drv_sound.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-07-28 Ernest the first version
  9. */
  10. #include "board.h"
  11. #include "drv_wm8978.h"
  12. #include "drv_sound.h"
  13. #define DBG_TAG "drv.sound"
  14. #define DBG_LVL DBG_INFO
  15. #include <rtdbg.h>
  16. #define CODEC_I2C_NAME ("i2c1")
  17. #define TX_DMA_FIFO_SIZE (2048)
  18. struct drv_sai _sai_a = {0};
  19. struct stm32_audio
  20. {
  21. struct rt_i2c_bus_device *i2c_bus;
  22. struct rt_audio_device audio;
  23. struct rt_audio_configure replay_config;
  24. int replay_volume;
  25. rt_uint8_t *tx_fifo;
  26. rt_bool_t startup;
  27. };
  28. struct stm32_audio _stm32_audio_play = {0};
  29. /* sample_rate, PLLI2SN(50.7), PLLI2SQ, PLLI2SDivQ, MCKDIV */
  30. const rt_uint32_t SAI_PSC_TBL[][5] =
  31. {
  32. {AUDIO_FREQUENCY_048K, 206, 7, 0, 12},
  33. {AUDIO_FREQUENCY_044K, 257, 2, 18, 2},
  34. {AUDIO_FREQUENCY_032K, 206, 7, 0, 6},
  35. {AUDIO_FREQUENCY_022K, 257, 2, 18, 1},
  36. {AUDIO_FREQUENCY_016K, 206, 7, 0, 3},
  37. {AUDIO_FREQUENCY_011K, 257, 2, 18, 0},
  38. {AUDIO_FREQUENCY_008K, 206, 7, 0, 2},
  39. };
  40. void SAIA_samplerate_set(rt_uint32_t freq)
  41. {
  42. RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;
  43. int i;
  44. /* check frequence */
  45. for (i = 0; i < (sizeof(SAI_PSC_TBL) / sizeof(SAI_PSC_TBL[0])); i++)
  46. {
  47. if ((freq) == SAI_PSC_TBL[i][0])break;
  48. }
  49. if (i == (sizeof(SAI_PSC_TBL) / sizeof(SAI_PSC_TBL[0])))
  50. {
  51. LOG_E("Can not support this frequence: %d.", freq);
  52. return;
  53. }
  54. PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SAI_PLLI2S;
  55. PeriphClkInitStruct.PLLI2S.PLLI2SN = SAI_PSC_TBL[i][1];
  56. PeriphClkInitStruct.PLLI2S.PLLI2SQ = SAI_PSC_TBL[i][2];
  57. PeriphClkInitStruct.PLLI2SDivQ = SAI_PSC_TBL[i][3] + 1;
  58. HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
  59. __HAL_RCC_SAI_BLOCKACLKSOURCE_CONFIG(RCC_SAIACLKSOURCE_PLLI2S);
  60. __HAL_SAI_DISABLE(&_sai_a.hsai);
  61. _sai_a.hsai.Init.AudioFrequency = freq;
  62. HAL_SAI_Init(&_sai_a.hsai);
  63. __HAL_SAI_ENABLE(&_sai_a.hsai);
  64. }
  65. void SAIA_channels_set(rt_uint16_t channels)
  66. {
  67. if (channels == 2)
  68. {
  69. _sai_a.hsai.Init.MonoStereoMode = SAI_STEREOMODE;
  70. }
  71. else
  72. {
  73. _sai_a.hsai.Init.MonoStereoMode = SAI_MONOMODE;
  74. }
  75. __HAL_SAI_DISABLE(&_sai_a.hsai);
  76. HAL_SAI_Init(&_sai_a.hsai);
  77. __HAL_SAI_ENABLE(&_sai_a.hsai);
  78. }
  79. void SAIA_samplebits_set(rt_uint16_t samplebits)
  80. {
  81. switch (samplebits)
  82. {
  83. case 16:
  84. _sai_a.hsai.Init.DataSize = SAI_DATASIZE_16;
  85. break;
  86. case 24:
  87. _sai_a.hsai.Init.DataSize = SAI_DATASIZE_24;
  88. break;
  89. case 32:
  90. _sai_a.hsai.Init.DataSize = SAI_DATASIZE_32;
  91. break;
  92. default:
  93. _sai_a.hsai.Init.DataSize = SAI_DATASIZE_16;
  94. break;
  95. }
  96. __HAL_SAI_DISABLE(&_sai_a.hsai);
  97. HAL_SAI_Init(&_sai_a.hsai);
  98. __HAL_SAI_ENABLE(&_sai_a.hsai);
  99. }
  100. void SAIA_config_set(struct rt_audio_configure config)
  101. {
  102. SAIA_channels_set(config.channels);
  103. SAIA_samplerate_set(config.samplerate);
  104. SAIA_samplebits_set(config.samplebits);
