drv_pwm.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. /**************************************************************************//**
  2. *
  3. * @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2020-12-1 Wayne First version
  10. *
  11. ******************************************************************************/
  12. #include <rtconfig.h>
  13. #if defined(BSP_USING_PWM)
  14. #define LOG_TAG "drv.pwm"
  15. #define DBG_ENABLE
  16. #define DBG_SECTION_NAME "drv.pwm"
  17. #define DBG_LEVEL DBG_INFO
  18. #define DBG_COLOR
  19. #include <rtdbg.h>
  20. #include <stdint.h>
  21. #include <rtdevice.h>
  22. #include <rthw.h>
  23. #include "NuMicro.h"
  24. #include "drv_sys.h"
  25. enum
  26. {
  27. PWM_START = -1,
  28. #if defined(BSP_USING_PWM0)
  29. PWM0_IDX,
  30. #endif
  31. PWM_CNT
  32. };
  33. #define NU_PWM_BA_DISTANCE 0
  34. #define NU_PWM_CHANNEL_NUM 4
  35. struct nu_pwm
  36. {
  37. struct rt_device_pwm dev;
  38. char *name;
  39. uint32_t base_addr;
  40. E_SYS_IPRST rstidx;
  41. E_SYS_IPCLK clkidx;
  42. };
  43. typedef struct nu_pwm *nu_pwm_t;
  44. static struct nu_pwm nu_pwm_arr [] =
  45. {
  46. #if defined(BSP_USING_PWM0)
  47. {
  48. .name = "pwm0",
  49. .base_addr = PWM_BA,
  50. .rstidx = PWMRST,
  51. .clkidx = PWMCKEN,
  52. },
  53. #endif
  54. }; /* pwm nu_pwm */
  55. static rt_err_t nu_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
  56. static struct rt_pwm_ops nu_pwm_ops =
  57. {
  58. .control = nu_pwm_control
  59. };
  60. static rt_err_t nu_pwm_enable(struct rt_device_pwm *device, struct rt_pwm_configuration *config, rt_bool_t enable)
  61. {
  62. nu_pwm_t psNuPWM = (nu_pwm_t)device;
  63. rt_err_t result = RT_EOK;
  64. rt_uint32_t ch = config->channel;
  65. if (enable == RT_TRUE)
  66. {
  67. uint32_t u32RegAdrrPCR = psNuPWM->base_addr + 0x8;
  68. uint32_t u32PCRChAlign = (!ch) ? 0x9 : (0x9 << (4 + ch * 4));
  69. /* Period and enable channel. */
  70. outpw(u32RegAdrrPCR, inpw(u32RegAdrrPCR) | u32PCRChAlign);
  71. }
  72. else
  73. {
  74. uint32_t u32RegAdrrPCR = psNuPWM->base_addr + 0x8;
  75. uint32_t u32PCRChAlign = (!ch) ? 0x1 : (0x1 << (4 + ch * 4));
  76. outpw(u32RegAdrrPCR, inpw(u32RegAdrrPCR) & ~u32PCRChAlign);
  77. }
  78. return result;
  79. }
  80. static rt_err_t nu_pwm_get(struct rt_device_pwm *device, struct rt_pwm_configuration *config)
  81. {
  82. nu_pwm_t psNuPWM = (nu_pwm_t)device;
  83. uint32_t u32RegAdrrPPR = psNuPWM->base_addr;
  84. uint32_t u32RegAdrrCSR = psNuPWM->base_addr + 0x04;
  85. uint32_t u32RegAdrrCNR = psNuPWM->base_addr + 0xC + (config->channel * 0xC);
  86. uint32_t u32RegAdrrCMR = psNuPWM->base_addr + 0x10 + (config->channel * 0xC);
  87. uint32_t u32PWMSrcClk = sysGetClock(SYS_PCLK) * 1000000;
