board_dev.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /**************************************************************************//**
  2. *
  3. * @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2020-1-16 Wayne First version
  10. *
  11. ******************************************************************************/
  12. #include <rtdevice.h>
  13. #include <drv_gpio.h>
  14. #if defined(BOARD_USING_STORAGE_SPIFLASH)
  15. #if defined(RT_USING_SFUD)
  16. #include "spi_flash.h"
  17. #include "spi_flash_sfud.h"
  18. #endif
  19. #include "drv_qspi.h"
  20. #define W25X_REG_READSTATUS (0x05)
  21. #define W25X_REG_READSTATUS2 (0x35)
  22. #define W25X_REG_WRITEENABLE (0x06)
  23. #define W25X_REG_WRITESTATUS (0x01)
  24. #define W25X_REG_QUADENABLE (0x02)
  25. static rt_uint8_t SpiFlash_ReadStatusReg(struct rt_qspi_device *qspi_device)
  26. {
  27. rt_uint8_t u8Val;
  28. rt_err_t result = RT_EOK;
  29. rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS;
  30. result = rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1);
  31. RT_ASSERT(result > 0);
  32. return u8Val;
  33. }
  34. static rt_uint8_t SpiFlash_ReadStatusReg2(struct rt_qspi_device *qspi_device)
  35. {
  36. rt_uint8_t u8Val;
  37. rt_err_t result = RT_EOK;
  38. rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS2;
  39. result = rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1);
  40. RT_ASSERT(result > 0);
  41. return u8Val;
  42. }
  43. static rt_err_t SpiFlash_WriteStatusReg(struct rt_qspi_device *qspi_device, uint8_t u8Value1, uint8_t u8Value2)
  44. {
  45. rt_uint8_t w25x_txCMD1;
  46. rt_uint8_t au8Val[2];
  47. rt_err_t result;
  48. struct rt_qspi_message qspi_message = {0};
  49. /* Enable WE */
  50. w25x_txCMD1 = W25X_REG_WRITEENABLE;
  51. result = rt_qspi_send(qspi_device, &w25x_txCMD1, sizeof(w25x_txCMD1));
  52. if (result != sizeof(w25x_txCMD1))
  53. goto exit_SpiFlash_WriteStatusReg;
  54. /* Prepare status-1, 2 data */
  55. au8Val[0] = u8Value1;
  56. au8Val[1] = u8Value2;
  57. /* 1-bit mode: Instruction+payload */
  58. qspi_message.instruction.content = W25X_REG_WRITESTATUS;
  59. qspi_message.instruction.qspi_lines = 1;
  60. qspi_message.qspi_data_lines = 1;
  61. qspi_message.parent.cs_take = 1;
  62. qspi_message.parent.cs_release = 1;
  63. qspi_message.parent.send_buf = &au8Val[0];
  64. qspi_message.parent.length = sizeof(au8Val);
  65. qspi_message.parent.next = RT_NULL;
  66. if (rt_qspi_transfer_message(qspi_device, &qspi_message) != sizeof(au8Val))
  67. {
  68. result = -RT_ERROR;
  69. }
  70. result = RT_EOK;
  71. exit_SpiFlash_WriteStatusReg:
  72. return result;
  73. }
  74. static void SpiFlash_WaitReady(struct rt_qspi_device *qspi_device)
  75. {
  76. volatile uint8_t u8ReturnValue;
  77. do
  78. {
  79. u8ReturnValue = SpiFlash_ReadStatusReg(qspi_device);
  80. u8ReturnValue = u8ReturnValue & 1;
  81. }
  82. while (u8ReturnValue != 0); // check the BUSY bit
  83. }
  84. static void SpiFlash_EnterQspiMode(struct rt_qspi_device *qspi_device)
  85. {
  86. rt_err_t result = RT_EOK;
  87. uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device);
  88. uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device);
  89. u8Status2 |= W25X_REG_QUADENABLE;
  90. result = SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2);
  91. RT_ASSERT(result == RT_EOK);
  92. SpiFlash_WaitReady(qspi_device);
  93. }
  94. static void SpiFlash_ExitQspiMode(struct rt_qspi_device *qspi_device)
