alarm.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-10-27 heyuanjie87 first version.
  9. * 2013-05-17 aozima initial alarm event & mutex in system init.
  10. * 2020-10-15 zhangsz add alarm flags hour minute second.
  11. * 2020-11-09 zhangsz fix alarm set when modify rtc time.
  12. */
  13. #include <rtthread.h>
  14. #include <rtdevice.h>
  15. #include <sys/time.h>
  16. #define RT_RTC_YEARS_MAX 137
  17. #ifdef RT_USING_SOFT_RTC
  18. #define RT_ALARM_DELAY 0
  19. #else
  20. #define RT_ALARM_DELAY 2
  21. #endif
  22. #define RT_ALARM_STATE_INITED 0x02
  23. #define RT_ALARM_STATE_START 0x01
  24. #define RT_ALARM_STATE_STOP 0x00
  25. #if (defined(RT_USING_RTC) && defined(RT_USING_ALARM))
  26. static struct rt_alarm_container _container;
  27. rt_inline rt_uint32_t alarm_mkdaysec(struct tm *time)
  28. {
  29. rt_uint32_t sec;
  30. sec = time->tm_sec;
  31. sec += time->tm_min * 60;
  32. sec += time->tm_hour * 3600;
  33. return (sec);
  34. }
  35. static rt_err_t alarm_set(struct rt_alarm *alarm)
  36. {
  37. rt_device_t device;
  38. struct rt_rtc_wkalarm wkalarm;
  39. rt_err_t ret;
  40. device = rt_device_find("rtc");
  41. if (device == RT_NULL)
  42. {
  43. return (RT_ERROR);
  44. }
  45. if (alarm->flag & RT_ALARM_STATE_START)
  46. wkalarm.enable = RT_TRUE;
  47. else
  48. wkalarm.enable = RT_FALSE;
  49. wkalarm.tm_sec = alarm->wktime.tm_sec;
  50. wkalarm.tm_min = alarm->wktime.tm_min;
  51. wkalarm.tm_hour = alarm->wktime.tm_hour;
  52. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_ALARM, &wkalarm);
  53. if ((ret == RT_EOK) && wkalarm.enable)
  54. {
  55. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_ALARM, &wkalarm);
  56. if (ret == RT_EOK)
  57. {
  58. /*
  59. some RTC device like RX8025,it's alarms precision is 1 minute.
  60. in this case,low level RTC driver should set wkalarm->tm_sec to 0.
  61. */
  62. alarm->wktime.tm_sec = wkalarm.tm_sec;
  63. alarm->wktime.tm_min = wkalarm.tm_min;
  64. alarm->wktime.tm_hour = wkalarm.tm_hour;
  65. }
  66. }
  67. return (ret);
  68. }
  69. static void alarm_wakeup(struct rt_alarm *alarm, struct tm *now)
  70. {
  71. rt_uint32_t sec_alarm, sec_now;
  72. rt_bool_t wakeup = RT_FALSE;
  73. time_t timestamp;
  74. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  75. sec_now = alarm_mkdaysec(now);
  76. if (alarm->flag & RT_ALARM_STATE_START)
  77. {
  78. switch (alarm->flag & 0xFF00)
  79. {
  80. case RT_ALARM_ONESHOT:
  81. {
  82. sec_alarm = timegm(&alarm->wktime);
  83. sec_now = timegm(now);
  84. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  85. {
  86. /* stop alarm */
  87. alarm->flag &= ~RT_ALARM_STATE_START;
  88. alarm_set(alarm);
  89. wakeup = RT_TRUE;
  90. }
  91. }
  92. break;
  93. case RT_ALARM_SECOND:
  94. {
  95. alarm->wktime.tm_hour = now->tm_hour;
  96. alarm->wktime.tm_min = now->tm_min;
  97. alarm->wktime.tm_sec = now->tm_sec + 1;
  98. if (alarm->wktime.tm_sec > 59)
  99. {
  100. alarm->wktime.tm_sec = 0;
  101. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  102. if (alarm->wktime.tm_min > 59)
  103. {
  104. alarm->wktime.tm_min = 0;
  105. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  106. if (alarm->wktime.tm_hour > 23)
  107. {
  108. alarm->wktime.tm_hour = 0;
  109. }
  110. }
  111. }
  112. wakeup = RT_TRUE;
  113. }
  114. break;
  115. case RT_ALARM_MINUTE:
  116. {
  117. alarm->wktime.tm_hour = now->tm_hour;
  118. if (alarm->wktime.tm_sec == now->tm_sec)
  119. {
