serial.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2006-03-13 bernard first version
  9. * 2012-05-15 lgnq modified according bernard's implementation.
  10. * 2012-05-28 bernard code cleanup
  11. * 2012-11-23 bernard fix compiler warning.
  12. * 2013-02-20 bernard use RT_SERIAL_RB_BUFSZ to define
  13. * the size of ring buffer.
  14. * 2014-07-10 bernard rewrite serial framework
  15. * 2014-12-31 bernard use open_flag for poll_tx stream mode.
  16. * 2015-05-19 Quintin fix DMA tx mod tx_dma->activated flag !=RT_FALSE BUG
  17. * in open function.
  18. * 2015-11-10 bernard fix the poll rx issue when there is no data.
  19. * 2016-05-10 armink add fifo mode to DMA rx when serial->config.bufsz != 0.
  20. * 2017-01-19 aubr.cool prevent change serial rx bufsz when serial is opened.
  21. * 2017-11-07 JasonJia fix data bits error issue when using tcsetattr.
  22. * 2017-11-15 JasonJia fix poll rx issue when data is full.
  23. * add TCFLSH and FIONREAD support.
  24. * 2018-12-08 Ernest Chen add DMA choice
  25. */
  26. #include <rthw.h>
  27. #include <rtthread.h>
  28. #include <rtdevice.h>
  29. #define DBG_TAG "UART"
  30. #define DBG_LVL DBG_INFO
  31. #include <rtdbg.h>
  32. #ifdef RT_USING_POSIX
  33. #include <dfs_posix.h>
  34. #include <dfs_poll.h>
  35. #ifdef RT_USING_POSIX_TERMIOS
  36. #include <posix_termios.h>
  37. #endif
  38. /* it's possible the 'getc/putc' is defined by stdio.h in gcc/newlib. */
  39. #ifdef getc
  40. #undef getc
  41. #endif
  42. #ifdef putc
  43. #undef putc
  44. #endif
  45. static rt_err_t serial_fops_rx_ind(rt_device_t dev, rt_size_t size)
  46. {
  47. rt_wqueue_wakeup(&(dev->wait_queue), (void*)POLLIN);
  48. return RT_EOK;
  49. }
  50. /* fops for serial */
  51. static int serial_fops_open(struct dfs_fd *fd)
  52. {
  53. rt_err_t ret = 0;
  54. rt_uint16_t flags = 0;
  55. rt_device_t device;
  56. device = (rt_device_t)fd->data;
  57. RT_ASSERT(device != RT_NULL);
  58. switch (fd->flags & O_ACCMODE)
  59. {
  60. case O_RDONLY:
  61. LOG_D("fops open: O_RDONLY!");
  62. flags = RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_RDONLY;
  63. break;
  64. case O_WRONLY:
  65. LOG_D("fops open: O_WRONLY!");
  66. flags = RT_DEVICE_FLAG_WRONLY;
  67. break;
  68. case O_RDWR:
  69. LOG_D("fops open: O_RDWR!");
  70. flags = RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_RDWR;
  71. break;
  72. default:
  73. LOG_E("fops open: unknown mode - %d!", fd->flags & O_ACCMODE);
  74. break;
  75. }
  76. if ((fd->flags & O_ACCMODE) != O_WRONLY)
  77. rt_device_set_rx_indicate(device, serial_fops_rx_ind);
  78. ret = rt_device_open(device, flags);
  79. if (ret == RT_EOK) return 0;
  80. return ret;
  81. }
  82. static int serial_fops_close(struct dfs_fd *fd)
  83. {
  84. rt_device_t device;
  85. device = (rt_device_t)fd->data;
  86. rt_device_set_rx_indicate(device, RT_NULL);
  87. rt_device_close(device);
  88. return 0;
  89. }
  90. static int serial_fops_ioctl(struct dfs_fd *fd, int cmd, void *args)
  91. {
  92. rt_device_t device;
  93. device = (rt_device_t)fd->data;
  94. switch (cmd)
  95. {
  96. case FIONREAD:
  97. break;
  98. case FIONWRITE:
  99. break;
  100. }
  101. return rt_device_control(device, cmd, args);
  102. }
  103. static int serial_fops_read(struct dfs_fd *fd, void *buf, size_t count)
  104. {
  105. int size = 0;
  106. rt_device_t device;
  107. device = (rt_device_t)fd->data;
  108. do
  109. {
  110. size = rt_device_read(device, -1, buf, count);
  111. if (size <= 0)
  112. {
  113. if (fd->flags & O_NONBLOCK)
  114. {
  115. size = -EAGAIN;
  116. break;
  117. }
  118. rt_wqueue_wait(&(device->wait_queue), 0, RT_WAITING_FOREVER);
  119. }
  120. }while (size <= 0);
  121. return size;
  122. }
  123. static int serial_fops_write(struct dfs_fd *fd, const void *buf, size_t count)
  124. {
  125. rt_device_t device;
  126. device = (rt_device_t)fd->data;
  127. return rt_device_write(device, -1, buf, count);
  128. }
  129. static int serial_fops_poll(struct dfs_fd *fd, struct rt_pollreq *req)
  130. {
  131. int mask = 0;
  132. int flags = 0;
  133. rt_device_t device;
  134. struct rt_serial_device *serial;
  135. device = (rt_device_t)fd->data;
  136. RT_ASSERT(device != RT_NULL);
  137. serial = (struct rt_serial_device *)device;
  138. /* only support POLLIN */
  139. flags = fd->flags & O_ACCMODE;
  140. if (flags == O_RDONLY || flags == O_RDWR)
  141. {
