123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673 |
- /**************************************************************************//**
- * @file crypto.c
- * @version V1.10
- * @brief Cryptographic Accelerator driver source file
- *
- * SPDX-License-Identifier: Apache-2.0
- * @copyright (C) 2018 Nuvoton Technology Corp. All rights reserved.
- *****************************************************************************/
- #include <stdio.h>
- #include <string.h>
- #include "nuc980.h"
- #include "nu_crypto.h"
- /** @cond HIDDEN_SYMBOLS */
- #define ENABLE_DEBUG 0
- #if ENABLE_DEBUG
- #define CRPT_DBGMSG printf
- #else
- #define CRPT_DBGMSG(...) do { } while (0) /* disable debug */
- #endif
- /** @endcond HIDDEN_SYMBOLS */
- /** @addtogroup Standard_Driver Standard Driver
- @{
- */
- /** @addtogroup CRYPTO_Driver CRYPTO Driver
- @{
- */
- /** @addtogroup CRYPTO_EXPORTED_FUNCTIONS CRYPTO Exported Functions
- @{
- */
- /** @cond HIDDEN_SYMBOLS */
- static uint32_t g_AES_CTL;
- static char hex_char_tbl[] = "0123456789abcdef";
- static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count);
- static char get_Nth_nibble_char(uint32_t val32, uint32_t idx);
- static void Hex2Reg(char input[], uint32_t volatile reg[]);
- static void Reg2Hex(int32_t count, uint32_t volatile reg[], char output[]);
- static void Hex2RegEx(char input[], uint32_t volatile reg[], int shift);
- static char ch2hex(char ch);
- static int get_nibble_value(char c);
- /** @endcond HIDDEN_SYMBOLS */
- /**
- * @brief Open PRNG function
- * @param[in] crpt Reference to Crypto module.
- * @param[in] u32KeySize is PRNG key size, including:
- * - \ref PRNG_KEY_SIZE_64
- * - \ref PRNG_KEY_SIZE_128
- * - \ref PRNG_KEY_SIZE_192
- * - \ref PRNG_KEY_SIZE_256
- * @param[in] u32SeedReload is PRNG seed reload or not, including:
- * - \ref PRNG_SEED_CONT
- * - \ref PRNG_SEED_RELOAD
- * @param[in] u32Seed The new seed. Only valid when u32SeedReload is PRNG_SEED_RELOAD.
- * @return None
- */
- void PRNG_Open(CRPT_T *crpt, uint32_t u32KeySize, uint32_t u32SeedReload, uint32_t u32Seed)
- {
- if (u32SeedReload)
- {
- crpt->PRNG_SEED = u32Seed;
- }
- crpt->PRNG_CTL = (u32KeySize << CRPT_PRNG_CTL_KEYSZ_Pos) |
- (u32SeedReload << CRPT_PRNG_CTL_SEEDRLD_Pos);
- }
- /**
- * @brief Start to generate one PRNG key.
- * @param[in] crpt Reference to Crypto module.
- * @return None
- */
- void PRNG_Start(CRPT_T *crpt)
- {
- crpt->PRNG_CTL |= CRPT_PRNG_CTL_START_Msk;
- }
- /**
- * @brief Read the PRNG key.
- * @param[in] crpt Reference to Crypto module.
- * @param[out] u32RandKey The key buffer to store newly generated PRNG key.
- * @return None
- */
- void PRNG_Read(CRPT_T *crpt, uint32_t u32RandKey[])
- {
- uint32_t i, wcnt;
- wcnt = (((crpt->PRNG_CTL & CRPT_PRNG_CTL_KEYSZ_Msk) >> CRPT_PRNG_CTL_KEYSZ_Pos) + 1U) * 2U;
- for (i = 0U; i < wcnt; i++)
- {
- u32RandKey[i] = crpt->PRNG_KEY[i];
- }
- crpt->PRNG_CTL &= ~CRPT_PRNG_CTL_SEEDRLD_Msk;
- }
- /**
- * @brief Open AES encrypt/decrypt function.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] u32EncDec 1: AES encode; 0: AES decode
- * @param[in] u32OpMode AES operation mode, including:
- * - \ref AES_MODE_ECB
- * - \ref AES_MODE_CBC
- * - \ref AES_MODE_CFB
- * - \ref AES_MODE_OFB
- * - \ref AES_MODE_CTR
- * - \ref AES_MODE_CBC_CS1
- * - \ref AES_MODE_CBC_CS2
- * - \ref AES_MODE_CBC_CS3
- * @param[in] u32KeySize is AES key size, including:
- * - \ref AES_KEY_SIZE_128
- * - \ref AES_KEY_SIZE_192
- * - \ref AES_KEY_SIZE_256
- * @param[in] u32SwapType is AES input/output data swap control, including:
- * - \ref AES_NO_SWAP
- * - \ref AES_OUT_SWAP
- * - \ref AES_IN_SWAP
- * - \ref AES_IN_OUT_SWAP
- * @return None
- */
- void AES_Open(CRPT_T *crpt, uint32_t u32EncDec,
- uint32_t u32OpMode, uint32_t u32KeySize, uint32_t u32SwapType)
- {
- crpt->AES_CTL = (u32EncDec << CRPT_AES_CTL_ENCRPT_Pos) |
- (u32OpMode << CRPT_AES_CTL_OPMODE_Pos) |
- (u32KeySize << CRPT_AES_CTL_KEYSZ_Pos) |
- (u32SwapType << CRPT_AES_CTL_OUTSWAP_Pos);
- g_AES_CTL = crpt->AES_CTL;
- }
- /**
- * @brief Start AES encrypt/decrypt
- * @param[in] crpt Reference to Crypto module.
- * @param[in] u32DMAMode AES DMA control, including:
- * - \ref CRYPTO_DMA_ONE_SHOT One shop AES encrypt/decrypt.
- * - \ref CRYPTO_DMA_CONTINUE Continuous AES encrypt/decrypt.
- * - \ref CRYPTO_DMA_LAST Last AES encrypt/decrypt of a series of AES_Start.
- * @return None
- */
- void AES_Start(CRPT_T *crpt, uint32_t u32DMAMode)
- {
- crpt->AES_CTL = g_AES_CTL;
- crpt->AES_CTL |= CRPT_AES_CTL_START_Msk | (u32DMAMode << CRPT_AES_CTL_DMALAST_Pos);
- }
- /**
- * @brief Set AES keys
- * @param[in] crpt Reference to Crypto module.
- * @param[in] au32Keys An word array contains AES keys.
- * @param[in] u32KeySize is AES key size, including:
- * - \ref AES_KEY_SIZE_128
- * - \ref AES_KEY_SIZE_192
- * - \ref AES_KEY_SIZE_256
- * @return None
- */
- void AES_SetKey(CRPT_T *crpt, uint32_t au32Keys[], uint32_t u32KeySize)
- {
- uint32_t i, wcnt, key_reg_addr;
- key_reg_addr = (uint32_t)&crpt->AES0_KEY[0];
- wcnt = 4UL + u32KeySize * 2UL;
- for (i = 0U; i < wcnt; i++)
- {
- outpw(key_reg_addr, au32Keys[i]);
- key_reg_addr += 4UL;
- }
- }
- /**
- * @brief Set AES initial vectors
- * @param[in] crpt Reference to Crypto module.
- * @param[in] au32IV A four entry word array contains AES initial vectors.
- * @return None
- */
- void AES_SetInitVect(CRPT_T *crpt, uint32_t au32IV[])
- {
- uint32_t i, key_reg_addr;
- key_reg_addr = (uint32_t)&crpt->AES0_IV[0];
- for (i = 0U; i < 4U; i++)
- {
- outpw(key_reg_addr, au32IV[i]);
- key_reg_addr += 4UL;
- }
- }
- /**
- * @brief Set AES DMA transfer configuration.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] u32SrcAddr AES DMA source address
- * @param[in] u32DstAddr AES DMA destination address
- * @param[in] u32TransCnt AES DMA transfer byte count
- * @return None
- */
- void AES_SetDMATransfer(CRPT_T *crpt, uint32_t u32SrcAddr,
- uint32_t u32DstAddr, uint32_t u32TransCnt)
- {
- uint32_t reg_addr;
- reg_addr = (uint32_t)&crpt->AES0_SADDR;
- outpw(reg_addr, u32SrcAddr);
- reg_addr = (uint32_t)&crpt->AES0_DADDR;
- outpw(reg_addr, u32DstAddr);
- reg_addr = (uint32_t)&crpt->AES0_CNT;
- outpw(reg_addr, u32TransCnt);
- }
- /**
- * @brief Open SHA encrypt function.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] u32OpMode SHA operation mode, including:
- * - \ref SHA_MODE_SHA1
- * - \ref SHA_MODE_SHA224
- * - \ref SHA_MODE_SHA256
- * - \ref SHA_MODE_SHA384
- * - \ref SHA_MODE_SHA512
- * @param[in] u32SwapType is SHA input/output data swap control, including:
- * - \ref SHA_NO_SWAP
- * - \ref SHA_OUT_SWAP
- * - \ref SHA_IN_SWAP
- * - \ref SHA_IN_OUT_SWAP
- * @param[in] hmac_key_len HMAC key byte count
- * @return None
- */
- void SHA_Open(CRPT_T *crpt, uint32_t u32OpMode, uint32_t u32SwapType, uint32_t hmac_key_len)
- {
- crpt->HMAC_CTL = (u32OpMode << CRPT_HMAC_CTL_OPMODE_Pos) |
- (u32SwapType << CRPT_HMAC_CTL_OUTSWAP_Pos);
- if (hmac_key_len != 0UL)
- {
- crpt->HMAC_KEYCNT = hmac_key_len;
- crpt->HMAC_CTL |= CRPT_HMAC_CTL_HMACEN_Msk;
- }
- }
- /**
- * @brief Start SHA encrypt
- * @param[in] crpt Reference to Crypto module.
- * @param[in] u32DMAMode TDES DMA control, including:
- * - \ref CRYPTO_DMA_ONE_SHOT One shop SHA encrypt.
- * - \ref CRYPTO_DMA_CONTINUE Continuous SHA encrypt.
