drv_spdifrx.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2020-07-28 thread-liu the first version
  9. */
  10. #include "board.h"
  11. #if defined(BSP_USING_SPDIFRX)
  12. #include "drv_spdifrx.h"
  13. #define DRV_DEBUG
  14. #define LOG_TAG "drv.spdifrx"
  15. #include <drv_log.h>
  16. struct stm32_spdifrx
  17. {
  18. struct rt_device dev;
  19. SPDIFRX_HandleTypeDef spdifrx;
  20. SAI_HandleTypeDef sai4;
  21. volatile rt_uint8_t complate;
  22. };
  23. static struct stm32_spdifrx rt_spdifrx = {0};
  24. extern DMA_HandleTypeDef hdma_spdifrx_rx;
  25. extern DMA_HandleTypeDef hdma_sai4_a;
  26. static void sai4a_init(SAI_HandleTypeDef* sai)
  27. {
  28. sai->Instance = SAI4_Block_A;
  29. sai->Init.Protocol = SAI_SPDIF_PROTOCOL;
  30. sai->Init.AudioMode = SAI_MODEMASTER_TX;
  31. sai->Init.Synchro = SAI_ASYNCHRONOUS;
  32. sai->Init.OutputDrive = SAI_OUTPUTDRIVE_DISABLE;
  33. sai->Init.FIFOThreshold = SAI_FIFOTHRESHOLD_EMPTY;
  34. sai->Init.AudioFrequency = SAI_AUDIO_FREQUENCY_96K;
  35. sai->Init.MonoStereoMode = SAI_STEREOMODE;
  36. sai->Init.CompandingMode = SAI_NOCOMPANDING;
  37. sai->Init.PdmInit.Activation = DISABLE;
  38. sai->Init.PdmInit.MicPairsNbr = 0;
  39. sai->Init.PdmInit.ClockEnable = SAI_PDM_CLOCK1_ENABLE;
  40. sai->Init.DataSize = SAI_DATASIZE_24;
  41. sai->Init.FirstBit = SAI_FIRSTBIT_MSB;
  42. sai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE;
  43. sai->FrameInit.FrameLength = 64;
  44. sai->FrameInit.ActiveFrameLength = 32;
  45. sai->FrameInit.FSDefinition = SAI_FS_STARTFRAME;
  46. sai->FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
  47. sai->FrameInit.FSOffset = SAI_FS_FIRSTBIT;
  48. sai->SlotInit.FirstBitOffset = 0;
  49. sai->SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE;
  50. sai->SlotInit.SlotNumber = 4;
  51. sai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL;
  52. if (HAL_SAI_Init(sai) != HAL_OK)
  53. {
  54. Error_Handler();
  55. }
  56. }
  57. void DMA1_Stream7_IRQHandler(void)
  58. {
  59. /* enter interrupt */
  60. rt_interrupt_enter();
  61. HAL_DMA_IRQHandler(&hdma_spdifrx_rx);
  62. /* leave interrupt */
  63. rt_interrupt_leave();
  64. }
  65. void DMA1_Stream2_IRQHandler(void)
  66. {
  67. /* enter interrupt */
  68. rt_interrupt_enter();
  69. HAL_DMA_IRQHandler(&hdma_sai4_a);
  70. /* leave interrupt */
  71. rt_interrupt_leave();
  72. }
  73. void HAL_SPDIFRX_RxCpltCallback(SPDIFRX_HandleTypeDef *hspdif)
  74. {
  75. rt_spdifrx.complate = SET;
  76. }
  77. static rt_err_t _init(rt_device_t dev)
  78. {
  79. RT_ASSERT(dev != RT_NULL);
  80. struct stm32_spdifrx *device = (struct stm32_spdifrx *)dev;
  81. device->spdifrx.Instance = SPDIFRX;
  82. HAL_SPDIFRX_DeInit(&device->spdifrx);
