board.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026
  1. /*
  2. * Copyright (c) 2021 hpmicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_dram_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_pwm_drv.h"
  21. #include "hpm_trgm_drv.h"
  22. #include "hpm_pllctl_drv.h"
  23. static board_timer_cb timer_cb;
  24. /**
  25. * @brief FLASH configuration option definitions:
  26. * option[0]:
  27. * [31:16] 0xfcf9 - FLASH configuration option tag
  28. * [15:4] 0 - Reserved
  29. * [3:0] option words (exclude option[0])
  30. * option[1]:
  31. * [31:28] Flash probe type
  32. * 0 - SFDP SDR / 1 - SFDP DDR
  33. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  34. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  35. * 6 - OctaBus DDR (SPI -> OPI DDR)
  36. * 8 - Xccela DDR (SPI -> OPI DDR)
  37. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  38. * [27:24] Command Pads after Power-on Reset
  39. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  40. * [23:20] Command Pads after Configuring FLASH
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  43. * 0 - Not needed
  44. * 1 - QE bit is at bit 6 in Status Register 1
  45. * 2 - QE bit is at bit1 in Status Register 2
  46. * 3 - QE bit is at bit7 in Status Register 2
  47. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  48. * [15:8] Dummy cycles
  49. * 0 - Auto-probed / detected / default value
  50. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  51. * [7:4] Misc.
  52. * 0 - Not used
  53. * 1 - SPI mode
  54. * 2 - Internal loopback
  55. * 3 - External DQS
  56. * [3:0] Frequency option
  57. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  58. *
  59. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  60. * [31:20] Reserved
  61. * [19:16] IO voltage
  62. * 0 - 3V / 1 - 1.8V
  63. * [15:12] Pin group
  64. * 0 - 1st group / 1 - 2nd group
  65. * [11:8] Connection selection
  66. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  67. * [7:0] Drive Strength
  68. * 0 - Default value
  69. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  70. * JESD216)
  71. * [31:16] reserved
  72. * [15:12] Sector Erase Command Option, not required here
  73. * [11:8] Sector Size Option, not required here
  74. * [7:0] Flash Size Option
  75. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  76. */
  77. #if defined(FLASH_XIP) && FLASH_XIP
  78. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  79. #endif
  80. #if defined(FLASH_UF2) && FLASH_UF2
  81. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  82. #endif
  83. void board_init_console(void)
  84. {
  85. #if BOARD_CONSOLE_TYPE == console_type_uart
  86. console_config_t cfg;
  87. /* Configure the UART clock to 24MHz */
  88. clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
  89. cfg.type = BOARD_CONSOLE_TYPE;
  90. cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
  91. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
  92. cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
  93. init_uart_pins((UART_Type *) cfg.base);
  94. if (status_success != console_init(&cfg)) {
  95. /* failed to initialize debug console */
  96. while (1) {
  97. }
  98. }
  99. #else
  100. while(1);
  101. #endif
  102. }
  103. void board_print_clock_freq(void)
  104. {
  105. printf("==============================\n");
  106. printf(" %s clock summary\n", BOARD_NAME);
  107. printf("==============================\n");
  108. printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
  109. printf("cpu1:\t\t %dHz\n", clock_get_frequency(clock_cpu1));
  110. printf("axi0:\t\t %dHz\n", clock_get_frequency(clock_axi0));
  111. printf("axi1:\t\t %dHz\n", clock_get_frequency(clock_axi1));
  112. printf("axi2:\t\t %dHz\n", clock_get_frequency(clock_axi2));
  113. printf("ahb:\t\t %dHz\n", clock_get_frequency(clock_ahb));
  114. printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
  115. printf("mchtmr1:\t %dHz\n", clock_get_frequency(clock_mchtmr1));
  116. printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
  117. printf("xpi1:\t\t %dHz\n", clock_get_frequency(clock_xpi1));
  118. printf("dram:\t\t %dHz\n", clock_get_frequency(clock_dram));
  119. printf("display:\t %dHz\n", clock_get_frequency(clock_display));
  120. printf("cam0:\t\t %dHz\n", clock_get_frequency(clock_camera0));
  121. printf("cam1:\t\t %dHz\n", clock_get_frequency(clock_camera1));
  122. printf("jpeg:\t\t %dHz\n", clock_get_frequency(clock_jpeg));
  123. printf("pdma:\t\t %dHz\n", clock_get_frequency(clock_pdma));
  124. printf("==============================\n");
  125. }
  126. void board_init_uart(UART_Type *ptr)
  127. {
  128. init_uart_pins(ptr);
  129. }
  130. void board_init_ahb(void)
  131. {
  132. clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
  133. }
