setup.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2023-02-21 GuEe-GUI first version
  9. */
  10. #include <rtthread.h>
  11. #define DBG_TAG "cpu.aa64"
  12. #define DBG_LVL DBG_INFO
  13. #include <rtdbg.h>
  14. #include <cpu.h>
  15. #include <mmu.h>
  16. #include <cpuport.h>
  17. #include <interrupt.h>
  18. #include <gtimer.h>
  19. #include <setup.h>
  20. #include <stdlib.h>
  21. #include <ioremap.h>
  22. #include <rtdevice.h>
  23. #define SIZE_KB 1024
  24. #define SIZE_MB (1024 * SIZE_KB)
  25. #define SIZE_GB (1024 * SIZE_MB)
  26. extern rt_ubase_t _start, _end;
  27. extern void _secondary_cpu_entry(void);
  28. extern size_t MMUTable[];
  29. extern void *system_vectors;
  30. static void *fdt_ptr = RT_NULL;
  31. static rt_size_t fdt_size = 0;
  32. static rt_uint64_t initrd_ranges[3] = { };
  33. #ifdef RT_USING_SMP
  34. extern struct cpu_ops_t cpu_psci_ops;
  35. extern struct cpu_ops_t cpu_spin_table_ops;
  36. #else
  37. extern int rt_hw_cpu_id(void);
  38. #endif
  39. rt_uint64_t rt_cpu_mpidr_table[] =
  40. {
  41. [RT_CPUS_NR] = 0,
  42. };
  43. static struct cpu_ops_t *cpu_ops[] =
  44. {
  45. #ifdef RT_USING_SMP
  46. &cpu_psci_ops,
  47. &cpu_spin_table_ops,
  48. #endif
  49. };
  50. static struct rt_ofw_node *cpu_np[RT_CPUS_NR] = { };
  51. void rt_hw_fdt_install_early(void *fdt)
  52. {
  53. if (fdt != RT_NULL && !fdt_check_header(fdt))
  54. {
  55. fdt_ptr = fdt;
  56. fdt_size = fdt_totalsize(fdt);
  57. }
  58. }
  59. #ifdef RT_USING_HWTIMER
  60. static rt_ubase_t loops_per_tick[RT_CPUS_NR];
  61. static rt_ubase_t cpu_get_cycles(void)
  62. {
  63. rt_ubase_t cycles;
  64. rt_hw_sysreg_read(cntpct_el0, cycles);
  65. return cycles;
  66. }
  67. static void cpu_loops_per_tick_init(void)
  68. {
  69. rt_ubase_t offset;
  70. volatile rt_ubase_t freq, step, cycles_end1, cycles_end2;
  71. volatile rt_uint32_t cycles_count1 = 0, cycles_count2 = 0;
  72. rt_hw_sysreg_read(cntfrq_el0, freq);
  73. step = freq / RT_TICK_PER_SECOND;
  74. cycles_end1 = cpu_get_cycles() + step;
  75. while (cpu_get_cycles() < cycles_end1)
  76. {
  77. __asm__ volatile ("nop");
  78. __asm__ volatile ("add %0, %0, #1":"=r"(cycles_count1));
  79. }
  80. cycles_end2 = cpu_get_cycles() + step;
  81. while (cpu_get_cycles() < cycles_end2)
  82. {
  83. __asm__ volatile ("add %0, %0, #1":"=r"(cycles_count2));
  84. }
  85. if ((rt_int32_t)(cycles_count2 - cycles_count1) > 0)
  86. {
  87. offset = cycles_count2 - cycles_count1;
  88. }
  89. else
  90. {
  91. /* Impossible, but prepared for any eventualities */
  92. offset = cycles_count2 / 4;
  93. }
  94. loops_per_tick[rt_hw_cpu_id()] = offset;
  95. }
  96. static void cpu_us_delay(rt_uint32_t us)
  97. {
  98. volatile rt_base_t start = cpu_get_cycles(), cycles;
  99. cycles = ((us * 0x10c7UL) * loops_per_tick[rt_hw_cpu_id()] * RT_TICK_PER_SECOND) >> 32;
  100. while ((cpu_get_cycles() - start) < cycles)
  101. {
  102. rt_hw_cpu_relax();
  103. }
  104. }
  105. #endif /* RT_USING_HWTIMER */
  106. rt_weak void rt_hw_idle_wfi(void)
  107. {
  108. __asm__ volatile ("wfi");
  109. }
  110. static void system_vectors_init(void)
  111. {
  112. rt_hw_set_current_vbar((rt_ubase_t)&system_vectors);
