can.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. /*
  2. * File : can.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2015, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2015-05-14 aubrcool@qq.com first version
  13. */
  14. #include <rthw.h>
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. static rt_err_t rt_can_init(struct rt_device *dev)
  18. {
  19. rt_err_t result = RT_EOK;
  20. struct rt_can_device *can;
  21. RT_ASSERT(dev != RT_NULL);
  22. can = (struct rt_can_device *)dev;
  23. /* initialize rx/tx */
  24. can->can_rx = RT_NULL;
  25. can->can_tx = RT_NULL;
  26. /* apply configuration */
  27. if (can->ops->configure)
  28. result = can->ops->configure(can, &can->config);
  29. return result;
  30. }
  31. /*
  32. * can interrupt routines
  33. */
  34. rt_inline int _can_int_rx(struct rt_can_device *can, struct rt_can_msg *data, int msgs)
  35. {
  36. int size;
  37. struct rt_can_rx_fifo* rx_fifo;
  38. RT_ASSERT(can != RT_NULL);
  39. size = msgs;
  40. rx_fifo = (struct rt_can_rx_fifo*) can->can_rx;
  41. RT_ASSERT(rx_fifo != RT_NULL);
  42. /* read from software FIFO */
  43. while (msgs)
  44. {
  45. rt_base_t level;
  46. struct rt_can_msg_list *listmsg=RT_NULL;
  47. /* disable interrupt */
  48. level = rt_hw_interrupt_disable();
  49. #ifdef RT_CAN_USING_HDR
  50. rt_int32_t hdr = data->hdr;
  51. if (hdr >=0 && can->hdr && hdr < can->config.maxhdr && !rt_list_isempty(&can->hdr[hdr].list))
  52. {
  53. listmsg=rt_list_entry(can->hdr[hdr].list.next, struct rt_can_msg_list, hdrlist);
  54. rt_list_remove(&listmsg->list);
  55. rt_list_remove(&listmsg->hdrlist);
  56. if(can->hdr[hdr].msgs) {
  57. can->hdr[hdr].msgs--;
  58. }
  59. listmsg->owner = RT_NULL;
  60. } else if(hdr == -1)
  61. #endif /*RT_CAN_USING_HDR*/
  62. if (!rt_list_isempty(&rx_fifo->uselist))
  63. {
  64. listmsg=rt_list_entry(rx_fifo->uselist.next, struct rt_can_msg_list, list);
  65. rt_list_remove(&listmsg->list);
  66. #ifdef RT_CAN_USING_HDR
  67. rt_list_remove(&listmsg->hdrlist);
  68. if(listmsg->owner != RT_NULL && listmsg->owner->msgs) {
  69. listmsg->owner->msgs--;
  70. }
  71. listmsg->owner = RT_NULL;
  72. #endif
  73. }
  74. else
  75. {
  76. /* no data, enable interrupt and break out */
  77. rt_hw_interrupt_enable(level);
  78. break;
  79. }
  80. /* enable interrupt */
  81. rt_hw_interrupt_enable(level);
  82. if(listmsg!=RT_NULL)
  83. {
  84. rt_memcpy(data,&listmsg->data,sizeof(struct rt_can_msg));
  85. level = rt_hw_interrupt_disable();
  86. rt_list_insert_before(&rx_fifo->freelist,&listmsg->list);
  87. rx_fifo->freenumbers++;
  88. RT_ASSERT(rx_fifo->freenumbers <= can->config.msgboxsz);
  89. rt_hw_interrupt_enable(level);
  90. listmsg = RT_NULL;
  91. } else {
  92. break;
  93. }
  94. data ++; msgs -= sizeof(struct rt_can_msg);
  95. }
  96. return (size - msgs);
  97. }
  98. rt_inline int _can_int_tx(struct rt_can_device *can, const struct rt_can_msg *data, int msgs)
  99. {
  100. int size;
  101. struct rt_can_tx_fifo *tx_fifo;
  102. RT_ASSERT(can != RT_NULL);
  103. size = msgs;
  104. tx_fifo = (struct rt_can_tx_fifo*) can->can_tx;
  105. RT_ASSERT(tx_fifo != RT_NULL);
  106. while (msgs)
  107. {
  108. rt_base_t level;
  109. rt_uint32_t no;
  110. struct rt_can_sndbxinx_list* tx_tosnd = RT_NULL;
  111. level = rt_hw_interrupt_disable();
  112. if(!rt_list_isempty(&tx_fifo->freelist))
  113. {
  114. tx_tosnd = rt_list_entry(tx_fifo->freelist.next, struct rt_can_sndbxinx_list, list);
  115. RT_ASSERT(tx_tosnd != RT_NULL);
