_ENOMEM;
  377. }
  378. rt_memcpy(in, symmetric_info->in, symmetric_info->length);
  379. in_align_flag = 1;
  380. }
  381. if (((rt_uint32_t)out % CACHE_LINE_SIZE) != 0)
  382. {
  383. out = rt_malloc_align(symmetric_info->length, CACHE_LINE_SIZE);
  384. if (out == RT_NULL)
  385. {
  386. if (in_align_flag)
  387. rt_free_align(in);
  388. LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
  389. return -RT_ENOMEM;
  390. }
  391. out_align_flag = 1;
  392. }
  393. nu_des_crypt_run(symmetric_info->mode == HWCRYPTO_MODE_ENCRYPT ? TRUE : FALSE, u32DESOpMode, symmetric_ctx->key, u32DESKeySize, symmetric_ctx->iv, in, out, symmetric_info->length);
  394. if (out_align_flag)
  395. {
  396. rt_memcpy(symmetric_info->out, out, symmetric_info->length);
  397. rt_free_align(out);
  398. }
  399. if (in_align_flag)
  400. {
  401. rt_free_align(in);
  402. }
  403. return RT_EOK;
  404. }
  405. static void SHABlockUpdate(uint32_t u32OpMode, uint32_t u32SrcAddr, uint32_t u32Len, uint32_t u32Mode)
  406. {
  407. SHA_Open(u32OpMode, SHA_IN_OUT_SWAP, 0);
  408. //Setup SHA DMA
  409. SHA_SetDMATransfer(u32SrcAddr, u32Len);
  410. if (u32Mode == CRYPTO_DMA_FIRST)
  411. {
  412. u32Mode = CRYPTO_DMA_CONTINUE;
  413. }
  414. #if defined(BSP_USING_MMU)
  415. /* Writeback data in dcache to memory before transferring. */
  416. {
  417. /* Flush Src buffer into memory. */
  418. if (u32SrcAddr)
  419. mmu_clean_invalidated_dcache(u32SrcAddr, u32Len);
  420. }
  421. #endif
  422. //Start SHA
  423. SHA_CLR_INT_FLAG();
  424. SHA_Start(u32Mode);
  425. /* Wait done */
  426. while (!(CRPT->INTSTS & CRPT_INTSTS_SHAIF_Msk)) {};
  427. if (CRPT->INTSTS & (CRPT_INTSTS_SHAERRIF_Msk) || (CRPT->HMAC_STS & (CRPT_HMAC_STS_DMAERR_Msk)))
  428. rt_kprintf("SHA ERROR - CRPT->INTSTS-%08x, CRPT->HMAC_STS-%08x\n", CRPT->INTSTS, CRPT->HMAC_STS);
  429. /* Clear SHA interrupt status */
  430. SHA_CLR_INT_FLAG();
  431. }
  432. static rt_err_t nu_sha_hash_run(
  433. S_SHA_CONTEXT *psSHACtx,
  434. uint32_t u32OpMode,
  435. uint8_t *pu8InData,
  436. uint32_t u32DataLen
  437. )
  438. {
  439. rt_err_t result;
  440. RT_ASSERT(psSHACtx != RT_NULL);
  441. RT_ASSERT(pu8InData != RT_NULL);
  442. result = rt_mutex_take(&s_SHA_mutex, RT_WAITING_FOREVER);
  443. RT_ASSERT(result == RT_EOK);
  444. uint8_t *pu8SrcAddr = (uint8_t *)pu8InData;
  445. uint32_t u32CopyLen = 0;
  446. while ((psSHACtx->u32SHATempBufLen + u32DataLen) > psSHACtx->u32BlockSize)
  447. {
  448. if (psSHACtx->pu8SHATempBuf)
  449. {
  450. if (psSHACtx->u32SHATempBufLen == psSHACtx->u32BlockSize)
  451. {
  452. //Trigger SHA block update
  453. SHABlockUpdate(u32OpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32BlockSize, psSHACtx->u32DMAMode);
  454. psSHACtx->u32DMAMode = CRYPTO_DMA_CONTINUE;
  455. //free SHATempBuff
  456. rt_free_align(psSHACtx->pu8SHATempBuf);
  457. psSHACtx->pu8SHATempBuf = NULL;