  113. }
  114. rt_inline void cpu_info_init(void)
  115. {
  116. int i = 0;
  117. rt_uint64_t mpidr;
  118. struct rt_ofw_node *np;
  119. /* get boot cpu info */
  120. rt_hw_sysreg_read(mpidr_el1, mpidr);
  121. rt_ofw_foreach_cpu_node(np)
  122. {
  123. rt_uint64_t hwid = rt_ofw_get_cpu_hwid(np, 0);
  124. if ((mpidr & MPIDR_AFFINITY_MASK) != hwid)
  125. {
  126. /* Only save affinity and res make smp boot can check */
  127. hwid |= 1ULL << 31;
  128. }
  129. else
  130. {
  131. hwid = mpidr;
  132. }
  133. cpu_np[i] = np;
  134. rt_cpu_mpidr_table[i] = hwid;
  135. rt_ofw_data(np) = (void *)hwid;
  136. for (int idx = 0; idx < RT_ARRAY_SIZE(cpu_ops); ++idx)
  137. {
  138. struct cpu_ops_t *ops = cpu_ops[idx];
  139. if (ops->cpu_init)
  140. {
  141. ops->cpu_init(i, np);
  142. }
  143. }
  144. if (++i >= RT_CPUS_NR)
  145. {
  146. break;
  147. }
  148. }
  149. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, rt_cpu_mpidr_table, sizeof(rt_cpu_mpidr_table));
  150. #ifdef RT_USING_HWTIMER
  151. cpu_loops_per_tick_init();
  152. if (!rt_device_hwtimer_us_delay)
  153. {
  154. rt_device_hwtimer_us_delay = &cpu_us_delay;
  155. }
  156. #endif /* RT_USING_HWTIMER */
  157. }
  158. rt_inline rt_bool_t is_kernel_aspace(const char *name)
  159. {
  160. static char * const names[] =
  161. {
  162. "kernel",
  163. "memheap",
  164. };
  165. if (!name)
  166. {
  167. return RT_FALSE;
  168. }
  169. for (int i = 0; i < RT_ARRAY_SIZE(names); ++i)
  170. {
  171. if (!rt_strcmp(names[i], name))
  172. {
  173. return RT_TRUE;
  174. }
  175. }
  176. return RT_FALSE;
  177. }
  178. void rt_hw_common_setup(void)
  179. {
  180. rt_size_t mem_region_nr;
  181. rt_region_t *mem_region;
  182. rt_size_t page_best_start;
  183. rt_region_t platform_mem_region;
  184. static struct mem_desc platform_mem_desc;
  185. void *kernel_start, *kernel_end, *memheap_start = RT_NULL, *memheap_end = RT_NULL;
  186. system_vectors_init();
  187. #ifdef RT_USING_SMART
  188. rt_hw_mmu_map_init(&rt_kernel_space, (void*)0xfffffffff0000000, 0x10000000, MMUTable, PV_OFFSET);
  189. #else
  190. rt_hw_mmu_map_init(&rt_kernel_space, (void*)0xffffd0000000, 0x10000000, MMUTable, 0);
  191. #endif
  192. kernel_start = rt_kmem_v2p((void *)&_start) - 64;
  193. kernel_end = rt_kmem_v2p((void *)&_end);
  194. if (!rt_fdt_commit_memregion_request(&mem_region, &mem_region_nr, RT_TRUE))
  195. {
  196. const char *name = "memheap";
  197. while (mem_region_nr --> 0)
  198. {
  199. if (mem_region->name == name || !rt_strcmp(mem_region->name, name))
  200. {
  201. memheap_start = (void *)mem_region->start;
  202. memheap_end = (void *)mem_region->end;
  203. break;
  204. }
  205. }
  206. }
  207. page_best_start = (rt_size_t)(memheap_end ? : kernel_end);
  208. if (memheap_end && fdt_ptr > kernel_start)
  209. {
  210. rt_memmove(memheap_end - PV_OFFSET, fdt_ptr - PV_OFFSET, fdt_size);
  211. fdt_ptr = memheap_end;
  212. page_best_start = (rt_size_t)fdt_ptr + fdt_size;
  213. }
  214. rt_fdt_commit_memregion_early(&(rt_region_t)
  215. {
  216. .name = "fdt",
  217. .start = (rt_size_t)fdt_ptr,
  218. .end = (rt_size_t)(fdt_ptr + fdt_size),
  219. }, RT_TRUE);