  83. device->spdifrx.Init.InputSelection = SPDIFRX_INPUT_IN1;
  84. device->spdifrx.Init.Retries = SPDIFRX_MAXRETRIES_15;
  85. device->spdifrx.Init.WaitForActivity = SPDIFRX_WAITFORACTIVITY_ON;
  86. device->spdifrx.Init.ChannelSelection = SPDIFRX_CHANNEL_A;
  87. device->spdifrx.Init.DataFormat = SPDIFRX_DATAFORMAT_MSB;
  88. device->spdifrx.Init.StereoMode = SPDIFRX_STEREOMODE_ENABLE;
  89. device->spdifrx.Init.PreambleTypeMask = SPDIFRX_PREAMBLETYPEMASK_ON;
  90. device->spdifrx.Init.ChannelStatusMask = SPDIFRX_CHANNELSTATUS_ON;
  91. if (HAL_SPDIFRX_Init(&device->spdifrx) != HAL_OK)
  92. {
  93. return RT_ERROR;
  94. }
  95. sai4a_init(&device->sai4);
  96. rt_spdifrx.complate = RESET;
  97. return RT_EOK;
  98. }
  99. static rt_err_t _open(rt_device_t dev, rt_uint16_t oflag)
  100. {
  101. RT_ASSERT(dev != RT_NULL);
  102. return RT_EOK;
  103. }
  104. static rt_err_t _close(rt_device_t dev)
  105. {
  106. RT_ASSERT(dev != RT_NULL);
  107. return RT_EOK;
  108. }
  109. static rt_size_t _read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  110. {
  111. rt_uint32_t tickstart = 0;
  112. RT_ASSERT(dev != RT_NULL);
  113. struct stm32_spdifrx *device = (struct stm32_spdifrx *)dev;
  114. rt_err_t result = RT_EOK;
  115. result = HAL_SPDIFRX_ReceiveDataFlow_DMA(&device->spdifrx, (uint32_t *)buffer, size);
  116. if (result != HAL_OK)
  117. {
  118. return 0;
  119. }
  120. if(device->spdifrx.ErrorCode != HAL_SPDIFRX_ERROR_NONE)
  121. {
  122. return 0;
  123. }
  124. tickstart = rt_tick_get();
  125. while (rt_spdifrx.complate == RESET)
  126. {
  127. if (rt_tick_get() - tickstart > 0xFFFF)
  128. {
  129. return 0;
  130. }
  131. }
  132. rt_spdifrx.complate = RESET;
  133. return size;
  134. }
  135. static rt_size_t _write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  136. {
  137. RT_ASSERT(dev != RT_NULL);
  138. struct stm32_spdifrx *device = (struct stm32_spdifrx *)dev;
  139. rt_err_t result = RT_EOK;
  140. result = HAL_SAI_Transmit_DMA(&device->sai4, (rt_uint8_t *)buffer, size);
  141. if (result != HAL_OK)
  142. {
  143. return RT_ERROR;
  144. }
  145. return RT_EOK;
  146. }
  147. static rt_err_t _control(rt_device_t dev, int cmd, void *args)
  148. {
  149. RT_ASSERT(dev != RT_NULL);
  150. return RT_EOK;
  151. }
  152. int spdifrx_init(void)
  153. {
  154. rt_spdifrx.dev.type = RT_Device_Class_Miscellaneous;
  155. rt_spdifrx.dev.init = _init;
  156. rt_spdifrx.dev.open = _open;
  157. rt_spdifrx.dev.close = _close;
  158. rt_spdifrx.dev.read = _read;
  159. rt_spdifrx.dev.write = _write;
  160. rt_spdifrx.dev.control = _control;
  161. rt_spdifrx.dev.user_data = RT_NULL;
  162. rt_device_register(&rt_spdifrx.dev, "spdifrx", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
  163. rt_device_init(&rt_spdifrx.dev);