  134. void board_print_banner(void)
  135. {
  136. const uint8_t banner[] = {"\n\
  137. ----------------------------------------------------------------------\n\
  138. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  139. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  140. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  141. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  142. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  143. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  144. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  145. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  146. ----------------------------------------------------------------------\n"};
  147. printf("%s", banner);
  148. }
  149. static void board_turnoff_rgb_led(void)
  150. {
  151. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  152. HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
  153. HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
  154. HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
  155. HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
  156. HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
  157. HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
  158. }
  159. void board_ungate_mchtmr_at_lp_mode(void)
  160. {
  161. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  162. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  163. }
  164. void board_init(void)
  165. {
  166. board_turnoff_rgb_led();
  167. board_init_clock();
  168. board_init_console();
  169. board_init_pmp();
  170. board_init_ahb();
  171. #if BOARD_SHOW_CLOCK
  172. board_print_clock_freq();
  173. #endif
  174. #if BOARD_SHOW_BANNER
  175. board_print_banner();
  176. #endif
  177. }
  178. void board_init_sdram_pins(void)
  179. {
  180. init_sdram_pins();
  181. }
  182. uint32_t board_init_dram_clock(void)
  183. {
  184. clock_set_source_divider(clock_dram, clk_src_pll2_clk0, 2U); /* 166Mhz */
  185. /* clock_set_source_divider(clock_dram, clk_src_pll1_clk1, 2U); [> 200Mhz <] */
  186. return clock_get_frequency(clock_dram);
  187. }
  188. void board_power_cycle_lcd(void)
  189. {
  190. /* turn off backlight */
  191. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  192. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 0);
  193. board_delay_ms(150);
  194. /* power recycle */
  195. gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
  196. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 0);
  197. board_delay_ms(150);
  198. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 1);
  199. board_delay_ms(150);
  200. /* turn on backlight */
  201. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 1);
  202. }
  203. void board_init_lcd(void)
  204. {
  205. board_init_lcd_clock();
  206. init_lcd_pins(BOARD_LCD_BASE);
  207. board_power_cycle_lcd();
  208. }
  209. void board_delay_ms(uint32_t ms)
  210. {
  211. clock_cpu_delay_ms(ms);
  212. }
  213. void board_timer_isr(void)
  214. {
  215. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  216. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  217. timer_cb();
  218. }
  219. }
  220. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  221. void board_timer_create(uint32_t ms, board_timer_cb cb)
  222. {
  223. uint32_t gptmr_freq;
  224. gptmr_channel_config_t config;
  225. timer_cb = cb;
  226. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  227. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  228. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  229. config.reload = gptmr_freq / 1000 * ms;
  230. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  231. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  232. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  233. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  234. }
  235. void board_i2c_bus_clear(I2C_Type *ptr)
  236. {
  237. init_i2c_pins_as_gpio(ptr);
  238. if (ptr == BOARD_CAP_I2C_BASE) {
  239. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  240. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  241. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  242. printf("CLK is low, please power cycle the board\n");
  243. while (1) {}
  244. }
  245. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  246. printf("SDA is low, try to issue I2C bus clear\n");
  247. } else {
  248. printf("I2C bus is ready\n");
  249. return;
  250. }
  251. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  252. while (1) {
  253. for (uint32_t i = 0; i < 9; i++) {
  254. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  255. board_delay_ms(10);
  256. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  257. board_delay_ms(10);
  258. }
  259. board_delay_ms(100);
  260. }
  261. printf("I2C bus is cleared\n");
  262. }