  458. psSHACtx->u32SHATempBufLen = 0;
  459. continue;
  460. }
  461. else
  462. {
  463. u32CopyLen = psSHACtx->u32BlockSize - psSHACtx->u32SHATempBufLen;
  464. if (u32DataLen < u32CopyLen)
  465. u32CopyLen = u32DataLen;
  466. rt_memcpy(psSHACtx->pu8SHATempBuf + psSHACtx->u32SHATempBufLen, pu8SrcAddr, u32CopyLen);
  467. psSHACtx->u32SHATempBufLen += u32CopyLen;
  468. pu8SrcAddr += u32CopyLen;
  469. u32DataLen -= u32CopyLen;
  470. continue;
  471. }
  472. }
  473. if ((uint32_t) pu8SrcAddr & (CACHE_LINE_SIZE - 1)) //address not aligned 32
  474. {
  475. psSHACtx->pu8SHATempBuf = rt_malloc_align(psSHACtx->u32BlockSize, CACHE_LINE_SIZE);
  476. if (psSHACtx->pu8SHATempBuf == RT_NULL)
  477. {
  478. LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, psSHACtx->u32BlockSize);
  479. result = rt_mutex_release(&s_SHA_mutex);
  480. RT_ASSERT(result == RT_EOK);
  481. return -RT_ENOMEM;
  482. }
  483. rt_memcpy(psSHACtx->pu8SHATempBuf, pu8SrcAddr, psSHACtx->u32BlockSize);
  484. psSHACtx->u32SHATempBufLen = psSHACtx->u32BlockSize;
  485. pu8SrcAddr += psSHACtx->u32BlockSize;
  486. u32DataLen -= psSHACtx->u32BlockSize;
  487. continue;
  488. }
  489. //Trigger SHA block update
  490. SHABlockUpdate(u32OpMode, (uint32_t)pu8SrcAddr, psSHACtx->u32BlockSize, psSHACtx->u32DMAMode);
  491. psSHACtx->u32DMAMode = CRYPTO_DMA_CONTINUE;
  492. pu8SrcAddr += psSHACtx->u32BlockSize;
  493. u32DataLen -= psSHACtx->u32BlockSize;
  494. }
  495. if (u32DataLen)
  496. {
  497. if (psSHACtx->pu8SHATempBuf == NULL)
  498. {
  499. psSHACtx->pu8SHATempBuf = rt_malloc_align(psSHACtx->u32BlockSize, CACHE_LINE_SIZE);
  500. if (psSHACtx->pu8SHATempBuf == RT_NULL)
  501. {
  502. LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, psSHACtx->u32BlockSize);
  503. result = rt_mutex_release(&s_SHA_mutex);
  504. RT_ASSERT(result == RT_EOK);
  505. return -RT_ENOMEM;
  506. }
  507. psSHACtx->u32SHATempBufLen = 0;
  508. }
  509. rt_memcpy(psSHACtx->pu8SHATempBuf, pu8SrcAddr, u32DataLen);
  510. psSHACtx->u32SHATempBufLen += u32DataLen;
  511. }
  512. result = rt_mutex_release(&s_SHA_mutex);
  513. RT_ASSERT(result == RT_EOK);
  514. return RT_EOK;
  515. }
  516. static rt_err_t nu_sha_update(struct hwcrypto_hash *hash_ctx, const rt_uint8_t *in, rt_size_t length)
  517. {
  518. uint32_t u32SHAOpMode;
  519. unsigned char *nu_in;
  520. unsigned char in_align_flag = 0;
  521. RT_ASSERT(hash_ctx != RT_NULL);
  522. RT_ASSERT(in != RT_NULL);
  523. //Select SHA operation mode
  524. switch (hash_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
  525. {
  526. case HWCRYPTO_TYPE_SHA1:
  527. u32SHAOpMode = SHA_MODE_SHA1;
  528. break;
  529. case HWCRYPTO_TYPE_SHA224:
  530. u32SHAOpMode = SHA_MODE_SHA224;
  531. break;
  532. case HWCRYPTO_TYPE_SHA256:
  533. u32SHAOpMode = SHA_MODE_SHA256;
  534. break;
  535. case HWCRYPTO_TYPE_SHA384:
  536. u32SHAOpMode = SHA_MODE_SHA384;