  142. rt_base_t level;
  143. struct rt_serial_rx_fifo* rx_fifo;
  144. rt_poll_add(&(device->wait_queue), req);
  145. rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx;
  146. level = rt_hw_interrupt_disable();
  147. if ((rx_fifo->get_index != rx_fifo->put_index) || (rx_fifo->get_index == rx_fifo->put_index && rx_fifo->is_full == RT_TRUE))
  148. mask |= POLLIN;
  149. rt_hw_interrupt_enable(level);
  150. }
  151. return mask;
  152. }
  153. const static struct dfs_file_ops _serial_fops =
  154. {
  155. serial_fops_open,
  156. serial_fops_close,
  157. serial_fops_ioctl,
  158. serial_fops_read,
  159. serial_fops_write,
  160. RT_NULL, /* flush */
  161. RT_NULL, /* lseek */
  162. RT_NULL, /* getdents */
  163. serial_fops_poll,
  164. };
  165. #endif
  166. /*
  167. * Serial poll routines
  168. */
  169. rt_inline int _serial_poll_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  170. {
  171. int ch;
  172. int size;
  173. RT_ASSERT(serial != RT_NULL);
  174. size = length;
  175. while (length)
  176. {
  177. ch = serial->ops->getc(serial);
  178. if (ch == -1) break;
  179. *data = ch;
  180. data ++; length --;
  181. if (ch == '\n') break;
  182. }
  183. return size - length;
  184. }
  185. rt_inline int _serial_poll_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  186. {
  187. int size;
  188. RT_ASSERT(serial != RT_NULL);
  189. size = length;
  190. while (length)
  191. {
  192. /*
  193. * to be polite with serial console add a line feed
  194. * to the carriage return character
  195. */
  196. if (*data == '\n' && (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
  197. {
  198. serial->ops->putc(serial, '\r');
  199. }
  200. serial->ops->putc(serial, *data);
  201. ++ data;
  202. -- length;
  203. }
  204. return size - length;
  205. }
  206. /*
  207. * Serial interrupt routines
  208. */
  209. rt_inline int _serial_int_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  210. {
  211. int size;
  212. struct rt_serial_rx_fifo* rx_fifo;
  213. RT_ASSERT(serial != RT_NULL);
  214. size = length;
  215. rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx;
  216. RT_ASSERT(rx_fifo != RT_NULL);
  217. /* read from software FIFO */
  218. while (length)
  219. {
  220. int ch;
  221. rt_base_t level;
  222. /* disable interrupt */
  223. level = rt_hw_interrupt_disable();
  224. /* there's no data: */
  225. if ((rx_fifo->get_index == rx_fifo->put_index) && (rx_fifo->is_full == RT_FALSE))
  226. {
  227. /* no data, enable interrupt and break out */
  228. rt_hw_interrupt_enable(level);
  229. break;
  230. }
  231. /* otherwise there's the data: */
  232. ch = rx_fifo->buffer[rx_fifo->get_index];
  233. rx_fifo->get_index += 1;
  234. if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
  235. if (rx_fifo->is_full == RT_TRUE)
  236. {
  237. rx_fifo->is_full = RT_FALSE;
  238. }
  239. /* enable interrupt */
  240. rt_hw_interrupt_enable(level);
  241. *data = ch & 0xff;
  242. data ++; length --;
  243. }
  244. return size - length;
  245. }
  246. rt_inline int _serial_int_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  247. {
  248. int size;
  249. struct rt_serial_tx_fifo *tx;
  250. RT_ASSERT(serial != RT_NULL);
  251. size = length;
  252. tx = (struct rt_serial_tx_fifo*) serial->serial_tx;
  253. RT_ASSERT(tx != RT_NULL);
  254. while (length)
  255. {
  256. if (serial->ops->putc(serial, *(char*)data) == -1)
  257. {
  258. rt_completion_wait(&(tx->completion), RT_WAITING_FOREVER);
  259. continue;
  260. }
  261. data ++; length --;
  262. }
  263. return size - length;
  264. }
  265. #if defined(RT_USING_POSIX) || defined(RT_SERIAL_USING_DMA)
  266. static rt_size_t _serial_fifo_calc_recved_len(struct rt_serial_device *serial)
  267. {
  268. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  269. RT_ASSERT(rx_fifo != RT_NULL);
  270. if (rx_fifo->put_index == rx_fifo->get_index)
  271. {
  272. return (rx_fifo->is_full == RT_FALSE ? 0 : serial->config.bufsz);
  273. }
  274. else
  275. {
  276. if (rx_fifo->put_index > rx_fifo->get_index)
  277. {
  278. return rx_fifo->put_index - rx_fifo->get_index;
  279. }
  280. else
  281. {
  282. return serial->config.bufsz - (rx_fifo->get_index - rx_fifo->put_index);
  283. }
  284. }
  285. }
  286. #endif /* RT_USING_POSIX || RT_SERIAL_USING_DMA */
  287. #ifdef RT_SERIAL_USING_DMA
  288. /**
  289. * Calculate DMA received data length.