  116. rt_list_remove(&tx_tosnd->list);
  117. } else {
  118. rt_hw_interrupt_enable(level);
  119. rt_completion_wait(&(tx_fifo->completion), RT_WAITING_FOREVER);
  120. continue;
  121. }
  122. rt_hw_interrupt_enable(level);
  123. no=((rt_uint32_t)tx_tosnd-(rt_uint32_t)tx_fifo->buffer)/sizeof(struct rt_can_sndbxinx_list);
  124. tx_tosnd->result = RT_CAN__SND_RESUTL_WAIT;
  125. if (can->ops->sendmsg(can, data ,no))
  126. {
  127. level = rt_hw_interrupt_disable();
  128. rt_list_insert_after(&tx_fifo->freelist,&tx_tosnd->list);
  129. rt_hw_interrupt_enable(level);
  130. continue;
  131. }
  132. can->status.sndchange = 1;
  133. rt_completion_wait(&(tx_tosnd->completion), RT_WAITING_FOREVER);
  134. level = rt_hw_interrupt_disable();
  135. rt_uint32_t result = tx_tosnd->result;
  136. if(!rt_list_isempty(&tx_tosnd->list)) {
  137. rt_list_remove(&tx_tosnd->list);
  138. }
  139. rt_list_insert_before(&tx_fifo->freelist,&tx_tosnd->list);
  140. rt_hw_interrupt_enable(level);
  141. if(result == RT_CAN__SND_RESUTL_OK)
  142. {
  143. level = rt_hw_interrupt_disable();
  144. can->status.sndpkg++;
  145. rt_hw_interrupt_enable(level);
  146. data ++; msgs -= sizeof(struct rt_can_msg);
  147. if(!msgs) break;
  148. }
  149. else
  150. {
  151. level = rt_hw_interrupt_disable();
  152. can->status.dropedsndpkg++;
  153. rt_hw_interrupt_enable(level);
  154. break;
  155. }
  156. level = rt_hw_interrupt_disable();
  157. if(rt_list_isempty(&tx_fifo->freelist))
  158. {
  159. rt_hw_interrupt_enable(level);
  160. rt_completion_done(&(tx_fifo->completion));
  161. }
  162. else
  163. {
  164. rt_hw_interrupt_enable(level);
  165. }
  166. }
  167. return (size - msgs);
  168. }
  169. rt_inline int _can_int_tx_priv(struct rt_can_device *can, const struct rt_can_msg *data, int msgs)
  170. {
  171. int size;
  172. struct rt_can_tx_fifo *tx_fifo;
  173. RT_ASSERT(can != RT_NULL);
  174. size = msgs;
  175. tx_fifo = (struct rt_can_tx_fifo*) can->can_tx;
  176. RT_ASSERT(tx_fifo != RT_NULL);
  177. rt_base_t level;
  178. rt_uint32_t no;
  179. rt_uint32_t result;
  180. while (msgs)
  181. {
  182. no = data->priv;
  183. if(no >= can->config.sndboxnumber) {
  184. break;
  185. }
  186. level = rt_hw_interrupt_disable();
  187. if((tx_fifo->buffer[no].result != RT_CAN__SND_RESUTL_OK)) {
  188. rt_hw_interrupt_enable(level);
  189. rt_completion_wait(&(tx_fifo->buffer[no].completion), RT_WAITING_FOREVER);
  190. continue;
  191. }
  192. tx_fifo->buffer[no].result = RT_CAN__SND_RESUTL_WAIT;
  193. rt_hw_interrupt_enable(level);
  194. if (can->ops->sendmsg(can, data ,no) != RT_EOK)
  195. {
  196. continue;
  197. }
  198. can->status.sndchange = 1;
  199. rt_completion_wait(&(tx_fifo->buffer[no].completion), RT_WAITING_FOREVER);
  200. result = tx_fifo->buffer[no].result;
  201. if(result == RT_CAN__SND_RESUTL_OK)
  202. {
  203. level = rt_hw_interrupt_disable();
  204. can->status.sndpkg++;
  205. rt_hw_interrupt_enable(level);
  206. data ++; msgs -= sizeof(struct rt_can_msg);
  207. if(!msgs) break;
  208. }
  209. else
  210. {
  211. level = rt_hw_interrupt_disable();
  212. can->status.dropedsndpkg++;
  213. rt_hw_interrupt_enable(level);
  214. break;
  215. }
  216. }
  217. return (size - msgs);
  218. }
  219. static rt_err_t rt_can_open(struct rt_device *dev, rt_uint16_t oflag)
  220. {
  221. struct rt_can_device *can;
  222. RT_ASSERT(dev != RT_NULL);
  223. can = (struct rt_can_device *)dev;
  224. /* get open flags */
  225. dev->open_flag = oflag & 0xff;