- * - \ref CRYPTO_DMA_LAST Last SHA encrypt of a series of SHA_Start.
- * @return None
- */
- void SHA_Start(CRPT_T *crpt, uint32_t u32DMAMode)
- {
- crpt->HMAC_CTL &= ~(0x7UL << CRPT_HMAC_CTL_DMALAST_Pos);
- crpt->HMAC_CTL |= CRPT_HMAC_CTL_START_Msk | (u32DMAMode << CRPT_HMAC_CTL_DMALAST_Pos);
- }
- /**
- * @brief Set SHA DMA transfer
- * @param[in] crpt Reference to Crypto module.
- * @param[in] u32SrcAddr SHA DMA source address
- * @param[in] u32TransCnt SHA DMA transfer byte count
- * @return None
- */
- void SHA_SetDMATransfer(CRPT_T *crpt, uint32_t u32SrcAddr, uint32_t u32TransCnt)
- {
- crpt->HMAC_SADDR = u32SrcAddr;
- crpt->HMAC_DMACNT = u32TransCnt;
- }
- /**
- * @brief Read the SHA digest.
- * @param[in] crpt Reference to Crypto module.
- * @param[out] u32Digest The SHA encrypt output digest.
- * @return None
- */
- void SHA_Read(CRPT_T *crpt, uint32_t u32Digest[])
- {
- uint32_t i, wcnt, reg_addr;
- i = (crpt->HMAC_CTL & CRPT_HMAC_CTL_OPMODE_Msk) >> CRPT_HMAC_CTL_OPMODE_Pos;
- if (i == SHA_MODE_SHA1)
- {
- wcnt = 5UL;
- }
- else if (i == SHA_MODE_SHA224)
- {
- wcnt = 7UL;
- }
- else if (i == SHA_MODE_SHA256)
- {
- wcnt = 8UL;
- }
- else if (i == SHA_MODE_SHA384)
- {
- wcnt = 12UL;
- }
- else
- {
- /* SHA_MODE_SHA512 */
- wcnt = 16UL;
- }
- reg_addr = (uint32_t) & (crpt->HMAC_DGST[0]);
- for (i = 0UL; i < wcnt; i++)
- {
- u32Digest[i] = inpw(reg_addr);
- reg_addr += 4UL;
- }
- }
- /** @cond HIDDEN_SYMBOLS */
- /*-----------------------------------------------------------------------------------------------*/
- /* */
- /* ECC */
- /* */
- /*-----------------------------------------------------------------------------------------------*/
- #define ECCOP_POINT_MUL (0x0UL << CRPT_ECC_CTL_ECCOP_Pos)
- #define ECCOP_MODULE (0x1UL << CRPT_ECC_CTL_ECCOP_Pos)
- #define ECCOP_POINT_ADD (0x2UL << CRPT_ECC_CTL_ECCOP_Pos)
- #define ECCOP_POINT_DOUBLE (0x0UL << CRPT_ECC_CTL_ECCOP_Pos)
- #define MODOP_DIV (0x0UL << CRPT_ECC_CTL_MODOP_Pos)
- #define MODOP_MUL (0x1UL << CRPT_ECC_CTL_MODOP_Pos)
- #define MODOP_ADD (0x2UL << CRPT_ECC_CTL_MODOP_Pos)
- #define MODOP_SUB (0x3UL << CRPT_ECC_CTL_MODOP_Pos)
- enum
- {
- CURVE_GF_P,
- CURVE_GF_2M,
- };
- /*-----------------------------------------------------*/
- /* Define elliptic curve (EC): */
- /*-----------------------------------------------------*/
- typedef struct e_curve_t
- {
- E_ECC_CURVE curve_id;
- int32_t Echar;
- char Ea[144];
- char Eb[144];
- char Px[144];
- char Py[144];
- int32_t Epl;
- char Pp[176];
- int32_t Eol;
- char Eorder[176];
- int32_t key_len;
- int32_t irreducible_k1;
- int32_t irreducible_k2;
- int32_t irreducible_k3;
- int32_t GF;
- } ECC_CURVE;
- const ECC_CURVE _Curve[] =
- {
- {
- /* NIST: Curve P-192 : y^2=x^3-ax+b (mod p) */
- CURVE_P_192,
- 48, /* Echar */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC", /* "000000000000000000000000000000000000000000000003" */
- "64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1",
- "188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012",
- "07192b95ffc8da78631011ed6b24cdd573f977a11e794811",
- 58, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF", /* "6277101735386680763835789423207666416083908700390324961279" */
- 58, /* Eol */
- "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", /* "6277101735386680763835789423176059013767194773182842284081" */
- 192, /* key_len */
- 7,
- 2,
- 1,
- CURVE_GF_P
- },
- {
- /* NIST: Curve P-224 : y^2=x^3-ax+b (mod p) */
- CURVE_P_224,
- 56, /* Echar */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE", /* "00000000000000000000000000000000000000000000000000000003" */
- "b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4",
- "b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",
- "bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34",
- 70, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "0026959946667150639794667015087019630673557916260026308143510066298881" */
- 70, /* Eol */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D", /* "0026959946667150639794667015087019625940457807714424391721682722368061" */
- 224, /* key_len */
- 9,
- 8,
- 3,
- CURVE_GF_P
- },
- {
- /* NIST: Curve P-256 : y^2=x^3-ax+b (mod p) */
- CURVE_P_256,
- 64, /* Echar */
- "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", /* "0000000000000000000000000000000000000000000000000000000000000003" */
- "5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
- "6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
- "4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5",
- 78, /* Epl */
- "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", /* "115792089210356248762697446949407573530086143415290314195533631308867097853951" */
- 78, /* Eol */
- "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", /* "115792089210356248762697446949407573529996955224135760342422259061068512044369" */
- 256, /* key_len */
- 10,
- 5,
- 2,
- CURVE_GF_P
- },
- {
- /* NIST: Curve P-384 : y^2=x^3-ax+b (mod p) */
- CURVE_P_384,
- 96, /* Echar */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC", /* "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003" */
- "b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef",
- "aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7",
- "3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f",
- 116, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF", /* "39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319" */
- 116, /* Eol */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973", /* "39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643" */
- 384, /* key_len */
- 12,
- 3,
- 2,
- CURVE_GF_P
- },
- {
- /* NIST: Curve P-521 : y^2=x^3-ax+b (mod p)*/
- CURVE_P_521,
- 131, /* Echar */
- "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC", /* "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003" */
- "051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",
- "0c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",
- "11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650",
- 157, /* Epl */
- "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151" */
- 157, /* Eol */
- "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409", /* "6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449" */
- 521, /* key_len */
- 32,
- 32,
- 32,
- CURVE_GF_P
- },
- {
- /* NIST: Curve B-163 : y^2+xy=x^3+ax^2+b */
- CURVE_B_163,
- 41, /* Echar */
- "00000000000000000000000000000000000000001",
- "20a601907b8c953ca1481eb10512f78744a3205fd",
- "3f0eba16286a2d57ea0991168d4994637e8343e36",
- "0d51fbc6c71a0094fa2cdd545b11c5c0c797324f1",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 49, /* Eol */
- "40000000000000000000292FE77E70C12A4234C33", /* "5846006549323611672814742442876390689256843201587" */
- 163, /* key_len */
- 7,
- 6,
- 3,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve B-233 : y^2+xy=x^3+ax^2+b */
- CURVE_B_233,
- 59, /* Echar 59 */
- "00000000000000000000000000000000000000000000000000000000001",
- "066647ede6c332c7f8c0923bb58213b333b20e9ce4281fe115f7d8f90ad",
- "0fac9dfcbac8313bb2139f1bb755fef65bc391f8b36f8f8eb7371fd558b",
- "1006a08a41903350678e58528bebf8a0beff867a7ca36716f7e01f81052",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 70, /* Eol */
- "1000000000000000000000000000013E974E72F8A6922031D2603CFE0D7", /* "6901746346790563787434755862277025555839812737345013555379383634485463" */
- 233, /* key_len */
- 74,
- 74,
- 74,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve B-283 : y^2+xy=x^3+ax^2+b */
- CURVE_B_283,
- 71, /* Echar */
- "00000000000000000000000000000000000000000000000000000000000000000000001",
- "27b680ac8b8596da5a4af8a19a0303fca97fd7645309fa2a581485af6263e313b79a2f5",
- "5f939258db7dd90e1934f8c70b0dfec2eed25b8557eac9c80e2e198f8cdbecd86b12053",
- "3676854fe24141cb98fe6d4b20d02b4516ff702350eddb0826779c813f0df45be8112f4",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 85, /* Eol */
- "3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307", /* "7770675568902916283677847627294075626569625924376904889109196526770044277787378692871" */
- 283, /* key_len */
- 12,
- 7,
- 5,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve B-409 : y^2+xy=x^3+ax^2+b */
- CURVE_B_409,
- 103, /* Echar */
- "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
- "021a5c2c8ee9feb5c4b9a753b7b476b7fd6422ef1f3dd674761fa99d6ac27c8a9a197b272822f6cd57a55aa4f50ae317b13545f",
- "15d4860d088ddb3496b0c6064756260441cde4af1771d4db01ffe5b34e59703dc255a868a1180515603aeab60794e54bb7996a7",
- "061b1cfab6be5f32bbfa78324ed106a7636b9c5a7bd198d0158aa4f5488d08f38514f1fdf4b4f40d2181b3681c364ba0273c706",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 123, /* Eol */
- "10000000000000000000000000000000000000000000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173", /* "661055968790248598951915308032771039828404682964281219284648798304157774827374805208143723762179110965979867288366567526771" */
- 409, /* key_len */
- 87,
- 87,
- 87,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve B-571 : y^2+xy=x^3+ax^2+b */
- CURVE_B_571,
- 143, /* Echar */
- "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
- "2f40e7e2221f295de297117b7f3d62f5c6a97ffcb8ceff1cd6ba8ce4a9a18ad84ffabbd8efa59332be7ad6756a66e294afd185a78ff12aa520e4de739baca0c7ffeff7f2955727a",