  290. *
  291. * @param serial serial device
  292. *
  293. * @return length
  294. */
  295. static rt_size_t rt_dma_calc_recved_len(struct rt_serial_device *serial)
  296. {
  297. return _serial_fifo_calc_recved_len(serial);
  298. }
  299. /**
  300. * Read data finish by DMA mode then update the get index for receive fifo.
  301. *
  302. * @param serial serial device
  303. * @param len get data length for this operate
  304. */
  305. static void rt_dma_recv_update_get_index(struct rt_serial_device *serial, rt_size_t len)
  306. {
  307. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  308. RT_ASSERT(rx_fifo != RT_NULL);
  309. RT_ASSERT(len <= rt_dma_calc_recved_len(serial));
  310. if (rx_fifo->is_full && len != 0) rx_fifo->is_full = RT_FALSE;
  311. rx_fifo->get_index += len;
  312. if (rx_fifo->get_index >= serial->config.bufsz)
  313. {
  314. rx_fifo->get_index %= serial->config.bufsz;
  315. }
  316. }
  317. /**
  318. * DMA received finish then update put index for receive fifo.
  319. *
  320. * @param serial serial device
  321. * @param len received length for this transmit
  322. */
  323. static void rt_dma_recv_update_put_index(struct rt_serial_device *serial, rt_size_t len)
  324. {
  325. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  326. RT_ASSERT(rx_fifo != RT_NULL);
  327. if (rx_fifo->get_index <= rx_fifo->put_index)
  328. {
  329. rx_fifo->put_index += len;
  330. /* beyond the fifo end */
  331. if (rx_fifo->put_index >= serial->config.bufsz)
  332. {
  333. rx_fifo->put_index %= serial->config.bufsz;
  334. /* force overwrite get index */
  335. if (rx_fifo->put_index >= rx_fifo->get_index)
  336. {
  337. rx_fifo->is_full = RT_TRUE;
  338. }
  339. }
  340. }
  341. else
  342. {
  343. rx_fifo->put_index += len;
  344. if (rx_fifo->put_index >= rx_fifo->get_index)
  345. {
  346. /* beyond the fifo end */
  347. if (rx_fifo->put_index >= serial->config.bufsz)
  348. {
  349. rx_fifo->put_index %= serial->config.bufsz;
  350. }
  351. /* force overwrite get index */
  352. rx_fifo->is_full = RT_TRUE;
  353. }
  354. }
  355. if(rx_fifo->is_full == RT_TRUE)
  356. {
  357. rx_fifo->get_index = rx_fifo->put_index;
  358. }
  359. }
  360. /*
  361. * Serial DMA routines
  362. */
  363. rt_inline int _serial_dma_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  364. {
  365. rt_base_t level;
  366. RT_ASSERT((serial != RT_NULL) && (data != RT_NULL));
  367. level = rt_hw_interrupt_disable();
  368. if (serial->config.bufsz == 0)
  369. {
  370. int result = RT_EOK;
  371. struct rt_serial_rx_dma *rx_dma;
  372. rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx;
  373. RT_ASSERT(rx_dma != RT_NULL);
  374. if (rx_dma->activated != RT_TRUE)
  375. {
  376. rx_dma->activated = RT_TRUE;
  377. RT_ASSERT(serial->ops->dma_transmit != RT_NULL);
  378. serial->ops->dma_transmit(serial, data, length, RT_SERIAL_DMA_RX);
  379. }
  380. else result = -RT_EBUSY;
  381. rt_hw_interrupt_enable(level);
  382. if (result == RT_EOK) return length;
  383. rt_set_errno(result);
  384. return 0;
  385. }
  386. else
  387. {
  388. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  389. rt_size_t recv_len = 0, fifo_recved_len = rt_dma_calc_recved_len(serial);
  390. RT_ASSERT(rx_fifo != RT_NULL);
  391. if (length < (int)fifo_recved_len)
  392. recv_len = length;
  393. else
  394. recv_len = fifo_recved_len;
  395. if (rx_fifo->get_index + recv_len < serial->config.bufsz)
  396. rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index, recv_len);
  397. else
  398. {
  399. rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index,
  400. serial->config.bufsz - rx_fifo->get_index);
  401. rt_memcpy(data + serial->config.bufsz - rx_fifo->get_index, rx_fifo->buffer,
  402. recv_len + rx_fifo->get_index - serial->config.bufsz);
  403. }
  404. rt_dma_recv_update_get_index(serial, recv_len);
  405. rt_hw_interrupt_enable(level);
  406. return recv_len;
  407. }
  408. }
  409. rt_inline int _serial_dma_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  410. {
  411. rt_base_t level;
  412. rt_err_t result;
  413. struct rt_serial_tx_dma *tx_dma;
  414. tx_dma = (struct rt_serial_tx_dma*)(serial->serial_tx);
  415. result = rt_data_queue_push(&(tx_dma->data_queue), data, length, RT_WAITING_FOREVER);
  416. if (result == RT_EOK)
  417. {
  418. level = rt_hw_interrupt_disable();
  419. if (tx_dma->activated != RT_TRUE)
  420. {
  421. tx_dma->activated = RT_TRUE;
  422. rt_hw_interrupt_enable(level);
  423. /* make a DMA transfer */
  424. serial->ops->dma_transmit(serial, (rt_uint8_t *)data, length, RT_SERIAL_DMA_TX);
  425. }
  426. else
  427. {
  428. rt_hw_interrupt_enable(level);
  429. }
  430. return length;
  431. }
  432. else
  433. {
  434. rt_set_errno(result);
  435. return 0;
  436. }
  437. }
  438. #endif /* RT_SERIAL_USING_DMA */
  439. /* RT-Thread Device Interface */
  440. /*
  441. * This function initializes serial device.