  120. alarm->wktime.tm_min = now->tm_min + 1;
  121. if (alarm->wktime.tm_min > 59)
  122. {
  123. alarm->wktime.tm_min = 0;
  124. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  125. if (alarm->wktime.tm_hour > 23)
  126. {
  127. alarm->wktime.tm_hour = 0;
  128. }
  129. }
  130. wakeup = RT_TRUE;
  131. }
  132. }
  133. break;
  134. case RT_ALARM_HOUR:
  135. {
  136. if ((alarm->wktime.tm_min == now->tm_min) &&
  137. (alarm->wktime.tm_sec == now->tm_sec))
  138. {
  139. alarm->wktime.tm_hour = now->tm_hour + 1;
  140. if (alarm->wktime.tm_hour > 23)
  141. {
  142. alarm->wktime.tm_hour = 0;
  143. }
  144. wakeup = RT_TRUE;
  145. }
  146. }
  147. break;
  148. case RT_ALARM_DAILY:
  149. {
  150. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  151. wakeup = RT_TRUE;
  152. }
  153. break;
  154. case RT_ALARM_WEEKLY:
  155. {
  156. /* alarm at wday */
  157. if (alarm->wktime.tm_wday == now->tm_wday)
  158. {
  159. sec_alarm += alarm->wktime.tm_wday * 24 * 3600;
  160. sec_now += now->tm_wday * 24 * 3600;
  161. if (sec_now == sec_alarm)
  162. wakeup = RT_TRUE;
  163. }
  164. }
  165. break;
  166. case RT_ALARM_MONTHLY:
  167. {
  168. /* monthly someday generate alarm signals */
  169. if (alarm->wktime.tm_mday == now->tm_mday)
  170. {
  171. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  172. wakeup = RT_TRUE;
  173. }
  174. }
  175. break;
  176. case RT_ALARM_YAERLY:
  177. {
  178. if ((alarm->wktime.tm_mday == now->tm_mday) && \
  179. (alarm->wktime.tm_mon == now->tm_mon))
  180. {
  181. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  182. wakeup = RT_TRUE;
  183. }
  184. }
  185. break;
  186. }
  187. if ((wakeup == RT_TRUE) && (alarm->callback != RT_NULL))
  188. {
  189. timestamp = (time_t)0;
  190. get_timestamp(&timestamp);
  191. alarm->callback(alarm, timestamp);
  192. }
  193. }
  194. }
  195. static void alarm_update(rt_uint32_t event)
  196. {
  197. struct rt_alarm *alm_prev = RT_NULL, *alm_next = RT_NULL;
  198. struct rt_alarm *alarm;
  199. rt_int32_t sec_now, sec_alarm, sec_tmp;
  200. rt_int32_t sec_next = 24 * 3600, sec_prev = 0;
  201. time_t timestamp = (time_t)0;
  202. struct tm now;
  203. rt_list_t *next;
  204. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  205. if (!rt_list_isempty(&_container.head))
  206. {
  207. /* get time of now */
  208. get_timestamp(&timestamp);
  209. gmtime_r(&timestamp, &now);
  210. for (next = _container.head.next; next != &_container.head; next = next->next)
  211. {
  212. alarm = rt_list_entry(next, struct rt_alarm, list);
  213. /* check the overtime alarm */
  214. alarm_wakeup(alarm, &now);
  215. }
  216. /* get time of now */
  217. get_timestamp(&timestamp);
  218. gmtime_r(&timestamp, &now);
  219. sec_now = alarm_mkdaysec(&now);
  220. for (next = _container.head.next; next != &_container.head; next = next->next)
  221. {
  222. alarm = rt_list_entry(next, struct rt_alarm, list);
  223. /* calculate seconds from 00:00:00 */
  224. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  225. if (alarm->flag & RT_ALARM_STATE_START)
  226. {
  227. sec_tmp = sec_alarm - sec_now;
  228. if (sec_tmp > 0)
  229. {
  230. /* find alarm after now(now to 23:59:59) and the most recent */
  231. if (sec_tmp < sec_next)
  232. {
  233. sec_next = sec_tmp;
  234. alm_next = alarm;
  235. }
  236. }
  237. else
  238. {
  239. /* find alarm before now(00:00:00 to now) and furthest from now */
  240. if (sec_tmp < sec_prev)
  241. {