- "303001d34b856296c16c0d40d3cd7750a93d1d2955fa80aa5f40fc8db7b2abdbde53950f4c0d293cdd711a35b67fb1499ae60038614f1394abfa3b4c850d927e1e7769c8eec2d19",
- "37bf27342da639b6dccfffeb73d69d78c6c27a6009cbbca1980f8533921e8a684423e43bab08a576291af8f461bb2a8b3531d2f0485c19b16e2f1516e23dd3c1a4827af1b8ac15b",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 172, /* Eol */
- "3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47", /* "3864537523017258344695351890931987344298927329706434998657235251451519142289560424536143999389415773083133881121926944486246872462816813070234528288303332411393191105285703" */
- 571, /* key_len */
- 10,
- 5,
- 2,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve K-163 : y^2+xy=x^3+ax^2+b */
- CURVE_K_163,
- 41, /* Echar */
- "00000000000000000000000000000000000000001",
- "00000000000000000000000000000000000000001",
- "2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8",
- "289070fb05d38ff58321f2e800536d538ccdaa3d9",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 49, /* Eol */
- "4000000000000000000020108A2E0CC0D99F8A5EF", /* "5846006549323611672814741753598448348329118574063" */
- 163, /* key_len */
- 7,
- 6,
- 3,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve K-233 : y^2+xy=x^3+ax^2+b */
- CURVE_K_233,
- 59, /* Echar 59 */
- "00000000000000000000000000000000000000000000000000000000000",
- "00000000000000000000000000000000000000000000000000000000001",
- "17232ba853a7e731af129f22ff4149563a419c26bf50a4c9d6eefad6126",
- "1db537dece819b7f70f555a67c427a8cd9bf18aeb9b56e0c11056fae6a3",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 70, /* Eol */
- "8000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF", /* "3450873173395281893717377931138512760570940988862252126328087024741343" */
- 233, /* key_len */
- 74,
- 74,
- 74,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve K-283 : y^2+xy=x^3+ax^2+b */
- CURVE_K_283,
- 71, /* Echar */
- "00000000000000000000000000000000000000000000000000000000000000000000000",
- "00000000000000000000000000000000000000000000000000000000000000000000001",
- "503213f78ca44883f1a3b8162f188e553cd265f23c1567a16876913b0c2ac2458492836",
- "1ccda380f1c9e318d90f95d07e5426fe87e45c0e8184698e45962364e34116177dd2259",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 85, /* Eol */
- "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61", /* "3885337784451458141838923813647037813284811733793061324295874997529815829704422603873" */
- 283, /* key_len */
- 12,
- 7,
- 5,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve K-409 : y^2+xy=x^3+ax^2+b */
- CURVE_K_409,
- 103, /* Echar */
- "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
- "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
- "060f05f658f49c1ad3ab1890f7184210efd0987e307c84c27accfb8f9f67cc2c460189eb5aaaa62ee222eb1b35540cfe9023746",
- "1e369050b7c4e42acba1dacbf04299c3460782f918ea427e6325165e9ea10e3da5f6c42e9c55215aa9ca27a5863ec48d8e0286b",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 123, /* Eol */
- "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF", /* "330527984395124299475957654016385519914202341482140609642324395022880711289249191050673258457777458014096366590617731358671" */
- 409, /* key_len */
- 87,
- 87,
- 87,
- CURVE_GF_2M
- },
- {
- /* NIST: Curve K-571 : y^2+xy=x^3+ax^2+b */
- CURVE_K_571,
- 143, /* Echar */
- "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
- "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
- "26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972",
- "349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3",
- 68, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
- 172, /* Eol */
- "20000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001", /* "1932268761508629172347675945465993672149463664853217499328617625725759571144780212268133978522706711834706712800825351461273674974066617311929682421617092503555733685276673" */
- 571, /* key_len */
- 10,
- 5,
- 2,
- CURVE_GF_2M
- },
- {
- /* Koblitz: Curve secp192k1 : y2 = x3+ax+b over Fp */
- CURVE_KO_192,
- 48, /* Echar */
- "00000000000000000000000000000000000000000",
- "00000000000000000000000000000000000000003",
- "DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D",
- "9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D",
- 58, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", /* p */
- 58, /* Eol */
- "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", /* n */
- 192, /* key_len */
- 7,
- 2,
- 1,
- CURVE_GF_P
- },
- {
- /* Koblitz: Curve secp224k1 : y2 = x3+ax+b over Fp */
- CURVE_KO_224,
- 56, /* Echar */
- "00000000000000000000000000000000000000000000000000000000",
- "00000000000000000000000000000000000000000000000000000005",
- "A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C",
- "7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5",
- 70, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", /* p */
- 70, /* Eol */
- "0000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", /* n */
- 224, /* key_len */
- 7,
- 2,
- 1,
- CURVE_GF_P
- },
- {
- /* Koblitz: Curve secp256k1 : y2 = x3+ax+b over Fp */
- CURVE_KO_256,
- 64, /* Echar */
- "0000000000000000000000000000000000000000000000000000000000000000",
- "0000000000000000000000000000000000000000000000000000000000000007",
- "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
- "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
- 78, /* Epl */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", /* p */
- 78, /* Eol */
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", /* n */
- 256, /* key_len */
- 7,
- 2,
- 1,
- CURVE_GF_P
- },
- {
- /* Brainpool: Curve brainpoolP256r1 */
- CURVE_BP_256,
- 64, /* Echar */
- "7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9", /* A */
- "26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6", /* B */
- "8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262", /* x */
- "547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997", /* y */
- 78, /* Epl */
- "A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377", /* p */
- 78, /* Eol */
- "A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7", /* q */
- 256, /* key_len */
- 7,
- 2,
- 1,
- CURVE_GF_P
- },
- {
- /* Brainpool: Curve brainpoolP384r1 */
- CURVE_BP_384,
- 96, /* Echar */
- "7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F90F8AA5814A503AD4EB04A8C7DD22CE2826", /* A */
- "04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62D57CB4390295DBC9943AB78696FA504C11", /* B */
- "1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E", /* x */
- "8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315", /* y */
- 116, /* Epl */
- "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53", /* p */
- 116, /* Eol */
- "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565", /* q */
- 384, /* key_len */
- 7,
- 2,
- 1,
- CURVE_GF_P
- },
- {
- /* Brainpool: Curve brainpoolP512r1 */
- CURVE_BP_512,
- 128, /* Echar */
- "7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA", /* A */
- "3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723", /* B */
- "81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822", /* x */
- "7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892", /* y */
- 156, /* Epl */
- "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3", /* p */
- 156, /* Eol */
- "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069", /* q */
- 512, /* key_len */
- 7,
- 2,
- 1,
- CURVE_GF_P
- },
- };
- static ECC_CURVE *pCurve;
- static ECC_CURVE Curve_Copy;
- static ECC_CURVE *get_curve(E_ECC_CURVE ecc_curve);
- static int32_t ecc_init_curve(CRPT_T *crpt, E_ECC_CURVE ecc_curve);
- static void run_ecc_codec(CRPT_T *crpt, uint32_t mode);
- static char temp_hex_str[160];
- #if ENABLE_DEBUG
- static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count)
- {
- int32_t i;
- printf("%s => ", str);
- for (i = 0; i < count; i++)
- {
- printf("0x%08x ", regs[i]);
- }
- printf("\n");
- }
- #else
- static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count)
- {
- }
- #endif
- static char ch2hex(char ch)
- {
- if (ch <= '9')
- {
- ch = ch - '0';
- }
- else if ((ch <= 'z') && (ch >= 'a'))
- {
- ch = ch - 'a' + 10U;
- }
- else
- {
- ch = ch - 'A' + 10U;
- }
- return ch;
- }
- static void Hex2Reg(char input[], uint32_t volatile reg[])
- {
- char hex;
- int si, ri;
- uint32_t i, val32;
- si = (int)strlen(input) - 1;
- ri = 0;
- while (si >= 0)
- {
- val32 = 0UL;
- for (i = 0UL; (i < 8UL) && (si >= 0); i++)
- {
- hex = ch2hex(input[si]);
- val32 |= (uint32_t)hex << (i * 4UL);
- si--;
- }
- reg[ri++] = val32;
- }
- }
- static void Hex2RegEx(char input[], uint32_t volatile reg[], int shift)
- {
- uint32_t hex, carry;
- int si, ri;
- uint32_t i, val32;
- si = (int)strlen(input) - 1;
- ri = 0L;
- carry = 0UL;
- while (si >= 0)
- {
- val32 = 0UL;
- for (i = 0UL; (i < 8UL) && (si >= 0L); i++)
- {
- hex = (uint32_t)ch2hex(input[si]);
- hex <<= shift;
- val32 |= (uint32_t)((hex & 0xFUL) | carry) << (i * 4UL);
- carry = (hex >> 4UL) & 0xFUL;
- si--;
- }
- reg[ri++] = val32;
- }
- if (carry != 0UL)
- {
- reg[ri] = carry;
- }
- }
- /**
- * @brief Extract specified nibble from an unsigned word in character format.
- * For example:
- * Suppose val32 is 0x786543210, get_Nth_nibble_char(val32, 3) will return a '3'.
- * @param[in] val32 The input unsigned word
- * @param[in] idx The Nth nibble to be extracted.
- * @return The nibble in character format.