  226. rt_enter_critical();
  227. if (can->can_rx == RT_NULL)
  228. {
  229. if (oflag & RT_DEVICE_FLAG_INT_RX)
  230. {
  231. struct rt_can_rx_fifo* rx_fifo;
  232. rx_fifo = (struct rt_can_rx_fifo*) rt_malloc (sizeof(struct rt_can_rx_fifo) +
  233. can->config.msgboxsz * sizeof(struct rt_can_msg_list));
  234. RT_ASSERT(rx_fifo != RT_NULL);
  235. rx_fifo->buffer = (struct rt_can_msg_list*) (rx_fifo + 1);
  236. rt_memset(rx_fifo->buffer, 0, can->config.msgboxsz * sizeof(struct rt_can_msg_list));
  237. rt_list_init(&rx_fifo->freelist);
  238. rt_list_init(&rx_fifo->uselist);
  239. rx_fifo->freenumbers=can->config.msgboxsz;
  240. int i = 0;
  241. for(i = 0; i< can->config.msgboxsz; i++)
  242. {
  243. rt_list_insert_before(&rx_fifo->freelist,&rx_fifo->buffer[i].list);
  244. #ifdef RT_CAN_USING_HDR
  245. rt_list_init(&rx_fifo->buffer[i].hdrlist);
  246. rx_fifo->buffer[i].owner = RT_NULL;
  247. #endif
  248. }
  249. can->can_rx = rx_fifo;
  250. rt_exit_critical();
  251. dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
  252. /* configure low level device */
  253. can->ops->control(can, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX);
  254. }
  255. else
  256. {
  257. can->can_rx = RT_NULL;
  258. rt_exit_critical();
  259. }
  260. } else {
  261. rt_exit_critical();
  262. }
  263. rt_enter_critical();
  264. if (can->can_tx == RT_NULL)
  265. {
  266. if (oflag & RT_DEVICE_FLAG_INT_TX)
  267. {
  268. struct rt_can_tx_fifo *tx_fifo;
  269. tx_fifo = (struct rt_can_tx_fifo*) rt_malloc(sizeof(struct rt_can_tx_fifo)+
  270. can->config.sndboxnumber*sizeof(struct rt_can_sndbxinx_list));
  271. RT_ASSERT(tx_fifo != RT_NULL);
  272. tx_fifo->buffer = (struct rt_can_sndbxinx_list *) (tx_fifo + 1);
  273. rt_memset(tx_fifo->buffer, 0,
  274. can->config.sndboxnumber*sizeof(struct rt_can_sndbxinx_list));
  275. rt_list_init(&tx_fifo->freelist);
  276. int i = 0;
  277. for(i = 0; i< can->config.sndboxnumber; i++)
  278. {
  279. rt_list_insert_before(&tx_fifo->freelist,&tx_fifo->buffer[i].list);
  280. rt_completion_init(&(tx_fifo->buffer[i].completion));
  281. tx_fifo->buffer[i].result = RT_CAN__SND_RESUTL_OK;
  282. }
  283. rt_completion_init(&(tx_fifo->completion));
  284. can->can_tx = tx_fifo;
  285. rt_exit_critical();
  286. dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
  287. /* configure low level device */
  288. can->ops->control(can, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_TX);
  289. }
  290. else
  291. {
  292. can->can_tx = RT_NULL;
  293. rt_exit_critical();
  294. }
  295. } else {
  296. rt_exit_critical();
  297. }
  298. can->ops->control(can, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_CAN_INT_ERR);
  299. #ifdef RT_CAN_USING_HDR
  300. rt_enter_critical();
  301. if(can->hdr == RT_NULL) {
  302. struct rt_can_hdr * phdr;
  303. phdr = (struct rt_can_hdr *) rt_malloc(can->config.maxhdr*sizeof(struct rt_can_hdr));
  304. RT_ASSERT(phdr != RT_NULL);
  305. rt_memset(phdr, 0,can->config.maxhdr*sizeof(struct rt_can_hdr));
  306. int i = 0;
  307. for(i = 0; i< can->config.maxhdr; i++)
  308. {
  309. rt_list_init(&phdr[i].list);
  310. }
  311. can->hdr = phdr;
  312. rt_exit_critical();
  313. } else {
  314. rt_exit_critical();
  315. }
  316. #endif
  317. rt_enter_critical();
  318. if(!can->timerinitflag) {
  319. can->timerinitflag = 1;
  320. rt_exit_critical();
  321. #ifdef RT_CAN_USING_LED
  322. if(can->config.rcvled != RT_NULL) {
  323. rt_pin_mode(can->config.rcvled->pin,can->config.rcvled->mode);