  242. sec_prev = sec_tmp;
  243. alm_prev = alarm;
  244. }
  245. }
  246. }
  247. }
  248. /* enable the alarm after now first */
  249. if (sec_next < 24 * 3600)
  250. {
  251. if (alarm_set(alm_next) == RT_EOK)
  252. _container.current = alm_next;
  253. }
  254. else if (sec_prev < 0)
  255. {
  256. /* enable the alarm before now */
  257. if (alarm_set(alm_prev) == RT_EOK)
  258. _container.current = alm_prev;
  259. }
  260. else
  261. {
  262. if (_container.current != RT_NULL)
  263. alarm_set(_container.current);
  264. }
  265. }
  266. rt_mutex_release(&_container.mutex);
  267. }
  268. static int days_of_year_month(int tm_year, int tm_mon)
  269. {
  270. int ret, year;
  271. year = tm_year + 1900;
  272. if (tm_mon == 1)
  273. {
  274. ret = 28 + ((!(year % 4) && (year % 100)) || !(year % 400));
  275. }
  276. else if (((tm_mon <= 6) && (tm_mon % 2 == 0)) || ((tm_mon > 6) && (tm_mon % 2 == 1)))
  277. {
  278. ret = 31;
  279. }
  280. else
  281. {
  282. ret = 30;
  283. }
  284. return (ret);
  285. }
  286. static rt_bool_t is_valid_date(struct tm *date)
  287. {
  288. if ((date->tm_year < 0) || (date->tm_year > RT_RTC_YEARS_MAX))
  289. {
  290. return (RT_FALSE);
  291. }
  292. if ((date->tm_mon < 0) || (date->tm_mon > 11))
  293. {
  294. return (RT_FALSE);
  295. }
  296. if ((date->tm_mday < 1) || \
  297. (date->tm_mday > days_of_year_month(date->tm_year, date->tm_mon)))
  298. {
  299. return (RT_FALSE);
  300. }
  301. return (RT_TRUE);
  302. }
  303. static rt_err_t alarm_setup(rt_alarm_t alarm, struct tm *wktime)
  304. {
  305. rt_err_t ret = RT_ERROR;
  306. time_t timestamp = (time_t)0;
  307. struct tm *setup, now;
  308. setup = &alarm->wktime;
  309. *setup = *wktime;
  310. /* get time of now */
  311. get_timestamp(&timestamp);
  312. gmtime_r(&timestamp, &now);
  313. /* if these are a "don't care" value,we set them to now*/
  314. if ((setup->tm_sec > 59) || (setup->tm_sec < 0))
  315. setup->tm_sec = now.tm_sec;
  316. if ((setup->tm_min > 59) || (setup->tm_min < 0))
  317. setup->tm_min = now.tm_min;
  318. if ((setup->tm_hour > 23) || (setup->tm_hour < 0))
  319. setup->tm_hour = now.tm_hour;
  320. switch (alarm->flag & 0xFF00)
  321. {
  322. case RT_ALARM_SECOND:
  323. {
  324. alarm->wktime.tm_hour = now.tm_hour;
  325. alarm->wktime.tm_min = now.tm_min;
  326. alarm->wktime.tm_sec = now.tm_sec + 1;
  327. if (alarm->wktime.tm_sec > 59)
  328. {
  329. alarm->wktime.tm_sec = 0;
  330. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  331. if (alarm->wktime.tm_min > 59)
  332. {
  333. alarm->wktime.tm_min = 0;
  334. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  335. if (alarm->wktime.tm_hour > 23)
  336. {
  337. alarm->wktime.tm_hour = 0;
  338. }
  339. }
  340. }
  341. }
  342. break;
  343. case RT_ALARM_MINUTE:
  344. {
  345. alarm->wktime.tm_hour = now.tm_hour;
  346. alarm->wktime.tm_min = now.tm_min + 1;
  347. if (alarm->wktime.tm_min > 59)
  348. {
  349. alarm->wktime.tm_min = 0;
  350. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  351. if (alarm->wktime.tm_hour > 23)
  352. {
  353. alarm->wktime.tm_hour = 0;
  354. }
  355. }
  356. }
  357. break;
  358. case RT_ALARM_HOUR:
  359. {
  360. alarm->wktime.tm_hour = now.tm_hour + 1;
  361. if (alarm->wktime.tm_hour > 23)
  362. {
  363. alarm->wktime.tm_hour = 0;
  364. }
  365. }
  366. break;
  367. case RT_ALARM_DAILY:
  368. {
  369. /* do nothing but needed */
  370. }
  371. break;
  372. case RT_ALARM_ONESHOT:
  373. {
  374. /* if these are "don't care" value we set them to now */
  375. if (setup->tm_year == RT_ALARM_TM_NOW)
  376. setup->tm_year = now.tm_year;
  377. if (setup->tm_mon == RT_ALARM_TM_NOW)
  378. setup->tm_mon = now.tm_mon;
  379. if (setup->tm_mday == RT_ALARM_TM_NOW)
  380. setup->tm_mday = now.tm_mday;
  381. /* make sure the setup is valid */
  382. if (!is_valid_date(setup))
  383. goto _exit;
  384. }
  385. break;
  386. case RT_ALARM_WEEKLY:
  387. {
  388. /* if tm_wday is a "don't care" value we set it to now */
  389. if ((setup->tm_wday < 0) || (setup->tm_wday > 6))
  390. setup->tm_wday = now.tm_wday;
  391. }
  392. break;
  393. case RT_ALARM_MONTHLY:
  394. {
  395. /* if tm_mday is a "don't care" value we set it to now */
  396. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  397. setup->tm_mday = now.tm_mday;
  398. }
  399. break;
  400. case RT_ALARM_YAERLY:
  401. {
  402. /* if tm_mon is a "don't care" value we set it to now */
  403. if ((setup->tm_mon < 0) || (setup->tm_mon > 11))
  404. setup->tm_mon = now.tm_mon;
  405. if (setup->tm_mon == 1)
  406. {
  407. /* tm_mon is February */
  408. /* tm_mday should be 1~29.otherwise,it's a "don't care" value */
  409. if ((setup->tm_mday < 1) || (setup->tm_mday > 29))
  410. setup->tm_mday = now.tm_mday;
  411. }
  412. else if (((setup->tm_mon <= 6) && (setup->tm_mon % 2 == 0)) || \
  413. ((setup->tm_mon > 6) && (setup->tm_mon % 2 == 1)))
  414. {
  415. /* Jan,Mar,May,Jul,Aug,Oct,Dec */
  416. /* tm_mday should be 1~31.otherwise,it's a "don't care" value */
  417. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  418. setup->tm_mday = now.tm_mday;
  419. }
  420. else
  421. {
  422. /* tm_mday should be 1~30.otherwise,it's a "don't care" value */
  423. if ((setup->tm_mday < 1) || (setup->tm_mday > 30))
  424. setup->tm_mday = now.tm_mday;
  425. }
  426. }
  427. break;
  428. default:
  429. {
  430. goto _exit;
  431. }
  432. }
  433. if ((setup->tm_hour == 23) && (setup->tm_min == 59) && (setup->tm_sec == 59))
  434. {
  435. /*
  436. for insurance purposes, we will generate an alarm
  437. signal two seconds ahead of.
  438. */
  439. setup->tm_sec = 60 - RT_ALARM_DELAY;
  440. }
  441. /* set initialized state */
  442. alarm->flag |= RT_ALARM_STATE_INITED;
  443. ret = RT_EOK;
  444. _exit:
  445. return (ret);
  446. }
  447. /** \brief send a rtc alarm event
  448. *
  449. * \param dev pointer to RTC device(currently unused,you can ignore it)
  450. * \param event RTC event(currently unused)
  451. * \return none
  452. */
  453. void rt_alarm_update(rt_device_t dev, rt_uint32_t event)
  454. {
  455. rt_event_send(&_container.event, 1);
  456. }
  457. /** \brief modify the alarm setup
  458. *
  459. * \param alarm pointer to alarm
  460. * \param cmd control command
  461. * \param arg argument
  462. */
  463. rt_err_t rt_alarm_control(rt_alarm_t alarm, int cmd, void *arg)
  464. {
  465. rt_err_t ret = RT_ERROR;
  466. RT_ASSERT(alarm != RT_NULL);
  467. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  468. switch (cmd)
  469. {
  470. case RT_ALARM_CTRL_MODIFY:
  471. {
  472. struct rt_alarm_setup *setup;
  473. RT_ASSERT(arg != RT_NULL);
  474. setup = arg;
  475. rt_alarm_stop(alarm);
  476. alarm->flag = setup->flag & 0xFF00;
  477. alarm->wktime = setup->wktime;
  478. ret = alarm_setup(alarm, &alarm->wktime);
  479. }
  480. break;
  481. }
  482. rt_mutex_release(&_container.mutex);
  483. return (ret);
  484. }