- */
- static char get_Nth_nibble_char(uint32_t val32, uint32_t idx)
- {
- return hex_char_tbl[(val32 >> (idx * 4U)) & 0xfU ];
- }
- static void Reg2Hex(int32_t count, uint32_t volatile reg[], char output[])
- {
- int32_t idx, ri;
- uint32_t i;
- output[count] = 0U;
- idx = count - 1;
- for (ri = 0; idx >= 0; ri++)
- {
- for (i = 0UL; (i < 8UL) && (idx >= 0); i++)
- {
- output[idx] = get_Nth_nibble_char(reg[ri], i);
- idx--;
- }
- }
- }
- static ECC_CURVE *get_curve(E_ECC_CURVE ecc_curve)
- {
- uint32_t i;
- ECC_CURVE *ret = NULL;
- for (i = 0UL; i < sizeof(_Curve) / sizeof(ECC_CURVE); i++)
- {
- if (ecc_curve == _Curve[i].curve_id)
- {
- memcpy((char *)&Curve_Copy, &_Curve[i], sizeof(ECC_CURVE));
- ret = &Curve_Copy; /* (ECC_CURVE *)&_Curve[i]; */
- }
- if (ret != NULL)
- {
- break;
- }
- }
- return ret;
- }
- static int32_t ecc_init_curve(CRPT_T *crpt, E_ECC_CURVE ecc_curve)
- {
- int32_t i, ret = 0;
- pCurve = get_curve(ecc_curve);
- if (pCurve == NULL)
- {
- CRPT_DBGMSG("Cannot find curve %d!!\n", ecc_curve);
- ret = -1;
- }
- if (ret == 0)
- {
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_A[i] = 0UL;
- crpt->ECC_B[i] = 0UL;
- crpt->ECC_X1[i] = 0UL;
- crpt->ECC_Y1[i] = 0UL;
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Ea, crpt->ECC_A);
- Hex2Reg(pCurve->Eb, crpt->ECC_B);
- Hex2Reg(pCurve->Px, crpt->ECC_X1);
- Hex2Reg(pCurve->Py, crpt->ECC_Y1);
- CRPT_DBGMSG("Key length = %d\n", pCurve->key_len);
- dump_ecc_reg("CRPT_ECC_CURVE_A", crpt->ECC_A, 10);
- dump_ecc_reg("CRPT_ECC_CURVE_B", crpt->ECC_B, 10);
- dump_ecc_reg("CRPT_ECC_POINT_X1", crpt->ECC_X1, 10);
- dump_ecc_reg("CRPT_ECC_POINT_Y1", crpt->ECC_Y1, 10);
- if (pCurve->GF == (int)CURVE_GF_2M)
- {
- crpt->ECC_N[0] = 0x1UL;
- crpt->ECC_N[(pCurve->key_len) / 32] |= (1UL << ((pCurve->key_len) % 32));
- crpt->ECC_N[(pCurve->irreducible_k1) / 32] |= (1UL << ((pCurve->irreducible_k1) % 32));
- crpt->ECC_N[(pCurve->irreducible_k2) / 32] |= (1UL << ((pCurve->irreducible_k2) % 32));
- crpt->ECC_N[(pCurve->irreducible_k3) / 32] |= (1UL << ((pCurve->irreducible_k3) % 32));
- }
- else
- {
- Hex2Reg(pCurve->Pp, crpt->ECC_N);
- }
- }
- dump_ecc_reg("CRPT_ECC_CURVE_N", crpt->ECC_N, 10);
- return ret;
- }
- static int get_nibble_value(char c)
- {
- if ((c >= '0') && (c <= '9'))
- {
- c = c - '0';
- }
- if ((c >= 'a') && (c <= 'f'))
- {
- c = c - 'a' + (char)10;
- }
- if ((c >= 'A') && (c <= 'F'))
- {
- c = c - 'A' + (char)10;
- }
- return (int)c;
- }
- static int ecc_strcmp(char *s1, char *s2)
- {
- char c1, c2;
- while (*s1 == '0') s1++;
- while (*s2 == '0') s2++;
- for (; *s1 || *s2; s1++, s2++)
- {
- if ((*s1 >= 'A') && (*s1 <= 'Z'))
- c1 = *s1 + 32;
- else
- c1 = *s1;
- if ((*s2 >= 'A') && (*s2 <= 'Z'))
- c2 = *s2 + 32;
- else
- c2 = *s2;
- if (c1 != c2)
- return 1;
- }
- return 0;
- }
- volatile uint32_t g_ECC_done, g_ECCERR_done;
- /** @endcond HIDDEN_SYMBOLS */
- /**
- * @brief ECC interrupt service routine. User application must invoke this function in
- * his CRYPTO_IRQHandler() to let Crypto driver know ECC processing was done.
- * @param[in] crpt Reference to Crypto module.
- * @return none
- */
- void ECC_Complete(CRPT_T *crpt)
- {
- if (crpt->INTSTS & CRPT_INTSTS_ECCIF_Msk)
- {
- g_ECC_done = 1UL;
- crpt->INTSTS = CRPT_INTSTS_ECCIF_Msk;
- /* printf("ECC done IRQ.\n"); */
- }
- if (crpt->INTSTS & CRPT_INTSTS_ECCEIF_Msk)
- {
- g_ECCERR_done = 1UL;
- crpt->INTSTS = CRPT_INTSTS_ECCEIF_Msk;
- /* printf("ECCERRIF is set!!\n"); */
- }
- }
- /**
- * @brief Check if the private key is located in valid range of curve.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] ecc_curve The pre-defined ECC curve.
- * @param[in] private_k The input private key.
- * @return 1 Is valid.
- * @return 0 Is not valid.
- * @return -1 Invalid curve.
- */
- int ECC_IsPrivateKeyValid(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char private_k[])
- {
- uint32_t i;
- int ret = -1;
- pCurve = get_curve(ecc_curve);
- if (pCurve == NULL)
- {
- ret = -1;
- }
- if (strlen(private_k) < strlen(pCurve->Eorder))
- {
- ret = 1;
- }
- if (strlen(private_k) > strlen(pCurve->Eorder))
- {
- ret = 0;
- }
- for (i = 0UL; i < strlen(private_k); i++)
- {
- if (get_nibble_value(private_k[i]) < get_nibble_value(pCurve->Eorder[i]))
- {
- ret = 1;
- break;
- }
- if (get_nibble_value(private_k[i]) > get_nibble_value(pCurve->Eorder[i]))
- {
- ret = 0;
- break;
- }
- }
- return ret;
- }
- /**
- * @brief Given a private key and curve to generate the public key pair.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] private_k The input private key.
- * @param[in] ecc_curve The pre-defined ECC curve.
- * @param[out] public_k1 The output public key 1.
- * @param[out] public_k2 The output public key 2.
- * @return 0 Success.
- * @return -1 "ecc_curve" value is invalid.
- */
- int32_t ECC_GeneratePublicKey(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *private_k, char public_k1[], char public_k2[])
- {
- int32_t i, ret = 0;
- if (ecc_init_curve(crpt, ecc_curve) != 0)
- {
- ret = -1;
- }
- if (ret == 0)
- {
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_K[i] = 0UL;
- }
- Hex2Reg(private_k, crpt->ECC_K);
- /* set FSEL (Field selection) */
- if (pCurve->GF == (int)CURVE_GF_2M)
- {
- crpt->ECC_CTL = 0UL;
- }
- else
- {
- /* CURVE_GF_P */
- crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
- }
- g_ECC_done = g_ECCERR_done = 0UL;
- crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
- ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
- while ((g_ECC_done | g_ECCERR_done) == 0UL)
- {
- }
- Reg2Hex(pCurve->Echar, crpt->ECC_X1, public_k1);
- Reg2Hex(pCurve->Echar, crpt->ECC_Y1, public_k2);
- }
- return ret;
- }
- /**
- * @brief Given a private key and curve to generate the public key pair.
- * @param[in] crpt Reference to Crypto module.
- * @param[out] x1 The x-coordinate of input point.
- * @param[out] y1 The y-coordinate of input point.
- * @param[in] k The private key
- * @param[in] ecc_curve The pre-defined ECC curve.
- * @param[out] x2 The x-coordinate of output point.
- * @param[out] y2 The y-coordinate of output point.
- * @return 0 Success.
- * @return -1 "ecc_curve" value is invalid.
- */
- int32_t ECC_Mutiply(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char x1[], char y1[], char *k, char x2[], char y2[])
- {
- int32_t i, ret = 0;
- if (ecc_init_curve(crpt, ecc_curve) != 0)
- {
- ret = -1;
- }
- if (ret == 0)
- {
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = 0UL;
- crpt->ECC_Y1[i] = 0UL;
- crpt->ECC_K[i] = 0UL;
- }
- Hex2Reg(x1, crpt->ECC_X1);
- Hex2Reg(y1, crpt->ECC_Y1);
- Hex2Reg(k, crpt->ECC_K);
- /* set FSEL (Field selection) */
- if (pCurve->GF == (int)CURVE_GF_2M)
- {
- crpt->ECC_CTL = 0UL;
- }
- else
- {
- /* CURVE_GF_P */
- crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
- }
- g_ECC_done = g_ECCERR_done = 0UL;
- crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
- ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
- while ((g_ECC_done | g_ECCERR_done) == 0UL)
- {
- }
- Reg2Hex(pCurve->Echar, crpt->ECC_X1, x2);
- Reg2Hex(pCurve->Echar, crpt->ECC_Y1, y2);
- }
- return ret;
- }
- /**
- * @brief Given a curve parameter, the other party's public key, and one's own private key to generate the secret Z.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] ecc_curve The pre-defined ECC curve.
- * @param[in] private_k One's own private key.
- * @param[in] public_k1 The other party's publick key 1.
- * @param[in] public_k2 The other party's publick key 2.
- * @param[out] secret_z The ECC CDH secret Z.
- * @return 0 Success.
- * @return -1 "ecc_curve" value is invalid.