  324. rt_pin_write(can->config.rcvled->pin,can->config.rcvled->init);
  325. }
  326. if(can->config.sndled != RT_NULL) {
  327. rt_pin_mode(can->config.sndled->pin,can->config.sndled->mode);
  328. rt_pin_write(can->config.sndled->pin,can->config.sndled->init);
  329. }
  330. if(can->config.errled != RT_NULL) {
  331. rt_pin_mode(can->config.errled->pin,can->config.errled->mode);
  332. rt_pin_write(can->config.errled->pin,can->config.errled->init);
  333. }
  334. #endif
  335. rt_timer_start(&can->timer);
  336. } else {
  337. rt_exit_critical();
  338. }
  339. return RT_EOK;
  340. }
  341. static rt_err_t rt_can_close(struct rt_device *dev)
  342. {
  343. struct rt_can_device *can;
  344. RT_ASSERT(dev != RT_NULL);
  345. can = (struct rt_can_device *)dev;
  346. /* this device has more reference count */
  347. if (dev->ref_count > 1) return RT_EOK;
  348. rt_enter_critical();
  349. if(can->timerinitflag) {
  350. can->timerinitflag = 0;
  351. rt_exit_critical();
  352. rt_timer_stop(&can->timer);
  353. #ifdef RT_CAN_USING_LED
  354. rt_pin_write(can->config.rcvled->pin,can->config.rcvled->init);
  355. rt_pin_write(can->config.rcvled->pin,can->config.sndled->init);
  356. rt_pin_write(can->config.rcvled->pin,can->config.errled->init);
  357. #endif
  358. } else {
  359. rt_exit_critical();
  360. }
  361. rt_enter_critical();
  362. can->status_indicate.ind = RT_NULL;
  363. can->status_indicate.args = RT_NULL;
  364. rt_exit_critical();
  365. #ifdef RT_CAN_USING_HDR
  366. rt_enter_critical();
  367. if(can->hdr != RT_NULL) {
  368. rt_free(can->hdr);
  369. can->hdr = RT_NULL;
  370. rt_exit_critical();
  371. } else {
  372. rt_exit_critical();
  373. }
  374. #endif
  375. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  376. {
  377. struct rt_can_rx_fifo* rx_fifo;
  378. rx_fifo = (struct rt_can_rx_fifo*)can->can_rx;
  379. RT_ASSERT(rx_fifo != RT_NULL);
  380. rt_free(rx_fifo);
  381. dev->open_flag &= ~RT_DEVICE_FLAG_INT_RX;
  382. /* configure low level device */
  383. can->ops->control(can, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_TX);
  384. }
  385. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  386. {
  387. struct rt_can_tx_fifo* tx_fifo;
  388. tx_fifo = (struct rt_can_tx_fifo*)can->can_rx;
  389. RT_ASSERT(tx_fifo != RT_NULL);
  390. rt_free(tx_fifo);
  391. dev->open_flag &= ~RT_DEVICE_FLAG_INT_TX;
  392. /* configure low level device */
  393. can->ops->control(can, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_TX);
  394. }
  395. can->ops->control(can, RT_DEVICE_CTRL_CLR_INT, (void *)RT_DEVICE_CAN_INT_ERR);
  396. return RT_EOK;
  397. }
  398. static rt_size_t rt_can_read(struct rt_device *dev,
  399. rt_off_t pos,
  400. void *buffer,
  401. rt_size_t size)
  402. {
  403. struct rt_can_device *can;
  404. RT_ASSERT(dev != RT_NULL);
  405. if (size == 0) return 0;
  406. can = (struct rt_can_device *)dev;
  407. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  408. {
  409. return _can_int_rx(can, buffer, size);
  410. }
  411. return 0;
  412. }
  413. static rt_size_t rt_can_write(struct rt_device *dev,
  414. rt_off_t pos,
  415. const void *buffer,
  416. rt_size_t size)
  417. {
  418. struct rt_can_device *can;
  419. RT_ASSERT(dev != RT_NULL);
  420. if (size == 0) return 0;
  421. can = (struct rt_can_device *)dev;
  422. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  423. {
  424. if(can->config.privmode) {
  425. return _can_int_tx_priv(can, buffer, size);
  426. } else {