  105. }
  106. /* initial sai A */
  107. rt_err_t SAIA_config_init(void)
  108. {
  109. _sai_a.hsai.Instance = SAI1_Block_A;
  110. _sai_a.hsai.Init.AudioMode = SAI_MODEMASTER_TX;
  111. _sai_a.hsai.Init.Synchro = SAI_ASYNCHRONOUS;
  112. _sai_a.hsai.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLE;
  113. _sai_a.hsai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE;
  114. _sai_a.hsai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF;
  115. _sai_a.hsai.Init.ClockSource = SAI_CLKSOURCE_PLLI2S;
  116. _sai_a.hsai.Init.Protocol = SAI_FREE_PROTOCOL;
  117. _sai_a.hsai.Init.DataSize = SAI_DATASIZE_16;
  118. _sai_a.hsai.Init.FirstBit = SAI_FIRSTBIT_MSB;
  119. _sai_a.hsai.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE;
  120. //frame
  121. _sai_a.hsai.FrameInit.FrameLength = 64;
  122. _sai_a.hsai.FrameInit.ActiveFrameLength = 32;
  123. _sai_a.hsai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION;
  124. _sai_a.hsai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
  125. _sai_a.hsai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
  126. //slot
  127. _sai_a.hsai.SlotInit.FirstBitOffset = 0;
  128. _sai_a.hsai.SlotInit.SlotSize = SAI_SLOTSIZE_32B;
  129. _sai_a.hsai.SlotInit.SlotNumber = 2;
  130. _sai_a.hsai.SlotInit.SlotActive = SAI_SLOTACTIVE_0 | SAI_SLOTACTIVE_1;
  131. HAL_SAI_Init(&_sai_a.hsai);
  132. __HAL_SAI_ENABLE(&_sai_a.hsai);
  133. return RT_EOK;
  134. }
  135. rt_err_t SAIA_tx_dma(void)
  136. {
  137. __HAL_RCC_DMA2_CLK_ENABLE();
  138. __HAL_LINKDMA(&_sai_a.hsai, hdmatx, _sai_a.hdma);
  139. _sai_a.hdma.Instance = DMA2_Stream3;
  140. _sai_a.hdma.Init.Channel = DMA_CHANNEL_0;
  141. _sai_a.hdma.Init.Direction = DMA_MEMORY_TO_PERIPH;
  142. _sai_a.hdma.Init.PeriphInc = DMA_PINC_DISABLE;
  143. _sai_a.hdma.Init.MemInc = DMA_MINC_ENABLE;
  144. _sai_a.hdma.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
  145. _sai_a.hdma.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
  146. _sai_a.hdma.Init.Mode = DMA_CIRCULAR;
  147. _sai_a.hdma.Init.Priority = DMA_PRIORITY_HIGH;
  148. _sai_a.hdma.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  149. _sai_a.hdma.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  150. _sai_a.hdma.Init.MemBurst = DMA_MBURST_SINGLE;
  151. _sai_a.hdma.Init.PeriphBurst = DMA_PBURST_SINGLE;
  152. HAL_DMA_DeInit(&_sai_a.hdma);
  153. HAL_DMA_Init(&_sai_a.hdma);
  154. __HAL_DMA_DISABLE(&_sai_a.hdma);
  155. __HAL_DMA_ENABLE_IT(&_sai_a.hdma, DMA_IT_TC);
  156. __HAL_DMA_CLEAR_FLAG(&_sai_a.hdma, DMA_FLAG_TCIF3_7);
  157. /* set nvic */
  158. HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 5, 0);
  159. HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
  160. return RT_EOK;
  161. }
  162. void DMA2_Stream3_IRQHandler(void)
  163. {
  164. rt_interrupt_enter();
  165. HAL_DMA_IRQHandler(_sai_a.hsai.hdmatx);
  166. rt_interrupt_leave();
  167. }
  168. void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai)
  169. {
  170. rt_audio_tx_complete(&_stm32_audio_play.audio);
  171. }
  172. void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai)
  173. {
  174. rt_audio_tx_complete(&_stm32_audio_play.audio);
  175. }
