mmu.c 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-01-10 bernard porting to AM1808
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <board.h>
  13. #include "cp15.h"
  14. #include "mm_page.h"
  15. #include "mmu.h"
  16. #include <mm_aspace.h>
  17. #include <tlb.h>
  18. #ifdef RT_USING_SMART
  19. #include <lwp_mm.h>
  20. #include <lwp_arch.h>
  21. #include "ioremap.h"
  22. #else
  23. #define KERNEL_VADDR_START 0
  24. #define PV_OFFSET 0
  25. #endif
  26. /* level1 page table, each entry for 1MB memory. */
  27. volatile unsigned long MMUTable[4 * 1024] __attribute__((aligned(16 * 1024)));
  28. unsigned long rt_hw_set_domain_register(unsigned long domain_val)
  29. {
  30. unsigned long old_domain;
  31. asm volatile ("mrc p15, 0, %0, c3, c0\n" : "=r" (old_domain));
  32. asm volatile ("mcr p15, 0, %0, c3, c0\n" : :"r" (domain_val) : "memory");
  33. return old_domain;
  34. }
  35. void rt_hw_mmu_setmtt(rt_uint32_t vaddrStart, rt_uint32_t vaddrEnd,
  36. rt_uint32_t paddrStart, rt_uint32_t attr)
  37. {
  38. volatile rt_uint32_t *pTT;
  39. volatile int i, nSec;
  40. pTT = (rt_uint32_t *)MMUTable + (vaddrStart >> 20);
  41. nSec = (vaddrEnd >> 20) - (vaddrStart >> 20);
  42. for(i = 0; i <= nSec; i++)
  43. {
  44. *pTT = attr | (((paddrStart >> 20) + i) << 20);
  45. pTT++;
  46. }
  47. }
  48. void rt_hw_init_mmu_table(struct mem_desc *mdesc, rt_uint32_t size)
  49. {
  50. /* set page table */
  51. for(; size > 0; size--)
  52. {
  53. rt_hw_mmu_setmtt(mdesc->vaddr_start, mdesc->vaddr_end,
  54. mdesc->paddr_start, mdesc->attr);
  55. mdesc++;
  56. }
  57. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, (void*)MMUTable, sizeof MMUTable);
  58. }
  59. void rt_hw_mmu_init(void)
  60. {
  61. rt_cpu_dcache_clean_flush();
  62. rt_cpu_icache_flush();
  63. rt_hw_cpu_dcache_disable();
  64. rt_hw_cpu_icache_disable();
  65. rt_cpu_mmu_disable();
  66. /*rt_hw_cpu_dump_page_table(MMUTable);*/
  67. rt_hw_set_domain_register(0x55555555);
  68. rt_cpu_tlb_set(MMUTable);
  69. rt_cpu_mmu_enable();
  70. rt_hw_cpu_icache_enable();
  71. rt_hw_cpu_dcache_enable();
  72. }
  73. int rt_hw_mmu_map_init(struct rt_aspace *aspace, void* v_address, size_t size, size_t *vtable, size_t pv_off)
  74. {
  75. size_t l1_off, va_s, va_e;
  76. if (!aspace || !vtable)
  77. {
  78. return -1;
  79. }
  80. va_s = (size_t)v_address;
  81. va_e = (size_t)v_address + size - 1;
  82. if ( va_e < va_s)
  83. {
  84. return -1;
  85. }
  86. va_s >>= ARCH_SECTION_SHIFT;
  87. va_e >>= ARCH_SECTION_SHIFT;
  88. if (va_s == 0)
  89. {
  90. return -1;
  91. }
  92. for (l1_off = va_s; l1_off <= va_e; l1_off++)
  93. {
  94. size_t v = vtable[l1_off];
  95. if (v & ARCH_MMU_USED_MASK)
  96. {
  97. return -1;
  98. }
  99. }
  100. #ifdef RT_USING_SMART
  101. rt_aspace_init(&rt_kernel_space, (void *)USER_VADDR_TOP, 0 - USER_VADDR_TOP, vtable);
  102. rt_ioremap_start = v_address;
  103. rt_ioremap_size = size;
  104. rt_mpr_start = rt_ioremap_start - rt_mpr_size;
  105. #else
  106. rt_aspace_init(&rt_kernel_space, (void *)0x1000, 0 - 0x1000, vtable);
  107. rt_mpr_start = (void *)0 - rt_mpr_size;
  108. #endif
  109. return 0;
  110. }
  111. int rt_hw_mmu_ioremap_init(rt_aspace_t aspace, void* v_address, size_t size)
  112. {
  113. #ifdef RT_IOREMAP_LATE
  114. size_t loop_va;
  115. size_t l1_off;
  116. size_t *mmu_l1, *mmu_l2;
  117. size_t sections;
  118. /* for kernel ioremap */