- */
- int32_t ECC_GenerateSecretZ(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *private_k, char public_k1[], char public_k2[], char secret_z[])
- {
- int32_t i, ret = 0;
- if (ecc_init_curve(crpt, ecc_curve) != 0)
- {
- ret = -1;
- }
- if (ret == 0)
- {
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_K[i] = 0UL;
- crpt->ECC_X1[i] = 0UL;
- crpt->ECC_Y1[i] = 0UL;
- }
- if ((ecc_curve == CURVE_B_163) || (ecc_curve == CURVE_B_233) || (ecc_curve == CURVE_B_283) ||
- (ecc_curve == CURVE_B_409) || (ecc_curve == CURVE_B_571) || (ecc_curve == CURVE_K_163))
- {
- Hex2RegEx(private_k, crpt->ECC_K, 1);
- }
- else if ((ecc_curve == CURVE_K_233) || (ecc_curve == CURVE_K_283) ||
- (ecc_curve == CURVE_K_409) || (ecc_curve == CURVE_K_571))
- {
- Hex2RegEx(private_k, crpt->ECC_K, 2);
- }
- else
- {
- Hex2Reg(private_k, crpt->ECC_K);
- }
- Hex2Reg(public_k1, crpt->ECC_X1);
- Hex2Reg(public_k2, crpt->ECC_Y1);
- /* set FSEL (Field selection) */
- if (pCurve->GF == (int)CURVE_GF_2M)
- {
- crpt->ECC_CTL = 0UL;
- }
- else
- {
- /* CURVE_GF_P */
- crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
- }
- g_ECC_done = g_ECCERR_done = 0UL;
- crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
- ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
- while ((g_ECC_done | g_ECCERR_done) == 0UL)
- {
- }
- Reg2Hex(pCurve->Echar, crpt->ECC_X1, secret_z);
- }
- return ret;
- }
- /** @cond HIDDEN_SYMBOLS */
- static void run_ecc_codec(CRPT_T *crpt, uint32_t mode)
- {
- if ((mode & CRPT_ECC_CTL_ECCOP_Msk) == ECCOP_MODULE)
- {
- crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
- }
- else
- {
- if (pCurve->GF == (int)CURVE_GF_2M)
- {
- /* point */
- crpt->ECC_CTL = 0UL;
- }
- else
- {
- /* CURVE_GF_P */
- crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
- }
- }
- g_ECC_done = g_ECCERR_done = 0UL;
- crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) | mode | CRPT_ECC_CTL_START_Msk;
- while ((g_ECC_done | g_ECCERR_done) == 0UL)
- {
- }
- while (crpt->ECC_STS & CRPT_ECC_STS_BUSY_Msk)
- {
- }
- }
- /** @endcond HIDDEN_SYMBOLS */
- /**
- * @brief ECDSA digital signature generation.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] ecc_curve The pre-defined ECC curve.
- * @param[in] message The hash value of source context.
- * @param[in] d The private key.
- * @param[in] k The selected random integer.
- * @param[out] R R of the (R,S) pair digital signature
- * @param[out] S S of the (R,S) pair digital signature
- * @return 0 Success.
- * @return -1 "ecc_curve" value is invalid.
- */
- int32_t ECC_GenerateSignature(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *message,
- char *d, char *k, char *R, char *S)
- {
- uint32_t volatile temp_result1[18], temp_result2[18];
- int32_t i, ret = 0;
- if (ecc_init_curve(crpt, ecc_curve) != 0)
- {
- ret = -1;
- }
- if (ret == 0)
- {
- /*
- * 1. Calculate e = HASH(m), where HASH is a cryptographic hashing algorithm, (i.e. SHA-1)
- * (1) Use SHA to calculate e
- */
- /* 2. Select a random integer k form [1, n-1]
- * (1) Notice that n is order, not prime modulus or irreducible polynomial function
- */
- /*
- * 3. Compute r = x1 (mod n), where (x1, y1) = k * G. If r = 0, go to step 2
- * (1) Write the curve parameter A, B, and curve length M to corresponding registers
- * (2) Write the prime modulus or irreducible polynomial function to N registers according
- * (3) Write the point G(x, y) to X1, Y1 registers
- * (4) Write the random integer k to K register
- * (5) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
- * (6) Set FSEL(CRPT_ECC_CTL[8]) according to used curve of prime field or binary field
- * (7) Set START(CRPT_ECC_CTL[0]) to 1
- * (8) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (9) Write the curve order and curve length to N ,M registers according
- * (10) Write 0x0 to Y1 registers
- * (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (12) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
- * (13) Set START(CRPT_ECC_CTL[0]) to 1 *
- * (14) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (15) Read X1 registers to get r
- */
- /* 3-(4) Write the random integer k to K register */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_K[i] = 0UL;
- }
- Hex2Reg(k, crpt->ECC_K);
- run_ecc_codec(crpt, ECCOP_POINT_MUL);
- /* 3-(9) Write the curve order to N registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /* 3-(10) Write 0x0 to Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_Y1[i] = 0UL;
- }
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
- /* 3-(15) Read X1 registers to get r */
- for (i = 0; i < 18; i++)
- {
- temp_result1[i] = crpt->ECC_X1[i];
- }
- Reg2Hex(pCurve->Echar, temp_result1, R);
- /*
- * 4. Compute s = k ? 1 * (e + d * r)(mod n). If s = 0, go to step 2
- * (1) Write the curve order to N registers according
- * (2) Write 0x1 to Y1 registers
- * (3) Write the random integer k to X1 registers according
- * (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (5) Set MOPOP(CRPT_ECC_CTL[12:11]) to 00
- * (6) Set START(CRPT_ECC_CTL[0]) to 1
- * (7) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (8) Read X1 registers to get k^-1
- * (9) Write the curve order and curve length to N ,M registers
- * (10) Write r, d to X1, Y1 registers
- * (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (12) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
- * (13) Set START(CRPT_ECC_CTL[0]) to 1
- * (14) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (15) Write the curve order to N registers
- * (16) Write e to Y1 registers
- * (17) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (18) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
- * (19) Set START(CRPT_ECC_CTL[0]) to 1
- * (20) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (21) Write the curve order and curve length to N ,M registers
- * (22) Write k^-1 to Y1 registers
- * (23) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (24) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
- * (25) Set START(CRPT_ECC_CTL[0]) to 1
- * (26) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (27) Read X1 registers to get s
- */
- /* S/W: GFp_add_mod_order(pCurve->key_len+2, 0, x1, a, R); */
- /* 4-(1) Write the curve order to N registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /* 4-(2) Write 0x1 to Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_Y1[i] = 0UL;
- }
- crpt->ECC_Y1[0] = 0x1UL;
- /* 4-(3) Write the random integer k to X1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = 0UL;
- }
- Hex2Reg(k, crpt->ECC_X1);
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_DIV);
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
- CRPT_DBGMSG("(7) output = %s\n", temp_hex_str);
- #endif
- /* 4-(8) Read X1 registers to get k^-1 */
- for (i = 0; i < 18; i++)
- {
- temp_result2[i] = crpt->ECC_X1[i];
- }
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
- CRPT_DBGMSG("k^-1 = %s\n", temp_hex_str);
- #endif
- /* 4-(9) Write the curve order and curve length to N ,M registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /* 4-(10) Write r, d to X1, Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = temp_result1[i];
- }
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_Y1[i] = 0UL;
- }
- Hex2Reg(d, crpt->ECC_Y1);
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
- CRPT_DBGMSG("(14) output = %s\n", temp_hex_str);
- #endif
- /* 4-(15) Write the curve order to N registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /* 4-(16) Write e to Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_Y1[i] = 0UL;
- }
- Hex2Reg(message, crpt->ECC_Y1);
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
- CRPT_DBGMSG("(20) output = %s\n", temp_hex_str);
- #endif
- /* 4-(21) Write the curve order and curve length to N ,M registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /* 4-(22) Write k^-1 to Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_Y1[i] = temp_result2[i];
- }
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
- /* 4-(27) Read X1 registers to get s */
- for (i = 0; i < 18; i++)
- {
- temp_result2[i] = crpt->ECC_X1[i];
- }
- Reg2Hex(pCurve->Echar, temp_result2, S);
- } /* ret == 0 */
- return ret;
- }
- /**
- * @brief ECDSA dogotal signature verification.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] ecc_curve The pre-defined ECC curve.
- * @param[in] message The hash value of source context.
- * @param[in] public_k1 The public key 1.
- * @param[in] public_k2 The public key 2.
- * @param[in] R R of the (R,S) pair digital signature
- * @param[in] S S of the (R,S) pair digital signature
- * @return 0 Success.
- * @return -1 "ecc_curve" value is invalid.
- * @return -2 Verification failed.