  95. {
  96. rt_err_t result = RT_EOK;
  97. uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device);
  98. uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device);
  99. u8Status2 &= ~W25X_REG_QUADENABLE;
  100. result = SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2);
  101. RT_ASSERT(result == RT_EOK);
  102. SpiFlash_WaitReady(qspi_device);
  103. }
  104. static int rt_hw_spiflash_init(void)
  105. {
  106. /* Here, we use Dual I/O to drive the SPI flash by default. */
  107. /* If you want to use Quad I/O, you can modify to 4 from 2 and crossover D2/D3 pin of SPI flash. */
  108. if (nu_qspi_bus_attach_device("qspi0", "qspi01", 2, SpiFlash_EnterQspiMode, SpiFlash_ExitQspiMode) != RT_EOK)
  109. return -1;
  110. #if defined(RT_USING_SFUD)
  111. if (rt_sfud_flash_probe("flash0", "qspi01") == RT_NULL)
  112. {
  113. return -(RT_ERROR);
  114. }
  115. #endif
  116. return 0;
  117. }
  118. INIT_COMPONENT_EXPORT(rt_hw_spiflash_init);
  119. #endif /* BOARD_USING_STORAGE_SPIFLASH */
  120. #if defined(BOARD_USING_MAX31875)
  121. #include <sensor_max31875.h>
  122. int rt_hw_max31875_port(void)
  123. {
  124. struct rt_sensor_config cfg;
  125. cfg.intf.dev_name = "i2c1";
  126. cfg.intf.user_data = (void *)MAX31875_I2C_SLAVE_ADR_R0;
  127. cfg.irq_pin.pin = RT_PIN_NONE;
  128. rt_hw_max31875_init("max31875", &cfg);
  129. return 0;
  130. }
  131. INIT_APP_EXPORT(rt_hw_max31875_port);
  132. #endif /* BOARD_USING_MAX31875 */
  133. #if defined(BOARD_USING_BMX055)
  134. #include <sensor_bmx055.h>
  135. int rt_hw_bmx055_port(void)
  136. {
  137. struct rt_sensor_config cfg;
  138. cfg.intf.dev_name = "i2c2";
  139. cfg.intf.user_data = (void *)0;
  140. cfg.irq_pin.pin = RT_PIN_NONE;
  141. rt_hw_bmx055_init("bmx055", &cfg);
  142. return 0;
  143. }
  144. INIT_APP_EXPORT(rt_hw_bmx055_port);
  145. #endif /* BOARD_USING_BMX055 */
  146. #if defined(BOARD_USING_ESP8266)
  147. #include <at_device_esp8266.h>
  148. #define LOG_TAG "at.sample.esp"
  149. #undef DBG_TAG
  150. #include <at_log.h>
  151. static struct at_device_esp8266 esp0 =
  152. {
  153. "esp0", /* esp8266 device name */
  154. "uart1", /* esp8266 serial device name, EX: uart1, uuart1 */
  155. "NT_ZY_BUFFALO", /* Wi-Fi SSID */
  156. "12345678", /* Wi-Fi PASSWORD */
  157. 1024 /* Receive buffer length */
  158. };
  159. static int rt_hw_esp8266_port(void)
  160. {
  161. struct at_device_esp8266 *esp8266 = &esp0;
  162. rt_base_t esp_rst_pin = NU_GET_PININDEX(NU_PH, 3);
  163. /* ESP8266 reset pin PH.3 */
  164. rt_pin_mode(esp_rst_pin, PIN_MODE_OUTPUT);
  165. rt_pin_write(esp_rst_pin, 1);
  166. return at_device_register(&(esp8266->device),
  167. esp8266->device_name,
  168. esp8266->client_name,
  169. AT_DEVICE_CLASS_ESP8266,
  170. (void *) esp8266);
  171. }
  172. INIT_APP_EXPORT(rt_hw_esp8266_port);
  173. static void at_wifi_set(int argc, char **argv)
  174. {
  175. struct at_device_ssid_pwd sATDConf;
  176. struct at_device *at_dev = RT_NULL;
  177. /* If the number of arguments less than 2 */
  178. if (argc != 3)
  179. {
  180. rt_kprintf("\n");
  181. rt_kprintf("at_wifi_set <ssid> <password>\n");
  182. return ;
  183. }
  184. sATDConf.ssid = argv[1]; //ssid
  185. sATDConf.password = argv[2]; //password
  186. if ((at_dev = at_device_get_first_initialized()) != RT_NULL)
  187. at_device_control(at_dev, AT_DEVICE_CTRL_SET_WIFI_INFO, &sATDConf);
  188. else
  189. {