  119. if ((size_t)v_address < KERNEL_VADDR_START)
  120. {
  121. return -1;
  122. }
  123. /* must align to section */
  124. if ((size_t)v_address & ARCH_SECTION_MASK)
  125. {
  126. return -1;
  127. }
  128. /* must align to section */
  129. if (size & ARCH_SECTION_MASK)
  130. {
  131. return -1;
  132. }
  133. loop_va = (size_t)v_address;
  134. sections = (size >> ARCH_SECTION_SHIFT);
  135. while (sections--)
  136. {
  137. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  138. mmu_l1 = (size_t*)aspace->page_table + l1_off;
  139. RT_ASSERT((*mmu_l1 & ARCH_MMU_USED_MASK) == 0);
  140. mmu_l2 = (size_t*)rt_pages_alloc(0);
  141. if (mmu_l2)
  142. {
  143. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  144. /* cache maintain */
  145. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  146. *mmu_l1 = (((size_t)mmu_l2 + PV_OFFSET) | 0x1);
  147. /* cache maintain */
  148. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  149. }
  150. else
  151. {
  152. /* error */
  153. return -1;
  154. }
  155. loop_va += ARCH_SECTION_SIZE;
  156. }
  157. #endif
  158. return 0;
  159. }
  160. static void _kenrel_unmap_4K(unsigned long *lv0_tbl, void *v_addr)
  161. {
  162. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  163. size_t l1_off, l2_off;
  164. size_t *mmu_l1, *mmu_l2;
  165. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  166. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  167. mmu_l1 = (size_t *)lv0_tbl + l1_off;
  168. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  169. {
  170. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - PV_OFFSET);
  171. }
  172. else
  173. {
  174. return;
  175. }
  176. if (*(mmu_l2 + l2_off) & ARCH_MMU_USED_MASK)
  177. {
  178. *(mmu_l2 + l2_off) = 0;
  179. /* cache maintain */
  180. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  181. if (rt_pages_free(mmu_l2, 0))
  182. {
  183. *mmu_l1 = 0;
  184. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  185. }
  186. }
  187. loop_va += ARCH_PAGE_SIZE;
  188. }
  189. static int _kenrel_map_4K(unsigned long *lv0_tbl, void *v_addr, void *p_addr,
  190. size_t attr)
  191. {
  192. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  193. size_t loop_pa = (size_t)p_addr & ~ARCH_PAGE_MASK;
  194. size_t l1_off, l2_off;
  195. size_t *mmu_l1, *mmu_l2;
  196. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  197. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  198. mmu_l1 = (size_t *)lv0_tbl + l1_off;
  199. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  200. {
  201. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - PV_OFFSET);
  202. rt_page_ref_inc(mmu_l2, 0);
  203. }
  204. else
  205. {
  206. mmu_l2 = (size_t *)rt_pages_alloc(0);
  207. if (mmu_l2)
  208. {
  209. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  210. /* cache maintain */
  211. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  212. *mmu_l1 = (((size_t)mmu_l2 + PV_OFFSET) | 0x1);
  213. /* cache maintain */
  214. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  215. }
  216. else
  217. {
  218. /* error, quit */
  219. return -1;
  220. }
  221. }
  222. *(mmu_l2 + l2_off) = (loop_pa | attr);
  223. /* cache maintain */
  224. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  225. loop_va += ARCH_PAGE_SIZE;
  226. loop_pa += ARCH_PAGE_SIZE;
  227. return 0;
  228. }
  229. void *rt_hw_mmu_map(rt_aspace_t aspace, void *v_addr, void *p_addr, size_t size,