  427. return _can_int_tx(can, buffer, size);
  428. }
  429. }
  430. return 0;
  431. }
  432. static rt_err_t rt_can_control(struct rt_device *dev,
  433. rt_uint8_t cmd,
  434. void *args)
  435. {
  436. struct rt_can_device *can;
  437. rt_err_t res;
  438. RT_ASSERT(dev != RT_NULL);
  439. can = (struct rt_can_device *)dev;
  440. switch (cmd)
  441. {
  442. case RT_DEVICE_CTRL_SUSPEND:
  443. /* suspend device */
  444. dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
  445. break;
  446. case RT_DEVICE_CTRL_RESUME:
  447. /* resume device */
  448. dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
  449. break;
  450. case RT_DEVICE_CTRL_CONFIG:
  451. /* configure device */
  452. can->ops->configure(can, (struct can_configure *)args);
  453. break;
  454. case RT_CAN_CMD_SET_PRIV:
  455. /* configure device */
  456. if((rt_uint32_t)args != can->config.privmode) {
  457. if(res = can->ops->control(can, cmd, args) != RT_EOK) {
  458. return res;
  459. }
  460. struct rt_can_tx_fifo* tx_fifo;
  461. tx_fifo = (struct rt_can_tx_fifo*) can->can_tx;
  462. int i;
  463. rt_base_t level;
  464. if(can->config.privmode) {
  465. rt_completion_done(&(tx_fifo->completion));
  466. level = rt_hw_interrupt_disable();
  467. for(i = 0; i< can->config.sndboxnumber; i++)
  468. {
  469. rt_list_remove(&tx_fifo->buffer[i].list);
  470. }
  471. rt_hw_interrupt_enable(level);
  472. } else {
  473. for(i = 0; i< can->config.sndboxnumber; i++)
  474. {
  475. rt_base_t level;
  476. level = rt_hw_interrupt_disable();
  477. if(tx_fifo->buffer[i].result == RT_CAN__SND_RESUTL_OK) {
  478. rt_list_insert_before(&tx_fifo->freelist,&tx_fifo->buffer[i].list);
  479. }
  480. rt_hw_interrupt_enable(level);
  481. }
  482. }
  483. return RT_EOK;
  484. }
  485. break;
  486. case RT_CAN_CMD_SET_STATUS_IND:
  487. can->status_indicate.ind = ((rt_can_status_ind_type_t)args)->ind;
  488. can->status_indicate.args = ((rt_can_status_ind_type_t)args)->args;
  489. break;
  490. #ifdef RT_CAN_USING_HDR
  491. case RT_CAN_CMD_SET_FILTER:
  492. res = can->ops->control(can, cmd, args);
  493. if(res != RT_EOK || can->hdr == RT_NULL) {
  494. return res;
  495. }
  496. {
  497. struct rt_can_filter_config* pfilter;
  498. struct rt_can_filter_item* pitem;
  499. rt_uint32_t count;
  500. rt_base_t level;
  501. pfilter = (struct rt_can_filter_config*)args;
  502. count = pfilter->count;
  503. pitem = pfilter->items;
  504. if(pfilter->actived) {
  505. while(count) {
  506. if(pitem->hdr >= can->config.maxhdr || pitem->hdr < 0) {
  507. count--;
  508. pitem++;
  509. continue;
  510. }
  511. level = rt_hw_interrupt_disable();
  512. if(!can->hdr[pitem->hdr].connected) {
  513. rt_memcpy(&can->hdr[pitem->hdr].filter,pitem,
  514. sizeof(struct rt_can_filter_item));
  515. can->hdr[pitem->hdr].connected = 1;
  516. can->hdr[pitem->hdr].msgs = 0;
  517. rt_list_init(&can->hdr[pitem->hdr].list);
  518. }
  519. rt_hw_interrupt_enable(level);
  520. count--;
  521. pitem++;
  522. }
  523. } else {
  524. while(count) {
  525. if(pitem->hdr >= can->config.maxhdr || pitem->hdr < 0) {
  526. count--;
  527. pitem++;
  528. continue;
  529. }
  530. level = rt_hw_interrupt_disable();
  531. if(can->hdr[pitem->hdr].connected) {
  532. rt_memset(&can->hdr[pitem->hdr].filter,0,
  533. sizeof(struct rt_can_filter_item));
  534. can->hdr[pitem->hdr].connected = 0;
  535. can->hdr[pitem->hdr].msgs = 0;
  536. if(!rt_list_isempty(&can->hdr[pitem->hdr].list))
  537. {
  538. rt_list_remove(can->hdr[pitem->hdr].list.next);