- */
- int32_t ECC_VerifySignature(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *message,
- char *public_k1, char *public_k2, char *R, char *S)
- {
- uint32_t temp_result1[18], temp_result2[18];
- uint32_t temp_x[18], temp_y[18];
- int32_t i, ret = 0;
- /*
- * 1. Verify that r and s are integers in the interval [1, n-1]. If not, the signature is invalid
- * 2. Compute e = HASH (m), where HASH is the hashing algorithm in signature generation
- * (1) Use SHA to calculate e
- */
- /*
- * 3. Compute w = s^-1 (mod n)
- * (1) Write the curve order to N registers
- * (2) Write 0x1 to Y1 registers
- * (3) Write s to X1 registers
- * (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (5) Set MOPOP(CRPT_ECC_CTL[12:11]) to 00
- * (6) Set FSEL(CRPT_ECC_CTL[8]) according to used curve of prime field or binary field
- * (7) Set START(CRPT_ECC_CTL[0]) to 1
- * (8) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (9) Read X1 registers to get w
- */
- if (ecc_init_curve(crpt, ecc_curve) != 0)
- {
- ret = -1;
- }
- if (ret == 0)
- {
- /* 3-(1) Write the curve order to N registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /* 3-(2) Write 0x1 to Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_Y1[i] = 0UL;
- }
- crpt->ECC_Y1[0] = 0x1UL;
- /* 3-(3) Write s to X1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = 0UL;
- }
- Hex2Reg(S, crpt->ECC_X1);
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_DIV);
- /* 3-(9) Read X1 registers to get w */
- for (i = 0; i < 18; i++)
- {
- temp_result2[i] = crpt->ECC_X1[i];
- }
- #if ENABLE_DEBUG
- CRPT_DBGMSG("e = %s\n", message);
- Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
- CRPT_DBGMSG("w = %s\n", temp_hex_str);
- CRPT_DBGMSG("o = %s (order)\n", pCurve->Eorder);
- #endif
- /*
- * 4. Compute u1 = e * w (mod n) and u2 = r * w (mod n)
- * (1) Write the curve order and curve length to N ,M registers
- * (2) Write e, w to X1, Y1 registers
- * (3) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (4) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
- * (5) Set START(CRPT_ECC_CTL[0]) to 1
- * (6) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (7) Read X1 registers to get u1
- * (8) Write the curve order and curve length to N ,M registers
- * (9) Write r, w to X1, Y1 registers
- * (10) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (11) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
- * (12) Set START(CRPT_ECC_CTL[0]) to 1
- * (13) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (14) Read X1 registers to get u2
- */
- /* 4-(1) Write the curve order and curve length to N ,M registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /* 4-(2) Write e, w to X1, Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = 0UL;
- }
- Hex2Reg(message, crpt->ECC_X1);
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_Y1[i] = temp_result2[i];
- }
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
- /* 4-(7) Read X1 registers to get u1 */
- for (i = 0; i < 18; i++)
- {
- temp_result1[i] = crpt->ECC_X1[i];
- }
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, temp_result1, temp_hex_str);
- CRPT_DBGMSG("u1 = %s\n", temp_hex_str);
- #endif
- /* 4-(8) Write the curve order and curve length to N ,M registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /* 4-(9) Write r, w to X1, Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = 0UL;
- }
- Hex2Reg(R, crpt->ECC_X1);
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_Y1[i] = temp_result2[i];
- }
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
- /* 4-(14) Read X1 registers to get u2 */
- for (i = 0; i < 18; i++)
- {
- temp_result2[i] = crpt->ECC_X1[i];
- }
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
- CRPT_DBGMSG("u2 = %s\n", temp_hex_str);
- #endif
- /*
- * 5. Compute X' (x1' y1') = u1 * G + u2 * Q
- * (1) Write the curve parameter A, B, N, and curve length M to corresponding registers
- * (2) Write the point G(x, y) to X1, Y1 registers
- * (3) Write u1 to K registers
- * (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
- * (5) Set START(CRPT_ECC_CTL[0]) to 1
- * (6) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (7) Read X1, Y1 registers to get u1*G
- * (8) Write the curve parameter A, B, N, and curve length M to corresponding registers
- * (9) Write the public key Q(x,y) to X1, Y1 registers
- * (10) Write u2 to K registers
- * (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
- * (12) Set START(CRPT_ECC_CTL[0]) to 1
- * (13) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (14) Write the curve parameter A, B, N, and curve length M to corresponding registers
- * (15) Write the result data u1*G to X2, Y2 registers
- * (16) Set ECCOP(CRPT_ECC_CTL[10:9]) to 10
- * (17) Set START(CRPT_ECC_CTL[0]) to 1
- * (18) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (19) Read X1, Y1 registers to get X('x1', y1')
- * (20) Write the curve order and curve length to N ,M registers
- * (21) Write x1' to X1 registers
- * (22) Write 0x0 to Y1 registers
- * (23) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
- * (24) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
- * (25) Set START(CRPT_ECC_CTL[0]) to 1
- * (26) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
- * (27) Read X1 registers to get x1' (mod n)
- *
- * 6. The signature is valid if x1' = r, otherwise it is invalid
- */
- /*
- * (1) Write the curve parameter A, B, N, and curve length M to corresponding registers
- * (2) Write the point G(x, y) to X1, Y1 registers
- */
- ecc_init_curve(crpt, ecc_curve);
- /* (3) Write u1 to K registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_K[i] = temp_result1[i];
- }
- run_ecc_codec(crpt, ECCOP_POINT_MUL);
- /* (7) Read X1, Y1 registers to get u1*G */
- for (i = 0; i < 18; i++)
- {
- temp_x[i] = crpt->ECC_X1[i];
- temp_y[i] = crpt->ECC_Y1[i];
- }
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, temp_x, temp_hex_str);
- CRPT_DBGMSG("5-(7) u1*G, x = %s\n", temp_hex_str);
- Reg2Hex(pCurve->Echar, temp_y, temp_hex_str);
- CRPT_DBGMSG("5-(7) u1*G, y = %s\n", temp_hex_str);
- #endif
- /* (8) Write the curve parameter A, B, N, and curve length M to corresponding registers */
- ecc_init_curve(crpt, ecc_curve);
- /* (9) Write the public key Q(x,y) to X1, Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = 0UL;
- crpt->ECC_Y1[i] = 0UL;
- }
- Hex2Reg(public_k1, crpt->ECC_X1);
- Hex2Reg(public_k2, crpt->ECC_Y1);
- /* (10) Write u2 to K registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_K[i] = temp_result2[i];
- }
- run_ecc_codec(crpt, ECCOP_POINT_MUL);
- for (i = 0; i < 18; i++)
- {
- temp_result1[i] = crpt->ECC_X1[i];
- temp_result2[i] = crpt->ECC_Y1[i];
- }
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, temp_result1, temp_hex_str);
- CRPT_DBGMSG("5-(13) u2*Q, x = %s\n", temp_hex_str);
- Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
- CRPT_DBGMSG("5-(13) u2*Q, y = %s\n", temp_hex_str);
- #endif
- /* (14) Write the curve parameter A, B, N, and curve length M to corresponding registers */
- ecc_init_curve(crpt, ecc_curve);
- /* Write the result data u2*Q to X1, Y1 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = temp_result1[i];
- crpt->ECC_Y1[i] = temp_result2[i];
- }
- /* (15) Write the result data u1*G to X2, Y2 registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X2[i] = temp_x[i];
- crpt->ECC_Y2[i] = temp_y[i];
- }
- run_ecc_codec(crpt, ECCOP_POINT_ADD);
- /* (19) Read X1, Y1 registers to get X'(x1' y1') */
- for (i = 0; i < 18; i++)
- {
- temp_x[i] = crpt->ECC_X1[i];
- temp_y[i] = crpt->ECC_Y1[i];
- }
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, temp_x, temp_hex_str);
- CRPT_DBGMSG("5-(19) x' = %s\n", temp_hex_str);
- Reg2Hex(pCurve->Echar, temp_y, temp_hex_str);
- CRPT_DBGMSG("5-(19) y' = %s\n", temp_hex_str);
- #endif
- /* (20) Write the curve order and curve length to N ,M registers */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_N[i] = 0UL;
- }
- Hex2Reg(pCurve->Eorder, crpt->ECC_N);
- /*
- * (21) Write x1' to X1 registers
- * (22) Write 0x0 to Y1 registers
- */
- for (i = 0; i < 18; i++)
- {
- crpt->ECC_X1[i] = temp_x[i];
- crpt->ECC_Y1[i] = 0UL;
- }
- #if ENABLE_DEBUG
- Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
- CRPT_DBGMSG("5-(21) x' = %s\n", temp_hex_str);
- Reg2Hex(pCurve->Echar, crpt->ECC_Y1, temp_hex_str);
- CRPT_DBGMSG("5-(22) y' = %s\n", temp_hex_str);
- #endif
- run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
- /* (27) Read X1 registers to get x1' (mod n) */
- Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
- CRPT_DBGMSG("5-(27) x1' (mod n) = %s\n", temp_hex_str);
- /* 6. The signature is valid if x1' = r, otherwise it is invalid */
- /* Compare with test pattern to check if r is correct or not */
- if (ecc_strcmp(temp_hex_str, R) != 0)
- {
- CRPT_DBGMSG("x1' (mod n) != R Test filed!!\n");
- CRPT_DBGMSG("Signature R [%s] is not matched with expected R [%s]!\n", temp_hex_str, R);
- ret = -2;
- }
- } /* ret == 0 */
- return ret;
- }
- /*-----------------------------------------------------------------------------------------------*/
- /* */
- /* RSA */
- /* */
- /*-----------------------------------------------------------------------------------------------*/
- /** @cond HIDDEN_SYMBOLS */
- #define MAX_DIGIT 0xFFFFFFFFUL
- #define MAX_HALF_DIGIT 0xFFFFUL /* NB 'L' */
- #define BITS_PER_DIGIT 32