  263. }
  264. void board_init_i2c(I2C_Type *ptr)
  265. {
  266. hpm_stat_t stat;
  267. uint32_t freq;
  268. i2c_config_t config;
  269. board_i2c_bus_clear(ptr);
  270. init_i2c_pins(ptr);
  271. clock_add_to_group(clock_i2c0, 0);
  272. clock_add_to_group(clock_i2c1, 0);
  273. clock_add_to_group(clock_i2c2, 0);
  274. clock_add_to_group(clock_i2c3, 0);
  275. /* Configure the I2C clock to 24MHz */
  276. clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  277. config.i2c_mode = i2c_mode_normal;
  278. config.is_10bit_addressing = false;
  279. freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
  280. stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
  281. if (stat != status_success) {
  282. printf("failed to initialize i2c 0x%x\n", (uint32_t)BOARD_CAP_I2C_BASE);
  283. while (1) {}
  284. }
  285. }
  286. uint32_t board_init_uart_clock(UART_Type *ptr)
  287. {
  288. uint32_t freq = 0U;
  289. if (ptr == HPM_UART0) {
  290. clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
  291. freq = clock_get_frequency(clock_uart0);
  292. } else if (ptr == HPM_UART6) {
  293. clock_set_source_divider(clock_uart6, clk_src_osc24m, 1);
  294. freq = clock_get_frequency(clock_uart6);
  295. } else if (ptr == HPM_UART13) {
  296. clock_set_source_divider(clock_uart13, clk_src_osc24m, 1);
  297. freq = clock_get_frequency(clock_uart13);
  298. } else if (ptr == HPM_UART14) {
  299. clock_set_source_divider(clock_uart14, clk_src_osc24m, 1);
  300. freq = clock_get_frequency(clock_uart14);
  301. } else {
  302. /* Not supported */
  303. }
  304. return freq;
  305. }
  306. uint32_t board_init_spi_clock(SPI_Type *ptr)
  307. {
  308. if (ptr == HPM_SPI2) {
  309. /* SPI2 clock configure */
  310. clock_add_to_group(clock_spi2, 0);
  311. clock_set_source_divider(clock_spi2, clk_src_osc24m, 1U);
  312. return clock_get_frequency(clock_spi2);
  313. }
  314. return 0;
  315. }
  316. void board_init_cap_touch(void)
  317. {
  318. init_cap_pins();
  319. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  320. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  321. board_delay_ms(1);
  322. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
  323. board_delay_ms(10);
  324. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  325. gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  326. board_init_i2c(BOARD_CAP_I2C_BASE);
  327. }
  328. void board_init_gpio_pins(void)
  329. {
  330. init_gpio_pins();
  331. }
  332. void board_init_spi_pins(SPI_Type *ptr)
  333. {
  334. init_spi_pins(ptr);
  335. }
  336. void board_init_led_pins(void)
  337. {
  338. init_led_pins_as_gpio();
  339. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  340. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  341. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  342. }
  343. void board_led_toggle(void)
  344. {
  345. #ifdef BOARD_LED_TOGGLE_RGB
  346. static uint8_t i;
  347. gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_R_GPIO_PIN);
  348. i++;
  349. i = i % 3;
  350. #else
  351. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  352. #endif
  353. }
  354. void board_led_write(uint8_t state)
  355. {
  356. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  357. }
  358. void board_init_cam_pins(void)
  359. {
  360. init_cam_pins();
  361. /* enable cam RST pin out with high level */
  362. gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
  363. }
  364. void board_write_cam_rst(uint8_t state)
  365. {
  366. gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
  367. }
  368. void board_init_usb_pins(void)
  369. {
  370. /* set pull-up for USBx OC pins and ID pins */
  371. init_usb_pins();
  372. /* configure USBx ID pins as input function */
  373. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  374. gpio_set_pin_input(BOARD_USB1_ID_PORT, BOARD_USB1_ID_GPIO_INDEX, BOARD_USB1_ID_GPIO_PIN);
  375. /* configure USBx OC Flag pins as input function */
  376. gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
  377. gpio_set_pin_input(BOARD_USB1_OC_PORT, BOARD_USB1_OC_GPIO_INDEX, BOARD_USB1_OC_GPIO_PIN);
  378. }
  379. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  380. {
  381. }
  382. void board_init_pmp(void)
  383. {
  384. extern uint32_t __noncacheable_start__[];
  385. extern uint32_t __noncacheable_end__[];
  386. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  387. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  388. uint32_t length = end_addr - start_addr;
  389. if (length == 0) {
  390. return;
  391. }
  392. /* Ensure the address and the length are power of 2 aligned */
  393. assert((length & (length - 1U)) == 0U);
  394. assert((start_addr & (length - 1U)) == 0U);
  395. pmp_entry_t pmp_entry[1];