  537. break;
  538. case HWCRYPTO_TYPE_SHA512:
  539. u32SHAOpMode = SHA_MODE_SHA512;
  540. break;
  541. default :
  542. return -RT_ERROR;
  543. }
  544. nu_in = (unsigned char *)in;
  545. //Checking in data buffer address not alignment
  546. if (((rt_uint32_t)nu_in % CACHE_LINE_SIZE) != 0)
  547. {
  548. nu_in = rt_malloc_align(length, CACHE_LINE_SIZE);
  549. if (nu_in == RT_NULL)
  550. {
  551. LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, length);
  552. return -RT_ENOMEM;
  553. }
  554. rt_memcpy(nu_in, in, length);
  555. in_align_flag = 1;
  556. }
  557. nu_sha_hash_run(hash_ctx->parent.contex, u32SHAOpMode, nu_in, length);
  558. if (in_align_flag)
  559. {
  560. rt_free_align(nu_in);
  561. }
  562. return RT_EOK;
  563. }
  564. static rt_err_t nu_sha_finish(struct hwcrypto_hash *hash_ctx, rt_uint8_t *out, rt_size_t length)
  565. {
  566. unsigned char *nu_out;
  567. unsigned char out_align_flag = 0;
  568. uint32_t u32SHAOpMode;
  569. S_SHA_CONTEXT *psSHACtx = RT_NULL;
  570. RT_ASSERT(hash_ctx != RT_NULL);
  571. RT_ASSERT(out != RT_NULL);
  572. psSHACtx = hash_ctx->parent.contex;
  573. //Check SHA Hash value buffer length
  574. switch (hash_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
  575. {
  576. case HWCRYPTO_TYPE_SHA1:
  577. u32SHAOpMode = SHA_MODE_SHA1;
  578. if (length < 5UL)
  579. {
  580. return -RT_EINVAL;
  581. }
  582. break;
  583. case HWCRYPTO_TYPE_SHA224:
  584. u32SHAOpMode = SHA_MODE_SHA224;
  585. if (length < 7UL)
  586. {
  587. return -RT_EINVAL;
  588. }
  589. break;
  590. case HWCRYPTO_TYPE_SHA256:
  591. u32SHAOpMode = SHA_MODE_SHA256;
  592. if (length < 8UL)
  593. {
  594. return -RT_EINVAL;
  595. }
  596. break;
  597. case HWCRYPTO_TYPE_SHA384:
  598. u32SHAOpMode = SHA_MODE_SHA384;
  599. if (length < 12UL)
  600. {
  601. return -RT_EINVAL;
  602. }
  603. break;
  604. case HWCRYPTO_TYPE_SHA512:
  605. u32SHAOpMode = SHA_MODE_SHA512;
  606. if (length < 16UL)
  607. {
  608. return -RT_EINVAL;
  609. }
  610. break;
  611. default :
  612. return -RT_ERROR;
  613. }
  614. nu_out = (unsigned char *)out;
  615. //Checking out data buffer address alignment or not
  616. if (((rt_uint32_t)nu_out % CACHE_LINE_SIZE) != 0)
  617. {
  618. nu_out = rt_malloc_align(length, CACHE_LINE_SIZE);
  619. if (nu_out == RT_NULL)
  620. {
  621. LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, length);
  622. return -RT_ENOMEM;
  623. }
  624. out_align_flag = 1;
  625. }
  626. if (psSHACtx->pu8SHATempBuf)
  627. {
  628. if (psSHACtx->u32DMAMode == CRYPTO_DMA_FIRST)
  629. SHABlockUpdate(u32SHAOpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32SHATempBufLen, CRYPTO_DMA_ONE_SHOT);
  630. else
  631. SHABlockUpdate(u32SHAOpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32SHATempBufLen, CRYPTO_DMA_LAST);
  632. //free SHATempBuf
  633. rt_free_align(psSHACtx->pu8SHATempBuf);