  485. /** \brief start an alarm
  486. *
  487. * \param alarm pointer to alarm
  488. * \return RT_EOK
  489. */
  490. rt_err_t rt_alarm_start(rt_alarm_t alarm)
  491. {
  492. rt_int32_t sec_now, sec_old, sec_new;
  493. rt_err_t ret = RT_EOK;
  494. time_t timestamp = (time_t)0;
  495. struct tm now;
  496. if (alarm == RT_NULL)
  497. return (RT_ERROR);
  498. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  499. if (!(alarm->flag & RT_ALARM_STATE_START))
  500. {
  501. if (alarm_setup(alarm, &alarm->wktime) != RT_EOK)
  502. {
  503. ret = RT_ERROR;
  504. goto _exit;
  505. }
  506. /* get time of now */
  507. get_timestamp(&timestamp);
  508. gmtime_r(&timestamp, &now);
  509. alarm->flag |= RT_ALARM_STATE_START;
  510. /* set alarm */
  511. if (_container.current == RT_NULL)
  512. {
  513. ret = alarm_set(alarm);
  514. }
  515. else
  516. {
  517. sec_now = alarm_mkdaysec(&now);
  518. sec_old = alarm_mkdaysec(&_container.current->wktime);
  519. sec_new = alarm_mkdaysec(&alarm->wktime);
  520. if ((sec_new < sec_old) && (sec_new > sec_now))
  521. {
  522. ret = alarm_set(alarm);
  523. }
  524. else if ((sec_new > sec_now) && (sec_old < sec_now))
  525. {
  526. ret = alarm_set(alarm);
  527. }
  528. else if ((sec_new < sec_old) && (sec_old < sec_now))
  529. {
  530. ret = alarm_set(alarm);
  531. }
  532. else
  533. {
  534. ret = RT_EOK;
  535. goto _exit;
  536. }
  537. }
  538. if (ret == RT_EOK)
  539. {
  540. _container.current = alarm;
  541. }
  542. }
  543. _exit:
  544. rt_mutex_release(&_container.mutex);
  545. return (ret);
  546. }
  547. /** \brief stop an alarm
  548. *
  549. * \param alarm pointer to alarm
  550. * \return RT_EOK
  551. */
  552. rt_err_t rt_alarm_stop(rt_alarm_t alarm)
  553. {
  554. rt_err_t ret = RT_EOK;
  555. if (alarm == RT_NULL)
  556. return (RT_ERROR);
  557. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  558. if (!(alarm->flag & RT_ALARM_STATE_START))
  559. goto _exit;
  560. /* stop alarm */
  561. alarm->flag &= ~RT_ALARM_STATE_START;
  562. if (_container.current == alarm)
  563. {
  564. ret = alarm_set(alarm);
  565. _container.current = RT_NULL;
  566. }
  567. if (ret == RT_EOK)
  568. alarm_update(0);
  569. _exit:
  570. rt_mutex_release(&_container.mutex);
  571. return (ret);
  572. }
  573. /** \brief delete an alarm
  574. *
  575. * \param alarm pointer to alarm
  576. * \return RT_EOK
  577. */
  578. rt_err_t rt_alarm_delete(rt_alarm_t alarm)
  579. {
  580. rt_err_t ret = RT_EOK;
  581. if (alarm == RT_NULL)
  582. return RT_ERROR;
  583. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  584. /* stop the alarm */
  585. alarm->flag &= ~RT_ALARM_STATE_START;
  586. if (_container.current == alarm)
  587. {
  588. ret = alarm_set(alarm);
  589. _container.current = RT_NULL;
  590. /* set new alarm if necessary */
  591. alarm_update(0);
  592. }
  593. rt_list_remove(&alarm->list);
  594. rt_free(alarm);
  595. rt_mutex_release(&_container.mutex);
  596. return (ret);
  597. }
  598. /** \brief create an alarm
  599. *
  600. * \param flag set alarm mode e.g: RT_ALARM_DAILY
  601. * \param setup pointer to setup infomation
  602. */
  603. rt_alarm_t rt_alarm_create(rt_alarm_callback_t callback, struct rt_alarm_setup *setup)
  604. {
  605. struct rt_alarm *alarm;
  606. if (setup == RT_NULL)
  607. return (RT_NULL);
  608. alarm = rt_malloc(sizeof(struct rt_alarm));
  609. if (alarm == RT_NULL)
  610. return (RT_NULL);
  611. rt_list_init(&alarm->list);