  442. */
  443. static rt_err_t rt_serial_init(struct rt_device *dev)
  444. {
  445. rt_err_t result = RT_EOK;
  446. struct rt_serial_device *serial;
  447. RT_ASSERT(dev != RT_NULL);
  448. serial = (struct rt_serial_device *)dev;
  449. /* initialize rx/tx */
  450. serial->serial_rx = RT_NULL;
  451. serial->serial_tx = RT_NULL;
  452. /* apply configuration */
  453. if (serial->ops->configure)
  454. result = serial->ops->configure(serial, &serial->config);
  455. return result;
  456. }
  457. static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
  458. {
  459. rt_uint16_t stream_flag = 0;
  460. struct rt_serial_device *serial;
  461. RT_ASSERT(dev != RT_NULL);
  462. serial = (struct rt_serial_device *)dev;
  463. LOG_D("open serial device: 0x%08x with open flag: 0x%04x",
  464. dev, oflag);
  465. /* check device flag with the open flag */
  466. if ((oflag & RT_DEVICE_FLAG_DMA_RX) && !(dev->flag & RT_DEVICE_FLAG_DMA_RX))
  467. return -RT_EIO;
  468. if ((oflag & RT_DEVICE_FLAG_DMA_TX) && !(dev->flag & RT_DEVICE_FLAG_DMA_TX))
  469. return -RT_EIO;
  470. if ((oflag & RT_DEVICE_FLAG_INT_RX) && !(dev->flag & RT_DEVICE_FLAG_INT_RX))
  471. return -RT_EIO;
  472. if ((oflag & RT_DEVICE_FLAG_INT_TX) && !(dev->flag & RT_DEVICE_FLAG_INT_TX))
  473. return -RT_EIO;
  474. /* keep steam flag */
  475. if ((oflag & RT_DEVICE_FLAG_STREAM) || (dev->open_flag & RT_DEVICE_FLAG_STREAM))
  476. stream_flag = RT_DEVICE_FLAG_STREAM;
  477. /* get open flags */
  478. dev->open_flag = oflag & 0xff;
  479. /* initialize the Rx/Tx structure according to open flag */
  480. if (serial->serial_rx == RT_NULL)
  481. {
  482. if (oflag & RT_DEVICE_FLAG_INT_RX)
  483. {
  484. struct rt_serial_rx_fifo* rx_fifo;
  485. rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
  486. serial->config.bufsz);
  487. RT_ASSERT(rx_fifo != RT_NULL);
  488. rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
  489. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  490. rx_fifo->put_index = 0;
  491. rx_fifo->get_index = 0;
  492. rx_fifo->is_full = RT_FALSE;
  493. serial->serial_rx = rx_fifo;
  494. dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
  495. /* configure low level device */
  496. serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX);
  497. }
  498. #ifdef RT_SERIAL_USING_DMA
  499. else if (oflag & RT_DEVICE_FLAG_DMA_RX)
  500. {
  501. if (serial->config.bufsz == 0) {
  502. struct rt_serial_rx_dma* rx_dma;
  503. rx_dma = (struct rt_serial_rx_dma*) rt_malloc (sizeof(struct rt_serial_rx_dma));
  504. RT_ASSERT(rx_dma != RT_NULL);
  505. rx_dma->activated = RT_FALSE;
  506. serial->serial_rx = rx_dma;
  507. } else {
  508. struct rt_serial_rx_fifo* rx_fifo;
  509. rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
  510. serial->config.bufsz);
  511. RT_ASSERT(rx_fifo != RT_NULL);
  512. rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
  513. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  514. rx_fifo->put_index = 0;
  515. rx_fifo->get_index = 0;
  516. rx_fifo->is_full = RT_FALSE;
  517. serial->serial_rx = rx_fifo;
  518. /* configure fifo address and length to low level device */
  519. serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_DEVICE_FLAG_DMA_RX);
  520. }
  521. dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
  522. }
  523. #endif /* RT_SERIAL_USING_DMA */
  524. else
  525. {
  526. serial->serial_rx = RT_NULL;
  527. }
  528. }
  529. else
  530. {
  531. if (oflag & RT_DEVICE_FLAG_INT_RX)
  532. dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
  533. #ifdef RT_SERIAL_USING_DMA
  534. else if (oflag & RT_DEVICE_FLAG_DMA_RX)
  535. dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
  536. #endif /* RT_SERIAL_USING_DMA */
  537. }
  538. if (serial->serial_tx == RT_NULL)
  539. {
  540. if (oflag & RT_DEVICE_FLAG_INT_TX)
  541. {
  542. struct rt_serial_tx_fifo *tx_fifo;
  543. tx_fifo = (struct rt_serial_tx_fifo*) rt_malloc(sizeof(struct rt_serial_tx_fifo));
  544. RT_ASSERT(tx_fifo != RT_NULL);
  545. rt_completion_init(&(tx_fifo->completion));
  546. serial->serial_tx = tx_fifo;