  220. fdt_ptr -= PV_OFFSET;
  221. rt_fdt_commit_memregion_early(&(rt_region_t)
  222. {
  223. .name = "kernel",
  224. .start = (rt_size_t)kernel_start,
  225. .end = (rt_size_t)kernel_end,
  226. }, RT_TRUE);
  227. if (rt_fdt_prefetch(fdt_ptr))
  228. {
  229. /* Platform cannot be initialized */
  230. RT_ASSERT(0);
  231. }
  232. rt_fdt_scan_chosen_stdout();
  233. rt_fdt_scan_initrd(initrd_ranges);
  234. rt_fdt_scan_memory();
  235. if (memheap_start && memheap_end)
  236. {
  237. rt_system_heap_init(memheap_start - PV_OFFSET, memheap_end - PV_OFFSET);
  238. }
  239. platform_mem_region.start = ~0UL;
  240. platform_mem_region.end = 0;
  241. if (!rt_fdt_commit_memregion_request(&mem_region, &mem_region_nr, RT_TRUE))
  242. {
  243. LOG_I("Reserved memory:");
  244. while (mem_region_nr --> 0)
  245. {
  246. if (is_kernel_aspace(mem_region->name))
  247. {
  248. if (platform_mem_region.start > mem_region->start)
  249. {
  250. platform_mem_region.start = mem_region->start;
  251. }
  252. if (platform_mem_region.end < mem_region->end)
  253. {
  254. platform_mem_region.end = mem_region->end;
  255. }
  256. }
  257. LOG_I(" %-*.s [%p, %p]", RT_NAME_MAX, mem_region->name, mem_region->start, mem_region->end);
  258. ++mem_region;
  259. }
  260. }
  261. if (!rt_fdt_commit_memregion_request(&mem_region, &mem_region_nr, RT_FALSE))
  262. {
  263. rt_ubase_t best_offset = ~0UL;
  264. rt_region_t *usable_mem_region = mem_region, *page_region = RT_NULL, init_page_region = { 0 };
  265. LOG_I("Usable memory:");
  266. for (int i = 0; i < mem_region_nr; ++i, ++mem_region)
  267. {
  268. if (!mem_region->name)
  269. {
  270. continue;
  271. }
  272. if (platform_mem_region.start > mem_region->start)
  273. {
  274. platform_mem_region.start = mem_region->start;
  275. }
  276. if (platform_mem_region.end < mem_region->end)
  277. {
  278. platform_mem_region.end = mem_region->end;
  279. }
  280. if (mem_region->start >= page_best_start &&
  281. mem_region->start - page_best_start < best_offset &&
  282. /* MUST >= 1MB */
  283. mem_region->end - mem_region->start >= SIZE_MB)
  284. {
  285. page_region = mem_region;
  286. best_offset = page_region->start - page_best_start;
  287. }
  288. LOG_I(" %-*.s [%p, %p]", RT_NAME_MAX, mem_region->name, mem_region->start, mem_region->end);
  289. }
  290. RT_ASSERT(page_region != RT_NULL);
  291. init_page_region.start = page_region->start - PV_OFFSET;
  292. init_page_region.end = page_region->end - PV_OFFSET;
  293. rt_page_init(init_page_region);
  294. platform_mem_region.start = RT_ALIGN(platform_mem_region.start, ARCH_PAGE_SIZE);
  295. platform_mem_region.end = RT_ALIGN_DOWN(platform_mem_region.end, ARCH_PAGE_SIZE);
  296. RT_ASSERT(platform_mem_region.end - platform_mem_region.start != 0);
  297. platform_mem_desc.paddr_start = platform_mem_region.start;
  298. platform_mem_desc.vaddr_start = platform_mem_region.start - PV_OFFSET;
  299. platform_mem_desc.vaddr_end = platform_mem_region.end - PV_OFFSET - 1;
  300. platform_mem_desc.attr = NORMAL_MEM;
  301. rt_hw_mmu_setup(&rt_kernel_space, &platform_mem_desc, 1);
  302. rt_fdt_earlycon_kick(FDT_EARLYCON_KICK_UPDATE);
  303. mem_region = usable_mem_region;