  88. uint32_t u32CMR, u32CNR;
  89. double douDutyCycle; /* unit:% */
  90. uint32_t u32PWMOutClk; /* unit:Hz */
  91. uint32_t u32Prescale, u32Divider;
  92. u32CNR = inpw(u32RegAdrrCNR) + 1;
  93. u32CMR = inpw(u32RegAdrrCMR) + 1;
  94. u32Prescale = ((inpw(u32RegAdrrPPR) & (0xff << ((config->channel >> 1) * 8))) >> ((config->channel >> 1) * 8)) + 1;
  95. u32Divider = (inpw(u32RegAdrrCSR) & (0x7 << (4 * config->channel))) >> (4 * config->channel);
  96. /* Re-convert register to real value */
  97. if (u32Divider == 4)
  98. u32Divider = 1;
  99. else if (u32Divider == 0)
  100. u32Divider = 2;
  101. else if (u32Divider == 1)
  102. u32Divider = 4;
  103. else if (u32Divider == 2)
  104. u32Divider = 8;
  105. else // 3
  106. u32Divider = 16;
  107. douDutyCycle = (double)u32CMR / u32CNR;
  108. u32PWMOutClk = u32PWMSrcClk / (u32Prescale * u32Divider * u32CNR);
  109. config->period = 1000000000 / u32PWMOutClk; /* In ns. */
  110. config->pulse = douDutyCycle * config->period;
  111. LOG_I("%s %d %d %d\n", ((nu_pwm_t)device)->name, config->channel, config->period, config->pulse);
  112. return RT_EOK;
  113. }
  114. uint32_t nu_pwm_config(uint32_t u32PwmBaseAddr, uint32_t u32ChannelNum, uint32_t u32Frequency, uint32_t u32PulseInHz)
  115. {
  116. uint32_t i;
  117. uint8_t u8Divider = 1, u8Prescale = 0xFF;
  118. uint16_t u16CNR = 0xFFFF;
  119. uint16_t u16CMR = 0xFFFF;
  120. uint32_t u32RegAdrrPPR = u32PwmBaseAddr;
  121. uint32_t u32RegAdrrCSR = u32PwmBaseAddr + 0x04;
  122. uint32_t u32RegAdrrCNR = u32PwmBaseAddr + 0xC + (u32ChannelNum * 0xC);
  123. uint32_t u32RegAdrrCMR = u32PwmBaseAddr + 0x10 + (u32ChannelNum * 0xC);
  124. uint32_t u32PWMSrcClk = sysGetClock(SYS_PCLK) * 1000000;
  125. uint32_t u32PWMOutClk = 0;
  126. if (u32Frequency > u32PWMSrcClk)
  127. return 0;
  128. /*
  129. PWM_Freq = PCLK2 / (Prescale+1) / (Clock Divider) / (CNR+1)
  130. PCLK / PWM_Freq = (Prescale+1) * (Clock Divider) * (CNR+1)
  131. PCLK / PWM_Freq / (Clock Divider) = (Prescale+1) * (CNR+1)
  132. */
  133. /* clk divider could only be 1, 2, 4, 8, 16 */
  134. for (; u8Divider < 17; u8Divider <<= 1)
  135. {
  136. i = (u32PWMSrcClk / u32Frequency) / u8Divider;
  137. /* If target value is larger than CNR * prescale, need to use a larger divider */
  138. if (i > (0x10000 * 0x100))
  139. continue;
  140. /* CNR = 0xFFFF + 1, get a prescaler that CNR value is below 0xFFFF */
  141. u8Prescale = (i + 0xFFFF) / 0x10000;
  142. /* u8Prescale must at least be 2, otherwise the output stop */
  143. if (u8Prescale < 2)
  144. u8Prescale = 2;
  145. i /= u8Prescale;
  146. if (i < 0x10000)
  147. {
  148. if (i == 1)
  149. u16CNR = 1; // Too fast, and PWM cannot generate expected frequency...