  612. alarm->wktime = setup->wktime;
  613. alarm->flag = setup->flag & 0xFF00;
  614. alarm->callback = callback;
  615. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  616. rt_list_insert_after(&_container.head, &alarm->list);
  617. rt_mutex_release(&_container.mutex);
  618. return (alarm);
  619. }
  620. /** \brief rtc alarm service thread entry
  621. *
  622. */
  623. static void rt_alarmsvc_thread_init(void *param)
  624. {
  625. rt_uint32_t recv;
  626. _container.current = RT_NULL;
  627. while (1)
  628. {
  629. if (rt_event_recv(&_container.event, 0xFFFF,
  630. RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
  631. RT_WAITING_FOREVER, &recv) == RT_EOK)
  632. {
  633. alarm_update(recv);
  634. }
  635. }
  636. }
  637. struct _alarm_flag
  638. {
  639. const char* name;
  640. rt_uint32_t flag;
  641. };
  642. static const struct _alarm_flag _alarm_flag_tbl[] =
  643. {
  644. {"N", 0xffff}, /* none */
  645. {"O", RT_ALARM_ONESHOT}, /* only alarm onece */
  646. {"D", RT_ALARM_DAILY}, /* alarm everyday */
  647. {"W", RT_ALARM_WEEKLY}, /* alarm weekly at Monday or Friday etc. */
  648. {"Mo", RT_ALARM_MONTHLY}, /* alarm monthly at someday */
  649. {"Y", RT_ALARM_YAERLY}, /* alarm yearly at a certain date */
  650. {"H", RT_ALARM_HOUR}, /* alarm each hour at a certain min:second */
  651. {"M", RT_ALARM_MINUTE}, /* alarm each minute at a certain second */
  652. {"S", RT_ALARM_SECOND}, /* alarm each second */
  653. };
  654. static rt_uint8_t _alarm_flag_tbl_size = sizeof(_alarm_flag_tbl) / sizeof(_alarm_flag_tbl[0]);
  655. static rt_uint8_t get_alarm_flag_index(rt_uint32_t alarm_flag)
  656. {
  657. for (rt_uint8_t index = 0; index < _alarm_flag_tbl_size; index++)
  658. {
  659. alarm_flag &= 0xff00;
  660. if (alarm_flag == _alarm_flag_tbl[index].flag)
  661. {
  662. return index;
  663. }
  664. }
  665. return 0;
  666. }
  667. void rt_alarm_dump(void)
  668. {
  669. rt_list_t *next;
  670. rt_alarm_t alarm;
  671. rt_uint8_t index = 0;
  672. rt_kprintf("| id | YYYY-MM-DD hh:mm:ss | week | flag | en |\n");
  673. rt_kprintf("+----+---------------------+------+------+----+\n");
  674. for (next = _container.head.next; next != &_container.head; next = next->next)
  675. {
  676. alarm = rt_list_entry(next, struct rt_alarm, list);
  677. rt_uint8_t flag_index = get_alarm_flag_index(alarm->flag);
  678. rt_kprintf("| %2d | %04d-%02d-%02d %02d:%02d:%02d | %2d | %2s | %2d |\n",
  679. index++, alarm->wktime.tm_year + 1900, alarm->wktime.tm_mon + 1, alarm->wktime.tm_mday,
  680. alarm->wktime.tm_hour, alarm->wktime.tm_min, alarm->wktime.tm_sec,
  681. alarm->wktime.tm_wday, _alarm_flag_tbl[flag_index].name, alarm->flag & RT_ALARM_STATE_START);
  682. }
  683. rt_kprintf("+----+---------------------+------+------+----+\n");
  684. }
  685. MSH_CMD_EXPORT_ALIAS(rt_alarm_dump, rt_alarm_dump, dump alarm info);
  686. /** \brief initialize alarm service system
  687. *
  688. * \param none
  689. * \return none
  690. */
  691. int rt_alarm_system_init(void)
  692. {
  693. rt_thread_t tid;
  694. rt_list_init(&_container.head);
  695. rt_event_init(&_container.event, "alarmsvc", RT_IPC_FLAG_FIFO);
  696. rt_mutex_init(&_container.mutex, "alarmsvc", RT_IPC_FLAG_PRIO);
  697. tid = rt_thread_create("alarmsvc",
  698. rt_alarmsvc_thread_init, RT_NULL,
  699. 2048, 10, 5);
  700. if (tid != RT_NULL)
  701. rt_thread_startup(tid);
  702. return 0;
  703. }
  704. INIT_PREV_EXPORT(rt_alarm_system_init);
  705. #endif