  176. rt_err_t sai_a_init()
  177. {
  178. /* set sai_a DMA */
  179. SAIA_tx_dma();
  180. SAIA_config_init();
  181. return RT_EOK;
  182. }
  183. static rt_err_t stm32_player_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
  184. {
  185. rt_err_t result = RT_EOK;
  186. struct stm32_audio *st_audio = (struct stm32_audio *)audio->parent.user_data;
  187. LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
  188. switch (caps->main_type)
  189. {
  190. case AUDIO_TYPE_QUERY: /* query the types of hw_codec device */
  191. {
  192. switch (caps->sub_type)
  193. {
  194. case AUDIO_TYPE_QUERY:
  195. caps->udata.mask = AUDIO_TYPE_OUTPUT | AUDIO_TYPE_MIXER;
  196. break;
  197. default:
  198. result = -RT_ERROR;
  199. break;
  200. }
  201. break;
  202. }
  203. case AUDIO_TYPE_OUTPUT: /* Provide capabilities of OUTPUT unit */
  204. {
  205. switch (caps->sub_type)
  206. {
  207. case AUDIO_DSP_PARAM:
  208. caps->udata.config.channels = st_audio->replay_config.channels;
  209. caps->udata.config.samplebits = st_audio->replay_config.samplebits;
  210. caps->udata.config.samplerate = st_audio->replay_config.samplerate;
  211. break;
  212. case AUDIO_DSP_SAMPLERATE:
  213. caps->udata.config.samplerate = st_audio->replay_config.samplerate;
  214. break;
  215. case AUDIO_DSP_CHANNELS:
  216. caps->udata.config.channels = st_audio->replay_config.channels;
  217. break;
  218. case AUDIO_DSP_SAMPLEBITS:
  219. caps->udata.config.samplebits = st_audio->replay_config.samplebits;
  220. break;
  221. default:
  222. result = -RT_ERROR;
  223. break;
  224. }
  225. break;
  226. }
  227. case AUDIO_TYPE_MIXER: /* report the Mixer Units */
  228. {
  229. switch (caps->sub_type)
  230. {
  231. case AUDIO_MIXER_QUERY:
  232. caps->udata.mask = AUDIO_MIXER_VOLUME | AUDIO_MIXER_LINE;
  233. break;
  234. case AUDIO_MIXER_VOLUME:
  235. caps->udata.value = st_audio->replay_volume;
  236. break;
  237. case AUDIO_MIXER_LINE:
  238. break;
  239. default:
  240. result = -RT_ERROR;
  241. break;
  242. }
  243. break;
  244. }
  245. default:
  246. result = -RT_ERROR;
  247. break;
  248. }
  249. return result;
  250. }
  251. static rt_err_t stm32_player_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
  252. {
  253. rt_err_t result = RT_EOK;
  254. struct stm32_audio *st_audio = (struct stm32_audio *)audio->parent.user_data;
  255. LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
  256. switch (caps->main_type)
  257. {
  258. case AUDIO_TYPE_MIXER:
  259. {
  260. switch (caps->sub_type)
  261. {
  262. case AUDIO_MIXER_MUTE:
  263. {
  264. /* set mute mode */
  265. wm8978_mute_enabled(_stm32_audio_play.i2c_bus, RT_FALSE);
  266. break;
  267. }
  268. case AUDIO_MIXER_VOLUME:
  269. {
  270. int volume = caps->udata.value;
  271. st_audio->replay_volume = volume;
  272. /* set mixer volume */
  273. wm8978_set_volume(_stm32_audio_play.i2c_bus, volume);
  274. break;
  275. }
  276. default:
  277. result = -RT_ERROR;
  278. break;
  279. }
  280. break;
  281. }
  282. case AUDIO_TYPE_OUTPUT:
  283. {
  284. switch (caps->sub_type)
  285. {
  286. case AUDIO_DSP_PARAM:
  287. {
  288. struct rt_audio_configure config = caps->udata.config;