  547. dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
  548. /* configure low level device */
  549. serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_TX);
  550. }
  551. #ifdef RT_SERIAL_USING_DMA
  552. else if (oflag & RT_DEVICE_FLAG_DMA_TX)
  553. {
  554. struct rt_serial_tx_dma* tx_dma;
  555. tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma));
  556. RT_ASSERT(tx_dma != RT_NULL);
  557. tx_dma->activated = RT_FALSE;
  558. rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL);
  559. serial->serial_tx = tx_dma;
  560. dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
  561. /* configure low level device */
  562. serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *)RT_DEVICE_FLAG_DMA_TX);
  563. }
  564. #endif /* RT_SERIAL_USING_DMA */
  565. else
  566. {
  567. serial->serial_tx = RT_NULL;
  568. }
  569. }
  570. else
  571. {
  572. if (oflag & RT_DEVICE_FLAG_INT_TX)
  573. dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
  574. #ifdef RT_SERIAL_USING_DMA
  575. else if (oflag & RT_DEVICE_FLAG_DMA_TX)
  576. dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
  577. #endif /* RT_SERIAL_USING_DMA */
  578. }
  579. /* set stream flag */
  580. dev->open_flag |= stream_flag;
  581. return RT_EOK;
  582. }
  583. static rt_err_t rt_serial_close(struct rt_device *dev)
  584. {
  585. struct rt_serial_device *serial;
  586. RT_ASSERT(dev != RT_NULL);
  587. serial = (struct rt_serial_device *)dev;
  588. /* this device has more reference count */
  589. if (dev->ref_count > 1) return RT_EOK;
  590. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  591. {
  592. struct rt_serial_rx_fifo* rx_fifo;
  593. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  594. RT_ASSERT(rx_fifo != RT_NULL);
  595. rt_free(rx_fifo);
  596. serial->serial_rx = RT_NULL;
  597. dev->open_flag &= ~RT_DEVICE_FLAG_INT_RX;
  598. /* configure low level device */
  599. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_RX);
  600. }
  601. #ifdef RT_SERIAL_USING_DMA
  602. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
  603. {
  604. if (serial->config.bufsz == 0) {
  605. struct rt_serial_rx_dma* rx_dma;
  606. rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx;
  607. RT_ASSERT(rx_dma != RT_NULL);
  608. rt_free(rx_dma);
  609. } else {
  610. struct rt_serial_rx_fifo* rx_fifo;
  611. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  612. RT_ASSERT(rx_fifo != RT_NULL);
  613. rt_free(rx_fifo);
  614. }
  615. /* configure low level device */
  616. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *) RT_DEVICE_FLAG_DMA_RX);
  617. serial->serial_rx = RT_NULL;
  618. dev->open_flag &= ~RT_DEVICE_FLAG_DMA_RX;
  619. }
  620. #endif /* RT_SERIAL_USING_DMA */
  621. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  622. {
  623. struct rt_serial_tx_fifo* tx_fifo;
  624. tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
  625. RT_ASSERT(tx_fifo != RT_NULL);
  626. rt_free(tx_fifo);
  627. serial->serial_tx = RT_NULL;
  628. dev->open_flag &= ~RT_DEVICE_FLAG_INT_TX;
  629. /* configure low level device */
  630. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_TX);
  631. }
  632. #ifdef RT_SERIAL_USING_DMA
  633. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
  634. {
  635. struct rt_serial_tx_dma* tx_dma;
  636. tx_dma = (struct rt_serial_tx_dma*)serial->serial_tx;
  637. RT_ASSERT(tx_dma != RT_NULL);
  638. rt_free(tx_dma);
  639. serial->serial_tx = RT_NULL;
  640. dev->open_flag &= ~RT_DEVICE_FLAG_DMA_TX;
  641. }
  642. #endif /* RT_SERIAL_USING_DMA */
  643. return RT_EOK;
  644. }
  645. static rt_size_t rt_serial_read(struct rt_device *dev,
  646. rt_off_t pos,
  647. void *buffer,
  648. rt_size_t size)
  649. {
  650. struct rt_serial_device *serial;
  651. RT_ASSERT(dev != RT_NULL);
  652. if (size == 0) return 0;
  653. serial = (struct rt_serial_device *)dev;
  654. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  655. {
  656. return _serial_int_rx(serial, (rt_uint8_t *)buffer, size);
  657. }
  658. #ifdef RT_SERIAL_USING_DMA
  659. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