  539. }
  540. }
  541. rt_hw_interrupt_enable(level);
  542. count--;
  543. pitem++;
  544. }
  545. }
  546. }
  547. break;
  548. #endif /*RT_CAN_USING_HDR*/
  549. default :
  550. /* control device */
  551. if(can->ops->control != RT_NULL)
  552. {
  553. can->ops->control(can, cmd, args);
  554. }
  555. break;
  556. }
  557. return RT_EOK;
  558. }
  559. /*
  560. * can timer
  561. */
  562. static void cantimeout(void* arg)
  563. {
  564. #ifdef RT_CAN_USING_LED
  565. rt_uint32_t ledonflag = 0;
  566. #endif /*RT_CAN_USING_LED*/
  567. rt_can_t can = (rt_can_t)arg;
  568. rt_device_control((rt_device_t)can,RT_CAN_CMD_GET_STATUS,(void* )&can->status);
  569. if(can->timerinitflag == 1) {
  570. #ifdef RT_CAN_USING_LED
  571. ledonflag = 1;
  572. #endif /*RT_CAN_USING_LED*/
  573. can->timerinitflag = 0xFF;
  574. }
  575. #ifdef RT_CAN_USING_LED
  576. if(can->config.rcvled != RT_NULL && can->config.sndled == RT_NULL) {
  577. if(ledonflag == 1) {
  578. rt_pin_write(can->config.rcvled->pin,can->config.rcvled->init?0:1);
  579. } else {
  580. if(can->status.rcvchange == 1 || can->status.sndchange == 1)
  581. {
  582. can->status.rcvchange = 0;
  583. can->status.sndchange = 0;
  584. rt_pin_write(can->config.rcvled->pin,rt_pin_read(can->config.rcvled->pin)?0:1);
  585. } else {
  586. rt_pin_write(can->config.rcvled->pin,can->config.rcvled->init);
  587. }
  588. }
  589. } else if(can->config.rcvled != RT_NULL && can->config.sndled != RT_NULL) {
  590. if(ledonflag == 1) {
  591. rt_pin_write(can->config.rcvled->pin,can->config.rcvled->init?0:1);
  592. rt_pin_write(can->config.sndled->pin,can->config.sndled->init?0:1);
  593. } else {
  594. if(can->status.rcvchange == 1)
  595. {
  596. can->status.rcvchange = 0;
  597. rt_pin_write(can->config.rcvled->pin,rt_pin_read(can->config.rcvled->pin)?0:1);
  598. } else {
  599. rt_pin_write(can->config.rcvled->pin,can->config.rcvled->init);
  600. }
  601. if(can->status.sndchange == 1)
  602. {
  603. can->status.sndchange = 0;
  604. rt_pin_write(can->config.sndled->pin,rt_pin_read(can->config.sndled->pin)?0:1);
  605. } else {
  606. rt_pin_write(can->config.sndled->pin,can->config.sndled->init);
  607. }
  608. }
  609. } else if(can->config.rcvled == RT_NULL && can->config.sndled != RT_NULL) {
  610. if(ledonflag == 1) {
  611. rt_pin_write(can->config.sndled->pin,can->config.sndled->init?0:1);
  612. } else {
  613. if(can->status.rcvchange == 1 || can->status.sndchange == 1)
  614. {
  615. can->status.rcvchange = 0;
  616. can->status.sndchange = 0;
  617. rt_pin_write(can->config.sndled->pin,rt_pin_read(can->config.sndled->pin)?0:1);
  618. } else {
  619. rt_pin_write(can->config.sndled->pin,can->config.sndled->init);
  620. }
  621. }
  622. }
  623. if(ledonflag == 1) {
  624. rt_pin_write(can->config.errled->pin,can->config.errled->init?0:1);
  625. } else {
  626. if(can->status.errcode) {
  627. rt_pin_write(can->config.errled->pin,can->config.errled->init?0:1);
  628. } else {
  629. rt_pin_write(can->config.errled->pin,can->config.errled->init);
  630. }
  631. }
  632. #endif
  633. if(can->status_indicate.ind != RT_NULL)
  634. {
  635. can->status_indicate.ind(can,can->status_indicate.args);
  636. }
  637. }
  638. /*
  639. * can register
  640. */
  641. rt_err_t rt_hw_can_register(struct rt_can_device *can,
  642. const char *name,
  643. const struct rt_can_ops *ops,
  644. void *data)
  645. {
  646. struct rt_device *device;
  647. RT_ASSERT(can != RT_NULL);
  648. device = &(can->parent);