  304. for (int i = 0; i < mem_region_nr; ++i, ++mem_region)
  305. {
  306. if (mem_region != page_region && mem_region->name)
  307. {
  308. mem_region->start -= PV_OFFSET;
  309. mem_region->end -= PV_OFFSET;
  310. rt_page_install(*mem_region);
  311. }
  312. }
  313. }
  314. rt_fdt_unflatten();
  315. cpu_info_init();
  316. #ifdef RT_USING_PIC
  317. rt_pic_init();
  318. rt_pic_irq_init();
  319. #else
  320. /* initialize hardware interrupt */
  321. rt_hw_interrupt_init();
  322. /* initialize uart */
  323. rt_hw_uart_init();
  324. /* initialize timer for os tick */
  325. rt_hw_gtimer_init();
  326. #endif
  327. #ifdef RT_USING_COMPONENTS_INIT
  328. rt_components_board_init();
  329. #endif
  330. #if defined(RT_USING_CONSOLE) && defined(RT_USING_DEVICE)
  331. rt_ofw_console_setup();
  332. #endif
  333. rt_thread_idle_sethook(rt_hw_idle_wfi);
  334. #ifdef RT_USING_SMP
  335. /* Install the IPI handle */
  336. rt_hw_ipi_handler_install(RT_SCHEDULE_IPI, rt_scheduler_ipi_handler);
  337. rt_hw_ipi_handler_install(RT_STOP_IPI, rt_scheduler_ipi_handler);
  338. rt_hw_interrupt_umask(RT_SCHEDULE_IPI);
  339. rt_hw_interrupt_umask(RT_STOP_IPI);
  340. #endif
  341. }
  342. #ifdef RT_USING_SMP
  343. rt_weak void rt_hw_secondary_cpu_up(void)
  344. {
  345. int cpu_id = rt_hw_cpu_id();
  346. rt_uint64_t entry = (rt_uint64_t)rt_kmem_v2p(_secondary_cpu_entry);
  347. if (!entry)
  348. {
  349. LOG_E("Failed to translate '_secondary_cpu_entry' to physical address");
  350. RT_ASSERT(0);
  351. }
  352. /* Maybe we are no in the first cpu */
  353. for (int i = 0; i < RT_ARRAY_SIZE(cpu_np); ++i)
  354. {
  355. int err;
  356. const char *enable_method;
  357. if (!cpu_np[i] || i == cpu_id)
  358. {
  359. continue;
  360. }
  361. err = rt_ofw_prop_read_string(cpu_np[i], "enable-method", &enable_method);
  362. for (int idx = 0; !err && idx < RT_ARRAY_SIZE(cpu_ops); ++idx)
  363. {
  364. struct cpu_ops_t *ops = cpu_ops[idx];
  365. if (ops->method && !rt_strcmp(ops->method, enable_method) && ops->cpu_boot)
  366. {
  367. err = ops->cpu_boot(i, entry);
  368. break;
  369. }
  370. }
  371. if (err)
  372. {
  373. LOG_W("Call cpu %d on %s", i, "failed");
  374. }
  375. }
  376. }
  377. rt_weak void rt_hw_secondary_cpu_bsp_start(void)
  378. {
  379. int cpu_id = rt_hw_cpu_id();
  380. system_vectors_init();
  381. rt_hw_spin_lock(&_cpus_lock);
  382. /* Save all mpidr */
  383. rt_hw_sysreg_read(mpidr_el1, rt_cpu_mpidr_table[cpu_id]);
  384. rt_hw_mmu_ktbl_set((unsigned long)MMUTable);
  385. #ifdef RT_USING_PIC
  386. rt_pic_irq_init();
  387. #else
  388. rt_hw_interrupt_init();
  389. #endif
  390. rt_dm_secondary_cpu_init();
  391. rt_hw_interrupt_umask(RT_SCHEDULE_IPI);
  392. rt_hw_interrupt_umask(RT_STOP_IPI);
  393. LOG_I("Call cpu %d on %s", cpu_id, "success");
  394. #ifdef RT_USING_HWTIMER
  395. if (rt_device_hwtimer_us_delay == &cpu_us_delay)
  396. {
  397. cpu_loops_per_tick_init();
  398. }
  399. #endif
  400. rt_system_scheduler_start();
  401. }
  402. rt_weak void rt_hw_secondary_cpu_idle_exec(void)
  403. {
  404. rt_hw_wfe();
  405. }
  406. #endif
  407. void rt_hw_console_output(const char *str)
  408. {
  409. rt_fdt_earlycon_output(str);
  410. }