  660. {
  661. return _serial_dma_rx(serial, (rt_uint8_t *)buffer, size);
  662. }
  663. #endif /* RT_SERIAL_USING_DMA */
  664. return _serial_poll_rx(serial, (rt_uint8_t *)buffer, size);
  665. }
  666. static rt_size_t rt_serial_write(struct rt_device *dev,
  667. rt_off_t pos,
  668. const void *buffer,
  669. rt_size_t size)
  670. {
  671. struct rt_serial_device *serial;
  672. RT_ASSERT(dev != RT_NULL);
  673. if (size == 0) return 0;
  674. serial = (struct rt_serial_device *)dev;
  675. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  676. {
  677. return _serial_int_tx(serial, (const rt_uint8_t *)buffer, size);
  678. }
  679. #ifdef RT_SERIAL_USING_DMA
  680. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
  681. {
  682. return _serial_dma_tx(serial, (const rt_uint8_t *)buffer, size);
  683. }
  684. #endif /* RT_SERIAL_USING_DMA */
  685. else
  686. {
  687. return _serial_poll_tx(serial, (const rt_uint8_t *)buffer, size);
  688. }
  689. }
  690. #ifdef RT_USING_POSIX_TERMIOS
  691. struct speed_baudrate_item
  692. {
  693. speed_t speed;
  694. int baudrate;
  695. };
  696. const static struct speed_baudrate_item _tbl[] =
  697. {
  698. {B2400, BAUD_RATE_2400},
  699. {B4800, BAUD_RATE_4800},
  700. {B9600, BAUD_RATE_9600},
  701. {B19200, BAUD_RATE_19200},
  702. {B38400, BAUD_RATE_38400},
  703. {B57600, BAUD_RATE_57600},
  704. {B115200, BAUD_RATE_115200},
  705. {B230400, BAUD_RATE_230400},
  706. {B460800, BAUD_RATE_460800},
  707. {B921600, BAUD_RATE_921600},
  708. {B2000000, BAUD_RATE_2000000},
  709. {B3000000, BAUD_RATE_3000000},
  710. };
  711. static speed_t _get_speed(int baudrate)
  712. {
  713. int index;
  714. for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++)
  715. {
  716. if (_tbl[index].baudrate == baudrate)
  717. return _tbl[index].speed;
  718. }
  719. return B0;
  720. }
  721. static int _get_baudrate(speed_t speed)
  722. {
  723. int index;
  724. for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++)
  725. {
  726. if (_tbl[index].speed == speed)
  727. return _tbl[index].baudrate;
  728. }
  729. return 0;
  730. }
  731. static void _tc_flush(struct rt_serial_device *serial, int queue)
  732. {
  733. rt_base_t level;
  734. int ch = -1;
  735. struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
  736. struct rt_device *device = RT_NULL;
  737. RT_ASSERT(serial != RT_NULL);
  738. device = &(serial->parent);
  739. rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  740. switch(queue)
  741. {
  742. case TCIFLUSH:
  743. case TCIOFLUSH:
  744. RT_ASSERT(rx_fifo != RT_NULL);
  745. if((device->open_flag & RT_DEVICE_FLAG_INT_RX) || (device->open_flag & RT_DEVICE_FLAG_DMA_RX))
  746. {
  747. RT_ASSERT(RT_NULL != rx_fifo);
  748. level = rt_hw_interrupt_disable();
  749. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  750. rx_fifo->put_index = 0;
  751. rx_fifo->get_index = 0;
  752. rx_fifo->is_full = RT_FALSE;
  753. rt_hw_interrupt_enable(level);
  754. }
  755. else
  756. {
  757. while (1)
  758. {
  759. ch = serial->ops->getc(serial);
  760. if (ch == -1) break;
  761. }
  762. }
  763. break;
  764. case TCOFLUSH:
  765. break;
  766. }
  767. }
  768. #endif
  769. static rt_err_t rt_serial_control(struct rt_device *dev,
  770. int cmd,
  771. void *args)
  772. {
  773. rt_err_t ret = RT_EOK;
  774. struct rt_serial_device *serial;
  775. RT_ASSERT(dev != RT_NULL);
  776. serial = (struct rt_serial_device *)dev;
  777. switch (cmd)
  778. {
  779. case RT_DEVICE_CTRL_SUSPEND:
  780. /* suspend device */
  781. dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
  782. break;
  783. case RT_DEVICE_CTRL_RESUME:
  784. /* resume device */
  785. dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
  786. break;
  787. case RT_DEVICE_CTRL_CONFIG:
  788. if (args)
  789. {
  790. struct serial_configure *pconfig = (struct serial_configure *) args;
  791. if (pconfig->bufsz != serial->config.bufsz && serial->parent.ref_count)
  792. {
  793. /*can not change buffer size*/
  794. return RT_EBUSY;
  795. }