  649. device->type = RT_Device_Class_CAN;
  650. device->rx_indicate = RT_NULL;
  651. device->tx_complete = RT_NULL;
  652. #ifdef RT_CAN_USING_HDR
  653. can->hdr = RT_NULL;
  654. #endif
  655. can->can_rx = RT_NULL;
  656. can->can_tx = RT_NULL;
  657. device->init = rt_can_init;
  658. device->open = rt_can_open;
  659. device->close = rt_can_close;
  660. device->read = rt_can_read;
  661. device->write = rt_can_write;
  662. device->control = rt_can_control;
  663. can->ops = ops;
  664. can->status_indicate.ind = RT_NULL;
  665. can->status_indicate.args = RT_NULL;
  666. rt_memset(&can->status,0,sizeof(can->status));
  667. device->user_data = data;
  668. can->timerinitflag = 0;
  669. rt_timer_init(&can->timer,
  670. name,
  671. cantimeout,
  672. (void*)can,
  673. can->config.ticks,
  674. RT_TIMER_FLAG_PERIODIC);
  675. /* register a character device */
  676. return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR);
  677. }
  678. /* ISR for can interrupt */
  679. void rt_hw_can_isr(struct rt_can_device *can, int event)
  680. {
  681. switch (event & 0xff)
  682. {
  683. case RT_CAN_EVENT_RXOF_IND:
  684. {
  685. rt_base_t level;
  686. level = rt_hw_interrupt_disable();
  687. can->status.dropedrcvpkg++;
  688. rt_hw_interrupt_enable(level);
  689. }
  690. case RT_CAN_EVENT_RX_IND:
  691. {
  692. struct rt_can_msg tmpmsg;
  693. struct rt_can_rx_fifo* rx_fifo;
  694. struct rt_can_msg_list* listmsg=RT_NULL;
  695. #ifdef RT_CAN_USING_HDR
  696. rt_int32_t hdr;
  697. #endif
  698. int ch = -1;
  699. rt_base_t level;
  700. rx_fifo = (struct rt_can_rx_fifo*)can->can_rx;
  701. RT_ASSERT(rx_fifo != RT_NULL);
  702. /* interrupt mode receive */
  703. RT_ASSERT(can->parent.open_flag & RT_DEVICE_FLAG_INT_RX);
  704. rt_uint32_t no;
  705. no = event >> 8;
  706. ch = can->ops->recvmsg(can,&tmpmsg,no);
  707. if (ch == -1) break;
  708. /* disable interrupt */
  709. level = rt_hw_interrupt_disable();
  710. can->status.rcvpkg++;
  711. can->status.rcvchange = 1;
  712. if(!rt_list_isempty(&rx_fifo->freelist))
  713. {
  714. listmsg = rt_list_entry(rx_fifo->freelist.next, struct rt_can_msg_list, list);
  715. rt_list_remove(&listmsg->list);
  716. #ifdef RT_CAN_USING_HDR
  717. rt_list_remove(&listmsg->hdrlist);
  718. if(listmsg->owner != RT_NULL && listmsg->owner->msgs) {
  719. listmsg->owner->msgs--;
  720. }
  721. listmsg->owner = RT_NULL;
  722. #endif /*RT_CAN_USING_HDR*/
  723. RT_ASSERT(rx_fifo->freenumbers >0);
  724. rx_fifo->freenumbers--;
  725. } else if(!rt_list_isempty(&rx_fifo->uselist)) {
  726. listmsg = rt_list_entry(rx_fifo->uselist.next, struct rt_can_msg_list, list);
  727. can->status.dropedrcvpkg++;
  728. rt_list_remove(&listmsg->list);
  729. #ifdef RT_CAN_USING_HDR
  730. rt_list_remove(&listmsg->hdrlist);
  731. if(listmsg->owner != RT_NULL && listmsg->owner->msgs) {
  732. listmsg->owner->msgs--;
  733. }
  734. listmsg->owner = RT_NULL;
  735. #endif
  736. }
  737. /* enable interrupt */
  738. rt_hw_interrupt_enable(level);
  739. if(listmsg != RT_NULL) {
  740. rt_memcpy(&listmsg->data,&tmpmsg,sizeof(struct rt_can_msg));
  741. level = rt_hw_interrupt_disable();
  742. rt_list_insert_before(&rx_fifo->uselist,&listmsg->list);
  743. #ifdef RT_CAN_USING_HDR
  744. hdr = tmpmsg.hdr;
  745. if(can->hdr != RT_NULL) {
  746. RT_ASSERT(hdr < can->config.maxhdr && hdr >= 0);
  747. if(can->hdr[hdr].connected) {
  748. rt_list_insert_before(&can->hdr[hdr].list,&listmsg->hdrlist);
  749. listmsg->owner = &can->hdr[hdr];
  750. can->hdr[hdr].msgs++;