  289. st_audio->replay_config.samplerate = config.samplerate;
  290. st_audio->replay_config.samplebits = config.samplebits;
  291. st_audio->replay_config.channels = config.channels;
  292. SAIA_config_set(config);
  293. break;
  294. }
  295. case AUDIO_DSP_SAMPLERATE:
  296. {
  297. st_audio->replay_config.samplerate = caps->udata.config.samplerate;
  298. SAIA_samplerate_set(caps->udata.config.samplerate);
  299. break;
  300. }
  301. case AUDIO_DSP_CHANNELS:
  302. {
  303. st_audio->replay_config.channels = caps->udata.config.channels;
  304. SAIA_channels_set(caps->udata.config.channels);
  305. break;
  306. }
  307. case AUDIO_DSP_SAMPLEBITS:
  308. {
  309. st_audio->replay_config.samplebits = caps->udata.config.samplebits;
  310. SAIA_samplebits_set(caps->udata.config.samplebits);
  311. break;
  312. }
  313. default:
  314. result = -RT_ERROR;
  315. break;
  316. }
  317. break;
  318. }
  319. default:
  320. break;
  321. }
  322. return result;
  323. }
  324. static rt_err_t stm32_player_init(struct rt_audio_device *audio)
  325. {
  326. /* initialize wm8978 */
  327. _stm32_audio_play.i2c_bus = (struct rt_i2c_bus_device *)rt_device_find(CODEC_I2C_NAME);
  328. sai_a_init();
  329. wm8978_init(_stm32_audio_play.i2c_bus);
  330. return RT_EOK;
  331. }
  332. static rt_err_t stm32_player_start(struct rt_audio_device *audio, int stream)
  333. {
  334. if (stream == AUDIO_STREAM_REPLAY)
  335. {
  336. HAL_SAI_Transmit_DMA(&_sai_a.hsai, _stm32_audio_play.tx_fifo, TX_DMA_FIFO_SIZE / 2);
  337. wm8978_player_start(_stm32_audio_play.i2c_bus);
  338. }
  339. return RT_EOK;
  340. }
  341. static rt_err_t stm32_player_stop(struct rt_audio_device *audio, int stream)
  342. {
  343. if (stream == AUDIO_STREAM_REPLAY)
  344. {
  345. HAL_SAI_DMAStop(&_sai_a.hsai);
  346. }
  347. return RT_EOK;
  348. }
  349. static void stm32_player_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info)
  350. {
  351. /**
  352. * TX_FIFO
  353. * +----------------+----------------+
  354. * | block1 | block2 |
  355. * +----------------+----------------+
  356. * \ block_size /
  357. */
  358. info->buffer = _stm32_audio_play.tx_fifo;
  359. info->total_size = TX_DMA_FIFO_SIZE;
  360. info->block_size = TX_DMA_FIFO_SIZE / 2;
  361. info->block_count = 2;
  362. }
  363. static struct rt_audio_ops _p_audio_ops =
  364. {
  365. .getcaps = stm32_player_getcaps,
  366. .configure = stm32_player_configure,
  367. .init = stm32_player_init,
  368. .start = stm32_player_start,
  369. .stop = stm32_player_stop,
  370. .transmit = RT_NULL,
  371. .buffer_info = stm32_player_buffer_info,
  372. };
  373. int rt_hw_sound_init(void)
  374. {
  375. rt_uint8_t *tx_fifo;
  376. /* player */
  377. tx_fifo = rt_malloc(TX_DMA_FIFO_SIZE);
  378. if (tx_fifo == RT_NULL)
  379. {
  380. return -RT_ENOMEM;
  381. }
  382. rt_memset(tx_fifo, 0, TX_DMA_FIFO_SIZE);
  383. _stm32_audio_play.tx_fifo = tx_fifo;
  384. /* register sound device */
  385. _stm32_audio_play.audio.ops = &_p_audio_ops;
  386. rt_audio_register(&_stm32_audio_play.audio, "sound0", RT_DEVICE_FLAG_WRONLY, &_stm32_audio_play);
  387. return RT_EOK;
  388. }
  389. INIT_DEVICE_EXPORT(rt_hw_sound_init);