  796. /* set serial configure */
  797. serial->config = *pconfig;
  798. if (serial->parent.ref_count)
  799. {
  800. /* serial device has been opened, to configure it */
  801. serial->ops->configure(serial, (struct serial_configure *) args);
  802. }
  803. }
  804. break;
  805. #ifdef RT_USING_POSIX_TERMIOS
  806. case TCGETA:
  807. {
  808. struct termios *tio = (struct termios*)args;
  809. if (tio == RT_NULL) return -RT_EINVAL;
  810. tio->c_iflag = 0;
  811. tio->c_oflag = 0;
  812. tio->c_lflag = 0;
  813. /* update oflag for console device */
  814. if (rt_console_get_device() == dev)
  815. tio->c_oflag = OPOST | ONLCR;
  816. /* set cflag */
  817. tio->c_cflag = 0;
  818. if (serial->config.data_bits == DATA_BITS_5)
  819. tio->c_cflag = CS5;
  820. else if (serial->config.data_bits == DATA_BITS_6)
  821. tio->c_cflag = CS6;
  822. else if (serial->config.data_bits == DATA_BITS_7)
  823. tio->c_cflag = CS7;
  824. else if (serial->config.data_bits == DATA_BITS_8)
  825. tio->c_cflag = CS8;
  826. if (serial->config.stop_bits == STOP_BITS_2)
  827. tio->c_cflag |= CSTOPB;
  828. if (serial->config.parity == PARITY_EVEN)
  829. tio->c_cflag |= PARENB;
  830. else if (serial->config.parity == PARITY_ODD)
  831. tio->c_cflag |= (PARODD | PARENB);
  832. cfsetospeed(tio, _get_speed(serial->config.baud_rate));
  833. }
  834. break;
  835. case TCSETAW:
  836. case TCSETAF:
  837. case TCSETA:
  838. {
  839. int baudrate;
  840. struct serial_configure config;
  841. struct termios *tio = (struct termios*)args;
  842. if (tio == RT_NULL) return -RT_EINVAL;
  843. config = serial->config;
  844. baudrate = _get_baudrate(cfgetospeed(tio));
  845. config.baud_rate = baudrate;
  846. switch (tio->c_cflag & CSIZE)
  847. {
  848. case CS5:
  849. config.data_bits = DATA_BITS_5;
  850. break;
  851. case CS6:
  852. config.data_bits = DATA_BITS_6;
  853. break;
  854. case CS7:
  855. config.data_bits = DATA_BITS_7;
  856. break;
  857. default:
  858. config.data_bits = DATA_BITS_8;
  859. break;
  860. }
  861. if (tio->c_cflag & CSTOPB) config.stop_bits = STOP_BITS_2;
  862. else config.stop_bits = STOP_BITS_1;
  863. if (tio->c_cflag & PARENB)
  864. {
  865. if (tio->c_cflag & PARODD) config.parity = PARITY_ODD;
  866. else config.parity = PARITY_EVEN;
  867. }
  868. else config.parity = PARITY_NONE;
  869. serial->ops->configure(serial, &config);
  870. }
  871. break;
  872. case TCFLSH:
  873. {
  874. int queue = (int)args;
  875. _tc_flush(serial, queue);
  876. }
  877. break;
  878. case TCXONC:
  879. break;
  880. #endif
  881. #ifdef RT_USING_POSIX
  882. case FIONREAD:
  883. {
  884. rt_size_t recved = 0;
  885. rt_base_t level;
  886. level = rt_hw_interrupt_disable();
  887. recved = _serial_fifo_calc_recved_len(serial);
  888. rt_hw_interrupt_enable(level);
  889. *(rt_size_t *)args = recved;
  890. }
  891. break;
  892. #endif
  893. default :
  894. /* control device */
  895. ret = serial->ops->control(serial, cmd, args);
  896. break;
  897. }
  898. return ret;
  899. }
  900. #ifdef RT_USING_DEVICE_OPS
  901. const static struct rt_device_ops serial_ops =
  902. {
  903. rt_serial_init,
  904. rt_serial_open,
  905. rt_serial_close,
  906. rt_serial_read,
  907. rt_serial_write,
  908. rt_serial_control
  909. };
  910. #endif
  911. /*
  912. * serial register
  913. */
  914. rt_err_t rt_hw_serial_register(struct rt_serial_device *serial,
  915. const char *name,
  916. rt_uint32_t flag,
  917. void *data)
  918. {
  919. rt_err_t ret;
  920. struct rt_device *device;
  921. RT_ASSERT(serial != RT_NULL);
  922. device = &(serial->parent);
  923. device->type = RT_Device_Class_Char;
  924. device->rx_indicate = RT_NULL;
  925. device->tx_complete = RT_NULL;
  926. #ifdef RT_USING_DEVICE_OPS
  927. device->ops = &serial_ops;
  928. #else
  929. device->init = rt_serial_init;
  930. device->open = rt_serial_open;
  931. device->close = rt_serial_close;
  932. device->read = rt_serial_read;
  933. device->write = rt_serial_write;
  934. device->control = rt_serial_control;
  935. #endif
  936. device->user_data = data;