  230. size_t attr)
  231. {
  232. int ret = -1;
  233. void *unmap_va = v_addr;
  234. size_t npages = size >> ARCH_PAGE_SHIFT;
  235. // TODO trying with HUGEPAGE here
  236. while (npages--)
  237. {
  238. ret = _kenrel_map_4K(aspace->page_table, v_addr, p_addr, attr);
  239. if (ret != 0)
  240. {
  241. /* error, undo map */
  242. while (unmap_va != v_addr)
  243. {
  244. rt_enter_critical();
  245. _kenrel_unmap_4K(aspace->page_table, (void *)unmap_va);
  246. rt_exit_critical();
  247. unmap_va += ARCH_PAGE_SIZE;
  248. }
  249. break;
  250. }
  251. v_addr += ARCH_PAGE_SIZE;
  252. p_addr += ARCH_PAGE_SIZE;
  253. }
  254. if (ret == 0)
  255. {
  256. return v_addr;
  257. }
  258. return NULL;
  259. }
  260. void rt_hw_mmu_unmap(rt_aspace_t aspace, void *v_addr, size_t size)
  261. {
  262. // caller guarantee that v_addr & size are page aligned
  263. size_t npages = size >> ARCH_PAGE_SHIFT;
  264. if (!aspace->page_table)
  265. {
  266. return;
  267. }
  268. while (npages--)
  269. {
  270. rt_enter_critical();
  271. _kenrel_unmap_4K(aspace->page_table, v_addr);
  272. rt_exit_critical();
  273. v_addr += ARCH_PAGE_SIZE;
  274. }
  275. }
  276. void rt_hw_aspace_switch(rt_aspace_t aspace)
  277. {
  278. if (aspace != &rt_kernel_space)
  279. {
  280. void *pgtbl = aspace->page_table;
  281. pgtbl = _rt_kmem_v2p(pgtbl);
  282. rt_hw_mmu_switch(pgtbl);
  283. rt_hw_tlb_invalidate_all_local();
  284. }
  285. }
  286. void init_mm_setup(unsigned int *mtbl, unsigned int size, unsigned int pv_off)
  287. {
  288. unsigned int va;
  289. for (va = 0; va < 0x1000; va++)
  290. {
  291. unsigned int vaddr = (va << 20);
  292. if (vaddr >= KERNEL_VADDR_START && vaddr - KERNEL_VADDR_START < size)
  293. {
  294. mtbl[va] = ((va << 20) + pv_off) | NORMAL_MEM;
  295. }
  296. else if (vaddr >= (KERNEL_VADDR_START + pv_off) && vaddr - (KERNEL_VADDR_START + pv_off) < size)
  297. {
  298. mtbl[va] = (va << 20) | NORMAL_MEM;
  299. }
  300. else
  301. {
  302. mtbl[va] = 0;
  303. }
  304. }
  305. }
  306. void *rt_hw_mmu_v2p(rt_aspace_t aspace, void* v_addr)
  307. {
  308. size_t l1_off, l2_off;
  309. size_t *mmu_l1, *mmu_l2;
  310. size_t tmp;
  311. size_t pa;
  312. l1_off = (size_t)v_addr >> ARCH_SECTION_SHIFT;
  313. RT_ASSERT(aspace);
  314. mmu_l1 = (size_t*)aspace->page_table + l1_off;
  315. tmp = *mmu_l1;
  316. switch (tmp & ARCH_MMU_USED_MASK)
  317. {
  318. case 0: /* not used */
  319. break;
  320. case 1: /* page table */
  321. mmu_l2 = (size_t *)((tmp & ~ARCH_PAGE_TBL_MASK) - PV_OFFSET);
  322. l2_off = (((size_t)v_addr & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  323. pa = *(mmu_l2 + l2_off);
  324. if (pa & ARCH_MMU_USED_MASK)
  325. {
  326. if ((pa & ARCH_MMU_USED_MASK) == 1)
  327. {
  328. /* large page, not support */
  329. break;
  330. }
  331. pa &= ~(ARCH_PAGE_MASK);
  332. pa += ((size_t)v_addr & ARCH_PAGE_MASK);
  333. return (void*)pa;
  334. }
  335. break;
  336. case 2:
  337. case 3:
  338. /* section */
  339. if (tmp & ARCH_TYPE_SUPERSECTION)
  340. {
  341. /* super section, not support */
  342. break;
  343. }
  344. pa = (tmp & ~ARCH_SECTION_MASK);
  345. pa += ((size_t)v_addr & ARCH_SECTION_MASK);
  346. return (void*)pa;
  347. }
  348. return ARCH_MAP_FAILED;
  349. }
  350. int rt_hw_mmu_control(struct rt_aspace *aspace, void *vaddr, size_t size,
  351. enum rt_mmu_cntl cmd)
  352. {
  353. return -RT_ENOSYS;
  354. }