- #define HIBITMASK 0x80000000UL
- #define MAX_FIXED_BIT_LENGTH 8192
- #define MAX_FIXED_DIGITS ((MAX_FIXED_BIT_LENGTH + BITS_PER_DIGIT - 1) / BITS_PER_DIGIT)
- #ifndef max
- #define max(a,b) (((a) > (b)) ? (a) : (b))
- #endif
- static uint32_t qq[MAX_FIXED_DIGITS * 2];
- static uint32_t rr[MAX_FIXED_DIGITS * 2];
- /** Returns number of significant digits in a */
- static int mpSizeof(const uint32_t a[], int ndigits)
- {
- while (ndigits--)
- {
- if (a[ndigits] != 0)
- return (++ndigits);
- }
- return 0;
- }
- static int mpBitLength(const uint32_t d[], int ndigits)
- /* Returns no of significant bits in d */
- {
- int n, i, bits;
- uint32_t mask;
- if (!d || ndigits == 0)
- return 0;
- n = mpSizeof(d, ndigits);
- if (0 == n) return 0;
- for (i = 0, mask = HIBITMASK; mask > 0; mask >>= 1, i++)
- {
- if (d[n - 1] & mask)
- break;
- }
- bits = n * BITS_PER_DIGIT - i;
- return bits;
- }
- static int mpGetBit(const uint32_t a[], int ndigits, int ibit)
- /* Returns value 1 or 0 of bit n (0..nbits-1); or -1 if out of range */
- {
- int idigit, bit_to_get;
- uint32_t mask;
- /* Which digit? (0-based) */
- idigit = ibit / BITS_PER_DIGIT;
- if (idigit >= ndigits)
- return -1;
- /* Set mask */
- bit_to_get = ibit % BITS_PER_DIGIT;
- mask = 0x01 << bit_to_get;
- return ((a[idigit] & mask) ? 1 : 0);
- }
- static uint32_t mpSetZero(volatile uint32_t a[], int ndigits)
- {
- /* Sets a = 0 */
- /* Prevent optimiser ignoring this */
- volatile uint32_t optdummy;
- volatile uint32_t *p = a;
- while (ndigits--)
- a[ndigits] = 0;
- optdummy = *p;
- return optdummy;
- }
- static void mpSetEqual(uint32_t a[], const uint32_t b[], int ndigits)
- {
- /* Sets a = b */
- int i;
- for (i = 0; i < ndigits; i++)
- {
- a[i] = b[i];
- }
- }
- static void mpSetDigit(uint32_t a[], uint32_t d, int ndigits)
- {
- /* Sets a = d where d is a single digit */
- int i;
- for (i = 1; i < ndigits; i++)
- {
- a[i] = 0;
- }
- a[0] = d;
- }
- /** Returns sign of (a - b) as 0, +1 or -1. Not constant-time. */
- static int mpCompare(const uint32_t a[], const uint32_t b[], int ndigits)
- {
- /* if (ndigits == 0) return 0; // deleted [v2.5] */
- while (ndigits--)
- {
- if (a[ndigits] > b[ndigits])
- return 1; /* GT */
- if (a[ndigits] < b[ndigits])
- return -1; /* LT */
- }
- return 0; /* EQ */
- }
- static uint32_t mpShiftLeft(uint32_t a[], const uint32_t *b,
- int shift, int ndigits)
- {
- /* Computes a = b << shift */
- /* [v2.1] Modified to cope with shift > BITS_PERDIGIT */
- int i, y, nw, bits;
- uint32_t mask, carry, nextcarry;
- /* Do we shift whole digits? */
- if (shift >= BITS_PER_DIGIT)
- {
- nw = shift / BITS_PER_DIGIT;
- i = ndigits;
- while (i--)
- {
- if (i >= nw)
- a[i] = b[i - nw];
- else
- a[i] = 0;
- }
- /* Call again to shift bits inside digits */
- bits = shift % BITS_PER_DIGIT;
- carry = b[ndigits - nw] << bits;
- if (bits)
- carry |= mpShiftLeft(a, a, bits, ndigits);
- return carry;
- }
- else
- {
- bits = shift;
- }
- /* Construct mask = high bits set */
- mask = ~(~(uint32_t)0 >> bits);
- y = BITS_PER_DIGIT - bits;
- carry = 0;
- for (i = 0; i < ndigits; i++)
- {
- nextcarry = (b[i] & mask) >> y;
- a[i] = b[i] << bits | carry;
- carry = nextcarry;
- }
- return carry;
- }
- static uint32_t mpShiftRight(uint32_t a[], const uint32_t b[], int shift, int ndigits)
- {
- /* Computes a = b >> shift */
- /* [v2.1] Modified to cope with shift > BITS_PERDIGIT */
- int i, y, nw, bits;
- uint32_t mask, carry, nextcarry;
- /* Do we shift whole digits? */
- if (shift >= BITS_PER_DIGIT)
- {
- nw = shift / BITS_PER_DIGIT;
- for (i = 0; i < ndigits; i++)
- {
- if ((i + nw) < ndigits)
- a[i] = b[i + nw];
- else
- a[i] = 0;
- }
- /* Call again to shift bits inside digits */
- bits = shift % BITS_PER_DIGIT;
- carry = b[nw - 1] >> bits;
- if (bits)
- carry |= mpShiftRight(a, a, bits, ndigits);
- return carry;
- }
- else
- {
- bits = shift;
- }
- /* Construct mask to set low bits */
- /* (thanks to Jesse Chisholm for suggesting this improved technique) */
- mask = ~(~(uint32_t)0 << bits);
- y = BITS_PER_DIGIT - bits;
- carry = 0;
- i = ndigits;
- while (i--)
- {
- nextcarry = (b[i] & mask) << y;
- a[i] = b[i] >> bits | carry;
- carry = nextcarry;
- }
- return carry;
- }
- static uint32_t spDivide(uint32_t *pq, uint32_t *pr, const uint32_t u[2], uint32_t v)
- {
- uint64_t uu, q;
- uu = (uint64_t)u[1] << 32 | (uint64_t)u[0];
- q = uu / (uint64_t)v;
- //r = uu % (uint64_t)v;
- *pr = (uint32_t)(uu - q * v);
- *pq = (uint32_t)(q & 0xFFFFFFFF);
- return (uint32_t)(q >> 32);
- }
- static int spMultiply(uint32_t p[2], uint32_t x, uint32_t y)
- {
- /* Use a 64-bit temp for product */
- uint64_t t = (uint64_t)x * (uint64_t)y;
- /* then split into two parts */
- p[1] = (uint32_t)(t >> 32);
- p[0] = (uint32_t)(t & 0xFFFFFFFF);
- return 0;
- }
- static uint32_t mpMultSub(uint32_t wn, uint32_t w[], const uint32_t v[],
- uint32_t q, int n)
- {
- /* Compute w = w - qv
- where w = (WnW[n-1]...W[0])
- return modified Wn.
- */
- uint32_t k, t[4];
- int i;
- if (q == 0) /* No change */
- return wn;
- k = 0;
- for (i = 0; i < n; i++)
- {
- spMultiply(t, q, v[i]);
- w[i] -= k;
- if (w[i] > MAX_DIGIT - k)
- k = 1;
- else
- k = 0;
- w[i] -= t[0];
- if (w[i] > MAX_DIGIT - t[0])
- k++;
- k += t[1];
- }
- /* Cope with Wn not stored in array w[0..n-1] */
- wn -= k;
- return wn;
- }
- static uint32_t mpShortDiv(uint32_t q[], const uint32_t u[], uint32_t v,
- int ndigits)
- {
- /* Calculates quotient q = u div v
- Returns remainder r = u mod v
- where q, u are multiprecision integers of ndigits each
- and r, v are single precision digits.
- Makes no assumptions about normalisation.
- Ref: Knuth Vol 2 Ch 4.3.1 Exercise 16 p625
- */
- int j;
- uint32_t t[4], r;
- int shift;
- uint32_t bitmask, overflow, *uu;
- if (ndigits == 0) return 0;
- if (v == 0) return 0; /* Divide by zero error */
- /* Normalise first */
- /* Requires high bit of V
- to be set, so find most signif. bit then shift left,
- i.e. d = 2^shift, u' = u * d, v' = v * d.
- */
- bitmask = HIBITMASK;
- for (shift = 0; shift < BITS_PER_DIGIT; shift++)
- {
- if (v & bitmask)
- break;
- bitmask >>= 1;
- }
- if (shift == BITS_PER_DIGIT) return 0; /* Avoid cppcheck false-alarm. */
- v <<= shift;
- overflow = mpShiftLeft(q, u, shift, ndigits);
- uu = q;
- /* Step S1 - modified for extra digit. */
- r = overflow; /* New digit Un */
- j = ndigits;
- while (j--)
- {
- /* Step S2. */
- t[1] = r;
- t[0] = uu[j];
- overflow = spDivide(&q[j], &r, t, v);
- }
- /* Unnormalise */
- r >>= shift;
- return r;
- }
- static int QhatTooBig(uint32_t qhat, uint32_t rhat,
- uint32_t vn2, uint32_t ujn2)
- {
- /* Returns true if Qhat is too big
- i.e. if (Qhat * Vn-2) > (b.Rhat + Uj+n-2)
- */
- uint32_t t[4];
- spMultiply(t, qhat, vn2);
- if (t[1] < rhat)
- return 0;
- else if (t[1] > rhat)
- return 1;
- else if (t[0] > ujn2)
- return 1;
- return 0;
- }
- static uint32_t mpAdd(uint32_t w[], const uint32_t u[], const uint32_t v[], int ndigits)
- {
- /* Calculates w = u + v
- where w, u, v are multiprecision integers of ndigits each
- Returns carry if overflow. Carry = 0 or 1.
- Ref: Knuth Vol 2 Ch 4.3.1 p 266 Algorithm A.
- */
- uint32_t k;
- int j;
- // assert(w != v);
- /* Step A1. Initialise */
- k = 0;
- for (j = 0; j < ndigits; j++)
- {
- /* Step A2. Add digits w_j = (u_j + v_j + k)
- Set k = 1 if carry (overflow) occurs
- */
- w[j] = u[j] + k;
- if (w[j] < k)
- k = 1;
- else
- k = 0;
- w[j] += v[j];
- if (w[j] < v[j])
- k++;
- } /* Step A3. Loop on j */
- return k; /* w_n = k */
- }
- static int mpDivide(uint32_t q[], uint32_t r[], const uint32_t u[],
- int udigits, uint32_t v[], int vdigits)
- {
- /* Computes quotient q = u / v and remainder r = u mod v
- where q, r, u are multiple precision digits
- all of udigits and the divisor v is vdigits.
- Ref: Knuth Vol 2 Ch 4.3.1 p 272 Algorithm D.
- Do without extra storage space, i.e. use r[] for
- normalised u[], unnormalise v[] at end, and cope with
- extra digit Uj+n added to u after normalisation.
- WARNING: this trashes q and r first, so cannot do
- u = u / v or v = u mod v.
- It also changes v temporarily so cannot make it const.
- */
- int shift;
- int n, m, j;
- uint32_t bitmask, overflow;
- uint32_t qhat, rhat, t[4];
- uint32_t *uu, *ww;
- int qhatOK, cmp;
- /* Clear q and r */
- mpSetZero(q, udigits);
- mpSetZero(r, udigits);
- /* Work out exact sizes of u and v */
- n = (int)mpSizeof(v, vdigits);
- m = (int)mpSizeof(u, udigits);
- m -= n;
- /* Catch special cases */
- if (n == 0)
- return -1; /* Error: divide by zero */
- if (n == 1)
- {
- /* Use short division instead */
- r[0] = mpShortDiv(q, u, v[0], udigits);
- return 0;
- }
- if (m < 0)
- {
- /* v > u, so just set q = 0 and r = u */
- mpSetEqual(r, u, udigits);
- return 0;
- }
- if (m == 0)
- {
- /* u and v are the same length */
- cmp = mpCompare(u, v, (int)n);
- if (cmp < 0)
- {
- /* v > u, as above */
- mpSetEqual(r, u, udigits);
- return 0;
- }
- else if (cmp == 0)
- {
- /* v == u, so set q = 1 and r = 0 */
- mpSetDigit(q, 1, udigits);
- return 0;
- }
- }
- /* In Knuth notation, we have:
- Given
- u = (Um+n-1 ... U1U0)
- v = (Vn-1 ... V1V0)
- Compute
- q = u/v = (QmQm-1 ... Q0)
- r = u mod v = (Rn-1 ... R1R0)
- */
- /* Step D1. Normalise */
- /* Requires high bit of Vn-1
- to be set, so find most signif. bit then shift left,
- i.e. d = 2^shift, u' = u * d, v' = v * d.