  937. /* register a character device */
  938. ret = rt_device_register(device, name, flag);
  939. #if defined(RT_USING_POSIX)
  940. /* set fops */
  941. device->fops = &_serial_fops;
  942. #endif
  943. return ret;
  944. }
  945. /* ISR for serial interrupt */
  946. void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
  947. {
  948. switch (event & 0xff)
  949. {
  950. case RT_SERIAL_EVENT_RX_IND:
  951. {
  952. int ch = -1;
  953. rt_base_t level;
  954. struct rt_serial_rx_fifo* rx_fifo;
  955. /* interrupt mode receive */
  956. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  957. RT_ASSERT(rx_fifo != RT_NULL);
  958. while (1)
  959. {
  960. ch = serial->ops->getc(serial);
  961. if (ch == -1) break;
  962. /* disable interrupt */
  963. level = rt_hw_interrupt_disable();
  964. rx_fifo->buffer[rx_fifo->put_index] = ch;
  965. rx_fifo->put_index += 1;
  966. if (rx_fifo->put_index >= serial->config.bufsz) rx_fifo->put_index = 0;
  967. /* if the next position is read index, discard this 'read char' */
  968. if (rx_fifo->put_index == rx_fifo->get_index)
  969. {
  970. rx_fifo->get_index += 1;
  971. rx_fifo->is_full = RT_TRUE;
  972. if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
  973. }
  974. /* enable interrupt */
  975. rt_hw_interrupt_enable(level);
  976. }
  977. /* invoke callback */
  978. if (serial->parent.rx_indicate != RT_NULL)
  979. {
  980. rt_size_t rx_length;
  981. /* get rx length */
  982. level = rt_hw_interrupt_disable();
  983. rx_length = (rx_fifo->put_index >= rx_fifo->get_index)? (rx_fifo->put_index - rx_fifo->get_index):
  984. (serial->config.bufsz - (rx_fifo->get_index - rx_fifo->put_index));
  985. rt_hw_interrupt_enable(level);
  986. if (rx_length)
  987. {
  988. serial->parent.rx_indicate(&serial->parent, rx_length);
  989. }
  990. }
  991. break;
  992. }
  993. case RT_SERIAL_EVENT_TX_DONE:
  994. {
  995. struct rt_serial_tx_fifo* tx_fifo;
  996. tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
  997. rt_completion_done(&(tx_fifo->completion));
  998. break;
  999. }
  1000. #ifdef RT_SERIAL_USING_DMA
  1001. case RT_SERIAL_EVENT_TX_DMADONE:
  1002. {
  1003. const void *data_ptr;
  1004. rt_size_t data_size;
  1005. const void *last_data_ptr;
  1006. struct rt_serial_tx_dma *tx_dma;
  1007. tx_dma = (struct rt_serial_tx_dma*) serial->serial_tx;
  1008. rt_data_queue_pop(&(tx_dma->data_queue), &last_data_ptr, &data_size, 0);
  1009. if (rt_data_queue_peak(&(tx_dma->data_queue), &data_ptr, &data_size) == RT_EOK)
  1010. {
  1011. /* transmit next data node */
  1012. tx_dma->activated = RT_TRUE;
  1013. serial->ops->dma_transmit(serial, (rt_uint8_t *)data_ptr, data_size, RT_SERIAL_DMA_TX);
  1014. }
  1015. else
  1016. {
  1017. tx_dma->activated = RT_FALSE;
  1018. }
  1019. /* invoke callback */
  1020. if (serial->parent.tx_complete != RT_NULL)
  1021. {
  1022. serial->parent.tx_complete(&serial->parent, (void*)last_data_ptr);
  1023. }
  1024. break;
  1025. }
  1026. case RT_SERIAL_EVENT_RX_DMADONE:
  1027. {
  1028. int length;
  1029. rt_base_t level;
  1030. /* get DMA rx length */
  1031. length = (event & (~0xff)) >> 8;
  1032. if (serial->config.bufsz == 0)
  1033. {
  1034. struct rt_serial_rx_dma* rx_dma;
  1035. rx_dma = (struct rt_serial_rx_dma*) serial->serial_rx;
  1036. RT_ASSERT(rx_dma != RT_NULL);
  1037. RT_ASSERT(serial->parent.rx_indicate != RT_NULL);
  1038. serial->parent.rx_indicate(&(serial->parent), length);
  1039. rx_dma->activated = RT_FALSE;
  1040. }
  1041. else
  1042. {
  1043. /* disable interrupt */
  1044. level = rt_hw_interrupt_disable();
  1045. /* update fifo put index */
  1046. rt_dma_recv_update_put_index(serial, length);
  1047. /* calculate received total length */
  1048. length = rt_dma_calc_recved_len(serial);
  1049. /* enable interrupt */
  1050. rt_hw_interrupt_enable(level);
  1051. /* invoke callback */
  1052. if (serial->parent.rx_indicate != RT_NULL)
  1053. {
  1054. serial->parent.rx_indicate(&(serial->parent), length);
  1055. }
  1056. }
  1057. break;
  1058. }
  1059. #endif /* RT_SERIAL_USING_DMA */
  1060. }
  1061. }