  164. LOG_I("spdifrx init success!");
  165. return RT_EOK;
  166. }
  167. INIT_DEVICE_EXPORT(spdifrx_init);
  168. #ifdef FINSH_USING_MSH
  169. #include <finsh.h>
  170. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  171. static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
  172. {
  173. unsigned char *buf = (unsigned char *)ptr;
  174. int i, j;
  175. for (i = 0; i < buflen; i += 16)
  176. {
  177. rt_kprintf("%08X: ", i);
  178. for (j = 0; j < 16; j++)
  179. if (i + j < buflen)
  180. rt_kprintf("%02X ", buf[i + j]);
  181. else
  182. rt_kprintf(" ");
  183. rt_kprintf(" ");
  184. for (j = 0; j < 16; j++)
  185. if (i + j < buflen)
  186. rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
  187. rt_kprintf("\n");
  188. }
  189. }
  190. static int spdifrx_sample(int argc, char **argv)
  191. {
  192. extern SAI_HandleTypeDef hsai_block4_a;
  193. if (argc != 1)
  194. {
  195. rt_kprintf("Usage:\n");
  196. rt_kprintf("spdifrx_sample\n");
  197. return -1;
  198. }
  199. /* 16 bit Data Buffer for Transmission */
  200. static rt_uint16_t tx_buffer[64] = {
  201. 0x5152, 0x5354, 0x5556, 0x5758, 0x595A, 0x5B5C, 0x5D5E, 0x5F60,
  202. 0x6162, 0x6364, 0x6566, 0x6768, 0x696A, 0x6B6C, 0x6D6E, 0x6F70,
  203. 0x7172, 0x7374, 0x7576, 0x7778, 0x797A, 0x7B7C, 0x7D7E, 0x7F80,
  204. 0x8182, 0x8384, 0x8586, 0x8788, 0x898A, 0x8B8C, 0x8D8E, 0x8F90,
  205. 0x5152, 0x5354, 0x5556, 0x5758, 0x595A, 0x5B5C, 0x5D5E, 0x5F60,
  206. 0x6162, 0x6364, 0x6566, 0x6768, 0x696A, 0x6B6C, 0x6D6E, 0x6F70,
  207. 0x7172, 0x7374, 0x7576, 0x7778, 0x797A, 0x7B7C, 0x7D7E, 0x7F80,
  208. 0x8182, 0x8384, 0x8586, 0x8788, 0x898A, 0x8B8C, 0x8D8E, 0x8F90};
  209. static rt_uint32_t *rx_buffer = NULL;
  210. rt_uint8_t size = 64;
  211. struct rt_device *dev = RT_NULL;
  212. dev = rt_device_find("spdifrx");
  213. if (dev == RT_NULL)
  214. {
  215. rt_kprintf("can't find spdifrx device!\n");
  216. }
  217. rt_device_open(dev, RT_DEVICE_OFLAG_RDWR);
  218. rt_kprintf("spdifrx test tx data : \n");
  219. dump_hex((rt_uint8_t *)tx_buffer, size);
  220. rx_buffer = (rt_uint32_t *)rt_malloc(size);
  221. rt_device_write(dev, 0, tx_buffer, size);
  222. rt_device_read(dev, 0, rx_buffer, size);
  223. /* Compare the received data with the expected one */
  224. while (size--)
  225. {
  226. if (((rx_buffer[size] & 0x00ffff00) >> 8) != (tx_buffer[size]))
  227. {
  228. rt_kprintf("spdirex loopback mode test failed!\n");
  229. return RT_ERROR;
  230. }
  231. }
  232. rt_kprintf("spdifrx rx : \n");
  233. dump_hex((rt_uint8_t *)rx_buffer, size);
  234. rt_kprintf("spdirex loopback mode test success!\n");
  235. return RT_EOK;
  236. }
  237. MSH_CMD_EXPORT(spdifrx_sample, spdifrx loopback test);
  238. #endif
  239. #endif