  751. }
  752. }
  753. #endif
  754. rt_hw_interrupt_enable(level);
  755. }
  756. /* invoke callback */
  757. #ifdef RT_CAN_USING_HDR
  758. if(can->hdr != RT_NULL && can->hdr[hdr].connected && can->hdr[hdr].filter.ind) {
  759. RT_ASSERT(hdr < can->config.maxhdr && hdr >= 0);
  760. rt_size_t rx_length;
  761. level = rt_hw_interrupt_disable();
  762. rx_length = can->hdr[hdr].msgs * sizeof(struct rt_can_msg);
  763. rt_hw_interrupt_enable(level);
  764. can->hdr[hdr].filter.ind(&can->parent, can->hdr[hdr].filter.args, hdr, rx_length);
  765. } else
  766. #endif
  767. if (can->parent.rx_indicate != RT_NULL) {
  768. rt_size_t rx_length;
  769. /* get rx length */
  770. level = rt_hw_interrupt_disable();
  771. rx_length = rx_fifo->freenumbers*sizeof(struct rt_can_msg);
  772. rt_hw_interrupt_enable(level);
  773. can->parent.rx_indicate(&can->parent, rx_length);
  774. }
  775. break;
  776. }
  777. case RT_CAN_EVENT_TX_DONE:
  778. case RT_CAN_EVENT_TX_FAIL:
  779. {
  780. struct rt_can_tx_fifo* tx_fifo;
  781. rt_uint32_t no;
  782. no = event >> 8;
  783. tx_fifo = (struct rt_can_tx_fifo*) can->can_tx;
  784. RT_ASSERT(tx_fifo != RT_NULL);
  785. if((event & 0xff) == RT_CAN_EVENT_TX_DONE) {
  786. tx_fifo->buffer[no].result = RT_CAN__SND_RESUTL_OK;
  787. } else {
  788. tx_fifo->buffer[no].result = RT_CAN__SND_RESUTL_ERR;
  789. }
  790. rt_completion_done(&(tx_fifo->buffer[no].completion));
  791. break;
  792. }
  793. }
  794. }
  795. #ifdef RT_USING_FINSH
  796. #include <finsh.h>
  797. int cmd_canstat(int argc,void** argv)
  798. {
  799. static const char* ErrCode[] = {
  800. "No Error!",
  801. "Warning !",
  802. "Passive !",
  803. "Bus Off !"
  804. };
  805. if(argc >= 2) {
  806. rt_device_t candev = rt_device_find(argv[1]);
  807. if(!candev) {
  808. rt_kprintf(" Can't find can device %s\n",argv[1]);
  809. return -1;
  810. }
  811. rt_kprintf(" Finded can device: %s...",argv[1]);
  812. struct rt_can_status status;
  813. rt_device_control(candev,RT_CAN_CMD_GET_STATUS,&status);
  814. rt_kprintf("\n Receive...error..count: %010ld. Send.....error....count: %010ld.",
  815. status.rcverrcnt,status.snderrcnt);
  816. rt_kprintf("\n Bit..pad..error..count: %010ld. Format...error....count: %010ld",
  817. status.bitpaderrcnt,status.formaterrcnt);
  818. rt_kprintf("\n Ack.......error..count: %010ld. Bit......error....count: %010ld.",
  819. status.ackerrcnt,status.biterrcnt);
  820. rt_kprintf("\n CRC.......error..count: %010ld. Error.code.[%010ld]: ",
  821. status.crcerrcnt,status.errcode);
  822. switch(status.errcode) {
  823. case 0:
  824. rt_kprintf("%s.",ErrCode[0]);
  825. break;
  826. case 1:
  827. rt_kprintf("%s.",ErrCode[1]);
  828. break;
  829. case 2:
  830. case 3:
  831. rt_kprintf("%s.",ErrCode[2]);
  832. break;
  833. case 4:
  834. case 5:
  835. case 6:
  836. case 7:
  837. rt_kprintf("%s.",ErrCode[3]);
  838. break;
  839. }
  840. rt_kprintf("\n Total.receive.packages: %010ld. Droped.receive.packages: %010ld.",
  841. status.rcvpkg,status.dropedrcvpkg);
  842. rt_kprintf("\n Total..send...packages: %010ld. Droped...send..packages: %010ld.\n",
  843. status.sndpkg + status.dropedsndpkg,status.dropedsndpkg);
  844. } else {
  845. rt_kprintf(" Invalid Call %s\n",argv[0]);
  846. rt_kprintf(" Please using %s cannamex .Here canname is driver name and x is candrive number.\n",argv[0]);
  847. }
  848. return 0;
  849. }
  850. FINSH_FUNCTION_EXPORT_ALIAS(cmd_canstat, __cmd_canstat, Stat Can Device Status.);
  851. #endif