  634. psSHACtx->pu8SHATempBuf = RT_NULL;
  635. psSHACtx->u32SHATempBufLen = 0;
  636. }
  637. else
  638. {
  639. SHABlockUpdate(u32SHAOpMode, (uint32_t)NULL, 0, CRYPTO_DMA_LAST);
  640. }
  641. SHA_Read((uint32_t *)nu_out);
  642. if (out_align_flag)
  643. {
  644. rt_memcpy(out, nu_out, length);
  645. rt_free_align(nu_out);
  646. }
  647. return RT_EOK;
  648. }
  649. static rt_uint32_t nu_prng_rand(struct hwcrypto_rng *ctx)
  650. {
  651. return nu_prng_run();
  652. }
  653. static const struct hwcrypto_symmetric_ops nu_aes_ops =
  654. {
  655. .crypt = nu_aes_crypt,
  656. };
  657. static const struct hwcrypto_symmetric_ops nu_des_ops =
  658. {
  659. .crypt = nu_des_crypt,
  660. };
  661. static const struct hwcrypto_hash_ops nu_sha_ops =
  662. {
  663. .update = nu_sha_update,
  664. .finish = nu_sha_finish,
  665. };
  666. static const struct hwcrypto_rng_ops nu_rng_ops =
  667. {
  668. .update = nu_prng_rand,
  669. };
  670. /* Register crypto interface ----------------------------------------------------------*/
  671. static rt_err_t nu_hwcrypto_create(struct rt_hwcrypto_ctx *ctx)
  672. {
  673. rt_err_t res = RT_EOK;
  674. RT_ASSERT(ctx != RT_NULL);
  675. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  676. {
  677. case HWCRYPTO_TYPE_AES:
  678. {
  679. ctx->contex = RT_NULL;
  680. //Setup AES operation
  681. ((struct hwcrypto_symmetric *)ctx)->ops = &nu_aes_ops;
  682. break;
  683. }
  684. case HWCRYPTO_TYPE_DES:
  685. {
  686. ctx->contex = RT_NULL;
  687. //Setup DES operation
  688. ((struct hwcrypto_symmetric *)ctx)->ops = &nu_des_ops;
  689. break;
  690. }
  691. case HWCRYPTO_TYPE_3DES:
  692. {
  693. ctx->contex = RT_NULL;
  694. //Setup 3DES operation
  695. ((struct hwcrypto_symmetric *)ctx)->ops = &nu_des_ops;
  696. break;
  697. }
  698. case HWCRYPTO_TYPE_SHA1:
  699. {
  700. ctx->contex = rt_malloc(sizeof(S_SHA_CONTEXT));
  701. if (ctx->contex == RT_NULL)
  702. return -RT_ERROR;
  703. rt_memset(ctx->contex, 0, sizeof(S_SHA_CONTEXT));
  704. //Setup SHA1 operation
  705. ((struct hwcrypto_hash *)ctx)->ops = &nu_sha_ops;
  706. break;
  707. }
  708. case HWCRYPTO_TYPE_SHA2:
  709. {
  710. ctx->contex = rt_malloc(sizeof(S_SHA_CONTEXT));
  711. if (ctx->contex == RT_NULL)
  712. return -RT_ERROR;
  713. rt_memset(ctx->contex, 0, sizeof(S_SHA_CONTEXT));
  714. //Setup SHA2 operation
  715. ((struct hwcrypto_hash *)ctx)->ops = &nu_sha_ops;
  716. break;
  717. }
  718. case HWCRYPTO_TYPE_RNG:
  719. {
  720. ctx->contex = RT_NULL;
  721. ((struct hwcrypto_rng *)ctx)->ops = &nu_rng_ops;
  722. #if defined(NU_PRNG_USE_SEED)
  723. nu_prng_open(NU_PRNG_SEED_VALUE);
  724. #endif
  725. break;
  726. }
  727. default:
  728. res = -RT_ERROR;
  729. break;
  730. }
  731. return res;
  732. }
  733. static void nu_hwcrypto_destroy(struct rt_hwcrypto_ctx *ctx)
  734. {
  735. RT_ASSERT(ctx != RT_NULL);
  736. if (ctx->contex)