  190. rt_kprintf("Can't find any initialized AT device.\n");
  191. }
  192. }
  193. #ifdef FINSH_USING_MSH
  194. MSH_CMD_EXPORT(at_wifi_set, AT device wifi set ssid / password function);
  195. #endif
  196. #endif /* BOARD_USING_ESP8266 */
  197. #if defined(BOARD_USING_LCD_ILI9341) && defined(NU_PKG_USING_ILI9341_SPI)
  198. #if defined(NU_PKG_USING_ADC_TOUCH_SW)
  199. #include "adc_touch.h"
  200. #include "touch_sw.h"
  201. #include "NuMicro.h"
  202. #define NU_MFP_POS(PIN) ((PIN % 8) * 4)
  203. #define NU_MFP_MSK(PIN) (0xful << NU_MFP_POS(PIN))
  204. S_CALIBRATION_MATRIX g_sCalMat = { 97, 6214, -3216652, 4844, -30, -2333200, 65536 };
  205. static void nu_pin_func(rt_base_t pin, int data)
  206. {
  207. uint32_t pin_index = NU_GET_PINS(pin);
  208. uint32_t port_index = NU_GET_PORT(pin);
  209. __IO uint32_t *GPx_MFPx = ((__IO uint32_t *) &SYS->GPA_MFPL) + port_index * 2 + (pin_index / 8);
  210. uint32_t MFP_Msk = NU_MFP_MSK(pin_index);
  211. *GPx_MFPx = (*GPx_MFPx & (~MFP_Msk)) | data;
  212. }
  213. static void tp_switch_to_analog(rt_base_t pin)
  214. {
  215. GPIO_T *port = (GPIO_T *)(GPIOA_BASE + (0x40) * NU_GET_PORT(pin));
  216. if (pin == NU_GET_PININDEX(NU_PB, 6))
  217. nu_pin_func(pin, SYS_GPB_MFPL_PB6MFP_EADC0_CH6);
  218. else if (pin == NU_GET_PININDEX(NU_PB, 9))
  219. nu_pin_func(pin, SYS_GPB_MFPH_PB9MFP_EADC0_CH9);
  220. GPIO_DISABLE_DIGITAL_PATH(port, NU_GET_PIN_MASK(NU_GET_PINS(pin)));
  221. }
  222. static void tp_switch_to_digital(rt_base_t pin)
  223. {
  224. GPIO_T *port = (GPIO_T *)(GPIOA_BASE + (0x40) * NU_GET_PORT(pin));
  225. nu_pin_func(pin, 0);
  226. /* Enable digital path on these EADC pins */
  227. GPIO_ENABLE_DIGITAL_PATH(port, NU_GET_PIN_MASK(NU_GET_PINS(pin)));
  228. }
  229. static S_TOUCH_SW sADCTP =
  230. {
  231. .adc_name = "eadc0",
  232. .i32ADCChnYU = 6,
  233. .i32ADCChnXR = 9,
  234. .pin =
  235. {
  236. NU_GET_PININDEX(NU_PB, 7), // XL
  237. NU_GET_PININDEX(NU_PB, 6), // YU
  238. NU_GET_PININDEX(NU_PB, 9), // XR
  239. NU_GET_PININDEX(NU_PB, 8), // YD
  240. },
  241. .switch_to_analog = tp_switch_to_analog,
  242. .switch_to_digital = tp_switch_to_digital,
  243. };
  244. #endif
  245. #include <lcd_ili9341.h>
  246. #if defined(PKG_USING_GUIENGINE)
  247. #include <rtgui/driver.h>
  248. #endif
  249. int rt_hw_ili9341_port(void)
  250. {
  251. if (rt_hw_lcd_ili9341_spi_init("spi2", RT_NULL) != RT_EOK)
  252. return -1;
  253. rt_hw_lcd_ili9341_init();
  254. #if defined(PKG_USING_GUIENGINE)
  255. rt_device_t lcd_ili9341;
  256. lcd_ili9341 = rt_device_find("lcd");
  257. if (lcd_ili9341)
  258. {
  259. rtgui_graphic_set_device(lcd_ili9341);
  260. }
  261. #endif
  262. #if defined(NU_PKG_USING_ADC_TOUCH_SW)
  263. nu_adc_touch_sw_register(&sADCTP);
  264. #endif
  265. return 0;
  266. }
  267. INIT_COMPONENT_EXPORT(rt_hw_ili9341_port);
  268. #endif /* BOARD_USING_LCD_ILI9341 */
  269. #if defined(BOARD_USING_NAU88L25) && defined(NU_PKG_USING_NAU88L25)
  270. #include <acodec_nau88l25.h>
  271. S_NU_NAU88L25_CONFIG sCodecConfig =
  272. {
  273. .i2c_bus_name = "i2c2",
  274. .i2s_bus_name = "sound0",
  275. .pin_phonejack_en = NU_GET_PININDEX(NU_PE, 13),
  276. .pin_phonejack_det = 0,
  277. };
  278. int rt_hw_nau88l25_port(void)
  279. {
  280. if (nu_hw_nau88l25_init(&sCodecConfig) != RT_EOK)
  281. return -1;
  282. return 0;
  283. }
  284. INIT_COMPONENT_EXPORT(rt_hw_nau88l25_port);
  285. #endif /* BOARD_USING_NAU88L25 */