  150. else
  151. u16CNR = i;
  152. break;
  153. }
  154. }
  155. u32PWMOutClk = u32PWMSrcClk / (u8Prescale * u8Divider * u16CNR);
  156. /* For fill into registers. */
  157. u8Prescale -= 1;
  158. u16CNR -= 1;
  159. /* Convert to real register value */
  160. if (u8Divider == 1)
  161. u8Divider = 4;
  162. else if (u8Divider == 2)
  163. u8Divider = 0;
  164. else if (u8Divider == 4)
  165. u8Divider = 1;
  166. else if (u8Divider == 8)
  167. u8Divider = 2;
  168. else // 16
  169. u8Divider = 3;
  170. /* Every two channels share a prescaler */
  171. outpw(u32RegAdrrPPR, (inpw(u32RegAdrrPPR) & ~(0xff << ((u32ChannelNum >> 1) * 8))) | (u8Prescale << ((u32ChannelNum >> 1) * 8)));
  172. /* Update CLKSEL in specified channel in CSR field. */
  173. outpw(u32RegAdrrCSR, inpw(u32RegAdrrCSR) & ~(0x7 << (4 * u32ChannelNum)) | (u8Divider << (4 * u32ChannelNum)));
  174. u16CMR = u32Frequency * (u16CNR + 1) / u32PulseInHz;
  175. outpw(u32RegAdrrCMR, (u16CMR == 0) ? 0 : u16CMR - 1);
  176. outpw(u32RegAdrrCNR, u16CNR);
  177. return (u32PWMOutClk);
  178. }
  179. static rt_err_t nu_pwm_set(struct rt_device_pwm *device, struct rt_pwm_configuration *config)
  180. {
  181. nu_pwm_t psNuPWM = (nu_pwm_t)device;
  182. rt_err_t result = RT_EINVAL;
  183. rt_uint32_t u32FreqInHz; /* unit:Hz */
  184. rt_uint32_t u32PulseInHz; /* unit:% */
  185. if (config->period < 1000 || !config->period || !config->pulse)
  186. goto exit_nu_pwm_set;
  187. /* Calculate frequency, Unit is in us. */
  188. u32FreqInHz = (1000000000) / config->period;
  189. u32PulseInHz = (1000000000) / config->pulse;
  190. nu_pwm_config(psNuPWM->base_addr, config->channel, u32FreqInHz, u32PulseInHz);
  191. result = RT_EOK;
  192. exit_nu_pwm_set:
  193. return -(result);
  194. }
  195. static rt_err_t nu_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
  196. {
  197. struct rt_pwm_configuration *config = (struct rt_pwm_configuration *)arg;
  198. RT_ASSERT(device != RT_NULL);
  199. RT_ASSERT(config != RT_NULL);
  200. if (config->channel > NU_PWM_CHANNEL_NUM)
  201. return -(RT_EINVAL);
  202. switch (cmd)
  203. {
  204. case PWM_CMD_ENABLE:
  205. return nu_pwm_enable(device, config, RT_TRUE);
  206. case PWM_CMD_DISABLE:
  207. return nu_pwm_enable(device, config, RT_FALSE);
  208. case PWM_CMD_SET:
  209. return nu_pwm_set(device, config);
  210. case PWM_CMD_GET:
  211. return nu_pwm_get(device, config);
  212. default:
  213. break;
  214. }
  215. return -(RT_ERROR);
  216. }
  217. int rt_hw_pwm_init(void)
  218. {
  219. rt_err_t ret;
  220. int i;
  221. for (i = (PWM_START + 1); i < PWM_CNT; i++)
  222. {
  223. nu_sys_ipclk_enable(nu_pwm_arr[i].clkidx);
  224. nu_sys_ip_reset(nu_pwm_arr[i].rstidx);
  225. ret = rt_device_pwm_register(&nu_pwm_arr[i].dev, nu_pwm_arr[i].name, &nu_pwm_ops, RT_NULL);
  226. RT_ASSERT(ret == RT_EOK);
  227. }
  228. return 0;
  229. }
  230. INIT_DEVICE_EXPORT(rt_hw_pwm_init);
  231. #endif