  737. rt_free(ctx->contex);
  738. }
  739. static rt_err_t nu_hwcrypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src)
  740. {
  741. rt_err_t res = RT_EOK;
  742. RT_ASSERT(des != RT_NULL);
  743. RT_ASSERT(src != RT_NULL);
  744. if (des->contex && src->contex)
  745. {
  746. rt_memcpy(des->contex, src->contex, sizeof(struct rt_hwcrypto_ctx));
  747. }
  748. else
  749. return -RT_EINVAL;
  750. return res;
  751. }
  752. static void nu_hwcrypto_reset(struct rt_hwcrypto_ctx *ctx)
  753. {
  754. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  755. {
  756. case HWCRYPTO_TYPE_RNG:
  757. {
  758. #if defined(NU_PRNG_USE_SEED)
  759. nu_prng_open(NU_PRNG_SEED_VALUE);
  760. #else
  761. nu_prng_open(rt_tick_get());
  762. #endif
  763. break;
  764. }
  765. case HWCRYPTO_TYPE_SHA1:
  766. case HWCRYPTO_TYPE_SHA2:
  767. {
  768. S_SHA_CONTEXT *psSHACtx = (S_SHA_CONTEXT *)ctx->contex;
  769. if (psSHACtx->pu8SHATempBuf)
  770. {
  771. rt_free_align(psSHACtx->pu8SHATempBuf);
  772. }
  773. psSHACtx->pu8SHATempBuf = RT_NULL;
  774. psSHACtx->u32SHATempBufLen = 0;
  775. psSHACtx->u32DMAMode = CRYPTO_DMA_FIRST;
  776. if ((ctx->type == HWCRYPTO_TYPE_SHA384) || (ctx->type == HWCRYPTO_TYPE_SHA512))
  777. {
  778. psSHACtx->u32BlockSize = 128;
  779. }
  780. else
  781. {
  782. psSHACtx->u32BlockSize = 64;
  783. }
  784. break;
  785. }
  786. default:
  787. break;
  788. }
  789. }
  790. /* Init and register nu_hwcrypto_dev */
  791. int nu_hwcrypto_device_init(void)
  792. {
  793. rt_err_t result;
  794. static struct rt_hwcrypto_device nu_hwcrypto_dev;
  795. nu_hwcrypto_dev.ops = &nu_hwcrypto_ops;
  796. nu_hwcrypto_dev.id = 0;
  797. nu_hwcrypto_dev.user_data = &nu_hwcrypto_dev;
  798. nu_sys_ipclk_enable(CRYPTOCKEN);
  799. nu_sys_ip_reset(CRYPTORST);
  800. /* init cipher mutex */
  801. #if defined(RT_HWCRYPTO_USING_AES)
  802. result = rt_mutex_init(&s_AES_mutex, NU_HWCRYPTO_AES_NAME, RT_IPC_FLAG_PRIO);
  803. RT_ASSERT(result == RT_EOK);
  804. AES_ENABLE_INT();
  805. #endif
  806. #if defined(RT_HWCRYPTO_USING_SHA1) || defined(RT_HWCRYPTO_USING_SHA2)
  807. result = rt_mutex_init(&s_SHA_mutex, NU_HWCRYPTO_SHA_NAME, RT_IPC_FLAG_PRIO);
  808. RT_ASSERT(result == RT_EOK);
  809. SHA_ENABLE_INT();
  810. #endif
  811. #if defined(RT_HWCRYPTO_USING_RNG)
  812. result = rt_mutex_init(&s_PRNG_mutex, NU_HWCRYPTO_PRNG_NAME, RT_IPC_FLAG_PRIO);
  813. RT_ASSERT(result == RT_EOK);
  814. PRNG_ENABLE_INT();
  815. #endif
  816. /* register hwcrypto operation */
  817. result = rt_hwcrypto_register(&nu_hwcrypto_dev, RT_HWCRYPTO_DEFAULT_NAME);
  818. RT_ASSERT(result == RT_EOK);
  819. /* Enable Crypto engine interrupt */
  820. rt_hw_interrupt_install(IRQ_CRPT, nu_crypto_isr, RT_NULL, "crypto");
  821. return 0;
  822. }
  823. INIT_DEVICE_EXPORT(nu_hwcrypto_device_init);
  824. #endif //#if (defined(BSP_USING_CRYPTO) && defined(RT_USING_HWCRYPTO))