- */
- bitmask = HIBITMASK;
- for (shift = 0; shift < BITS_PER_DIGIT; shift++)
- {
- if (v[n - 1] & bitmask)
- break;
- bitmask >>= 1;
- }
- /* Normalise v in situ - NB only shift non-zero digits */
- overflow = mpShiftLeft(v, v, shift, n);
- /* Copy normalised dividend u*d into r */
- overflow = mpShiftLeft(r, u, shift, n + m);
- uu = r; /* Use ptr to keep notation constant */
- t[0] = overflow; /* Extra digit Um+n */
- /* Step D2. Initialise j. Set j = m */
- for (j = m; j >= 0; j--)
- {
- /* Step D3. Set Qhat = [(b.Uj+n + Uj+n-1)/Vn-1]
- and Rhat = remainder */
- qhatOK = 0;
- t[1] = t[0]; /* This is Uj+n */
- t[0] = uu[j + n - 1];
- overflow = spDivide(&qhat, &rhat, t, v[n - 1]);
- /* Test Qhat */
- if (overflow)
- {
- /* Qhat == b so set Qhat = b - 1 */
- qhat = MAX_DIGIT;
- rhat = uu[j + n - 1];
- rhat += v[n - 1];
- if (rhat < v[n - 1]) /* Rhat >= b, so no re-test */
- qhatOK = 1;
- }
- /* [VERSION 2: Added extra test "qhat && "] */
- if (qhat && !qhatOK && QhatTooBig(qhat, rhat, v[n - 2], uu[j + n - 2]))
- {
- /* If Qhat.Vn-2 > b.Rhat + Uj+n-2
- decrease Qhat by one, increase Rhat by Vn-1
- */
- qhat--;
- rhat += v[n - 1];
- /* Repeat this test if Rhat < b */
- if (!(rhat < v[n - 1]))
- if (QhatTooBig(qhat, rhat, v[n - 2], uu[j + n - 2]))
- qhat--;
- }
- /* Step D4. Multiply and subtract */
- ww = &uu[j];
- overflow = mpMultSub(t[1], ww, v, qhat, (int)n);
- /* Step D5. Test remainder. Set Qj = Qhat */
- q[j] = qhat;
- if (overflow)
- {
- /* Step D6. Add back if D4 was negative */
- q[j]--;
- overflow = mpAdd(ww, ww, v, (int)n);
- }
- t[0] = uu[j + n - 1]; /* Uj+n on next round */
- } /* Step D7. Loop on j */
- /* Clear high digits in uu */
- for (j = n; j < m + n; j++)
- uu[j] = 0;
- /* Step D8. Unnormalise. */
- mpShiftRight(r, r, shift, n);
- mpShiftRight(v, v, shift, n);
- return 0;
- }
- /***************************/
- static int mpModulo(uint32_t r[], const uint32_t u[], int udigits,
- uint32_t v[], int vdigits)
- {
- /* Computes r = u mod v
- where r, v are multiprecision integers of length vdigits
- and u is a multiprecision integer of length udigits.
- r may overlap v.
- Note that r here is only vdigits long,
- whereas in mpDivide it is udigits long.
- Use remainder from mpDivide function.
- */
- int nn = max(udigits, vdigits);
- // [v2.6] increased to two times
- if (nn > (MAX_FIXED_DIGITS * 2))
- {
- printf("Error!! mpModulo nn overflow!\n");
- return -1;
- }
- /* rr[nn] = u mod v */
- mpDivide(qq, rr, u, udigits, v, vdigits);
- /* Final r is only vdigits long */
- mpSetEqual(r, rr, vdigits);
- return 0;
- }
- static void Hex2Binary(char *input, char *output)
- {
- int i, j, idx, n, klen;
- char *p = (char *)input;
- klen = strlen(input);
- if ((klen + 3) > RSA_KBUF_HLEN)
- {
- printf("Hex2Binary overflow!! %d > %d\n", klen + 3, RSA_KBUF_HLEN);
- }
- klen = strlen(input) * 4;
- memset(output, 0, RSA_KBUF_BLEN);
- output[klen] = 0;
- output[klen + 1] = 0;
- idx = klen - 1;
- for (i = 0; *p != 0; i++, p++)
- {
- if (input[i] <= '9')
- {
- n = input[i] - '0';
- }
- else if (input[i] >= 'a')
- {
- n = input[i] - 'a' + 10;
- }
- else
- {
- n = input[i] - 'A' + 10;
- }
- for (j = 3; j >= 0; j--)
- {
- output[idx--] = (n >> j) & 0x1;
- }
- }
- if (idx != -1)
- {
- printf("Hex2Binary unexpected error!!\n");
- }
- }
- static void Binary2Hex(int length, char *input, char *output)
- {
- int i, idx, n, slen;
- memset(output, 0, RSA_KBUF_HLEN);
- slen = length / 4;
- idx = slen - 1;
- for (i = 0; i < length; i += 4)
- {
- n = (input[i]) | (input[i + 1] << 1) | (input[i + 2] << 2) | (input[i + 3] << 3);
- if (n >= 10)
- output[idx] = n - 10 + 'A';
- else
- output[idx] = n + '0';
- idx--;
- }
- if (idx != -1)
- {
- printf("Binary2Hex unecpected error! %d\n", idx);
- }
- }
- #define Hardware_length (2096)
- static uint32_t C_t[(2096 * 2) / 32];
- static uint32_t N_t[(2096 * 2) / 32];
- static char C[RSA_KBUF_BLEN], N[RSA_KBUF_BLEN];
- /** @endcond HIDDEN_SYMBOLS */
- /**
- * @brief Calculate the constant value of Montgomery domain.
- * @param[in] length RSA bit length.
- * @param[in] rsa_N The base of modulus operation.
- * @param[out] rsa_C The constant value of Montgomery domain required by NUC980 RSA engine.
- */
- void RSA_Calculate_C(int length, char *rsa_N, char *rsa_C)
- {
- int i, v, nbits;
- uint32_t j;
- int scale = (length + 2) * 2;
- size_t word_size = (scale / 32) + 1;
- memset(rsa_C, 0, length / 4 + 2);
- Hex2Binary(rsa_N, N);
- memset(C_t, 0, sizeof(C_t));
- C_t[word_size - 1] = (uint32_t)(1 << scale - (32 * (word_size - 1)));
- // convert char to uint32_t
- memset(N_t, 0, sizeof(N_t));
- j = 0;
- for (i = 0; i < length; i++)
- {
- if (N[i])
- {
- j += 1 << (i % 32);
- }
- if ((i % 32) == 31)
- {
- N_t[(i / 32)] = j;
- j = 0;
- }
- }
- mpModulo(C_t, C_t, word_size, N_t, word_size);
- // convert uint32_t to char
- nbits = (int)mpBitLength(C_t, word_size);
- for (i = Hardware_length; i >= 0; i--)
- {
- if (i > nbits)
- C[i] = 0;
- else
- {
- v = mpGetBit(C_t, word_size, i);
- C[i] = v ? 1 : 0;
- }
- }
- Binary2Hex(length, C, rsa_C);
- }
- /**
- * @brief RSA digital signature generation.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] rsa_len RSA key length
- * @param[in] n The modulus for both the public and private keys
- * @param[in] d (n,d) is the private key
- * @param[in] C The constant value of Montgomery domain.
- * @param[in] msg The message to be signed.
- * @param[out] sig The output signature.
- * @return 0 Success.
- * @return -1 Error
- */
- int32_t RSA_GenerateSignature(CRPT_T *crpt, int rsa_len, char *n, char *d, char *C,
- char *msg, char *sig)
- {
- int i;
- for (i = 0; i < 128; i++)
- {
- crpt->RSA_N[i] = 0;
- crpt->RSA_E[i] = 0;
- crpt->RSA_M[i] = 0;
- }
- Hex2Reg(n, (uint32_t *)&crpt->RSA_N[0]);
- Hex2Reg(d, (uint32_t *)&crpt->RSA_E[0]);
- Hex2Reg(msg, (uint32_t *)&crpt->RSA_M[0]);
- Hex2Reg(C, (uint32_t *)&crpt->RSA_C[0]);
- CRPT->RSA_CTL = (rsa_len << CRPT_RSA_CTL_KEYLEN_Pos) | CRPT_RSA_CTL_START_Msk;
- while (CRPT->RSA_STS & CRPT_RSA_STS_BUSY_Msk) ;
- Reg2Hex(rsa_len / 4, (uint32_t *)CRPT->RSA_M, sig);
- return 0;
- }
- /**
- * @brief RSA digital signature generation.
- * @param[in] crpt Reference to Crypto module.
- * @param[in] rsa_len RSA key length
- * @param[in] n The modulus for both the public and private keys
- * @param[in] e (n,e) is the public key
- * @param[in] C The constant value of Montgomery domain.
- * @param[in] sig The signature to be verified.
- * @param[out] msg The message to be compared.
- * @return 0 Success.
- * @return -1 Verify failed
- */
- int32_t RSA_VerifySignature(CRPT_T *crpt, int rsa_len, char *n, char *e, char *C,
- char *sig, char *msg)
- {
- char output[RSA_KBUF_HLEN];
- int i;
- for (i = 0; i < 128; i++)
- {
- crpt->RSA_N[i] = 0;
- crpt->RSA_E[i] = 0;
- crpt->RSA_M[i] = 0;
- }
- Hex2Reg(n, (uint32_t *)&crpt->RSA_N[0]);
- Hex2Reg(e, (uint32_t *)&crpt->RSA_E[0]);
- Hex2Reg(sig, (uint32_t *)&crpt->RSA_M[0]);
- Hex2Reg(C, (uint32_t *)&crpt->RSA_C[0]);
- CRPT->RSA_CTL = (rsa_len << CRPT_RSA_CTL_KEYLEN_Pos) | CRPT_RSA_CTL_START_Msk;
- while (CRPT->RSA_STS & CRPT_RSA_STS_BUSY_Msk) ;
- Reg2Hex(rsa_len / 4, (uint32_t *)CRPT->RSA_M, output);
- printf("RSA verify: %s\n", output);
- if (ecc_strcmp(output, msg) != 0)
- {
- CRPT_DBGMSG("RSA verify output [%s] is not matched with expected [%s]!\n", output, msg);
- return -1;
- }
- return 0;
- }
- /*@}*/ /* end of group CRYPTO_EXPORTED_FUNCTIONS */
- /*@}*/ /* end of group CRYPTO_Driver */
- /*@}*/ /* end of group Standard_Driver */
- /*** (C) COPYRIGHT 2018 Nuvoton Technology Corp. ***/
|