  396. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  397. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  398. pmp_entry[0].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  399. pmp_entry[0].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  400. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  401. }
  402. void board_init_clock(void)
  403. {
  404. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  405. hpm_core_clock = cpu0_freq;
  406. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  407. /* Configure the External OSC ramp-up time: ~9ms */
  408. pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
  409. /* Select clock setting preset1 */
  410. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  411. }
  412. /* Add most Clocks to group 0 */
  413. clock_add_to_group(clock_cpu0, 0);
  414. clock_add_to_group(clock_mchtmr0, 0);
  415. clock_add_to_group(clock_axi0, 0);
  416. clock_add_to_group(clock_axi1, 0);
  417. clock_add_to_group(clock_axi2, 0);
  418. clock_add_to_group(clock_ahb, 0);
  419. clock_add_to_group(clock_dram, 0);
  420. clock_add_to_group(clock_xpi0, 0);
  421. clock_add_to_group(clock_xpi1, 0);
  422. clock_add_to_group(clock_gptmr0, 0);
  423. clock_add_to_group(clock_gptmr1, 0);
  424. clock_add_to_group(clock_gptmr2, 0);
  425. clock_add_to_group(clock_gptmr3, 0);
  426. clock_add_to_group(clock_gptmr4, 0);
  427. clock_add_to_group(clock_gptmr5, 0);
  428. clock_add_to_group(clock_gptmr6, 0);
  429. clock_add_to_group(clock_gptmr7, 0);
  430. clock_add_to_group(clock_uart0, 0);
  431. clock_add_to_group(clock_uart1, 0);
  432. clock_add_to_group(clock_uart2, 0);
  433. clock_add_to_group(clock_uart3, 0);
  434. clock_add_to_group(clock_uart13, 0);
  435. clock_add_to_group(clock_i2c0, 0);
  436. clock_add_to_group(clock_i2c1, 0);
  437. clock_add_to_group(clock_i2c2, 0);
  438. clock_add_to_group(clock_i2c3, 0);
  439. clock_add_to_group(clock_spi0, 0);
  440. clock_add_to_group(clock_spi1, 0);
  441. clock_add_to_group(clock_spi2, 0);
  442. clock_add_to_group(clock_spi3, 0);
  443. clock_add_to_group(clock_can0, 0);
  444. clock_add_to_group(clock_can1, 0);
  445. clock_add_to_group(clock_can2, 0);
  446. clock_add_to_group(clock_can3, 0);
  447. clock_add_to_group(clock_display, 0);
  448. clock_add_to_group(clock_sdxc0, 0);
  449. clock_add_to_group(clock_sdxc1, 0);
  450. clock_add_to_group(clock_camera0, 0);
  451. clock_add_to_group(clock_camera1, 0);
  452. clock_add_to_group(clock_ptpc, 0);
  453. clock_add_to_group(clock_ref0, 0);
  454. clock_add_to_group(clock_ref1, 0);
  455. clock_add_to_group(clock_watchdog0, 0);
  456. clock_add_to_group(clock_eth0, 0);
  457. clock_add_to_group(clock_eth1, 0);
  458. clock_add_to_group(clock_sdp, 0);
  459. clock_add_to_group(clock_xdma, 0);
  460. clock_add_to_group(clock_ram0, 0);
  461. clock_add_to_group(clock_ram1, 0);
  462. clock_add_to_group(clock_usb0, 0);
  463. clock_add_to_group(clock_usb1, 0);
  464. clock_add_to_group(clock_jpeg, 0);
  465. clock_add_to_group(clock_pdma, 0);
  466. clock_add_to_group(clock_kman, 0);
  467. clock_add_to_group(clock_gpio, 0);
  468. clock_add_to_group(clock_mbx0, 0);
  469. clock_add_to_group(clock_hdma, 0);
  470. clock_add_to_group(clock_rng, 0);
  471. clock_add_to_group(clock_mot0, 0);
  472. clock_add_to_group(clock_mot1, 0);
  473. clock_add_to_group(clock_mot2, 0);
  474. clock_add_to_group(clock_mot3, 0);
  475. clock_add_to_group(clock_acmp, 0);
  476. clock_add_to_group(clock_dao, 0);
  477. clock_add_to_group(clock_msyn, 0);
  478. clock_add_to_group(clock_lmm0, 0);
  479. clock_add_to_group(clock_lmm1, 0);
  480. clock_add_to_group(clock_adc0, 0);
  481. clock_add_to_group(clock_adc1, 0);
  482. clock_add_to_group(clock_adc2, 0);
  483. clock_add_to_group(clock_adc3, 0);
  484. clock_add_to_group(clock_i2s0, 0);
  485. clock_add_to_group(clock_i2s1, 0);
  486. clock_add_to_group(clock_i2s2, 0);
  487. clock_add_to_group(clock_i2s3, 0);
  488. /* Add the CPU1 clock to Group1 */
  489. clock_add_to_group(clock_mchtmr1, 1);
  490. clock_add_to_group(clock_mbx1, 1);
  491. /* Connect Group0 to CPU0 */
  492. clock_connect_group_to_cpu(0, 0);
  493. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  494. printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
  495. while(1);
  496. }
  497. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  498. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  499. /* Connect Group1 to CPU1 */
  500. clock_connect_group_to_cpu(1, 1);
  501. }
  502. uint32_t board_init_cam_clock(CAM_Type *ptr)
  503. {
  504. uint32_t freq = 0;
  505. if (ptr == HPM_CAM0) {
  506. /* Configure camera clock to 24MHz */
  507. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  508. freq = clock_get_frequency(clock_camera0);
  509. } else if (ptr == HPM_CAM1) {
  510. /* Configure camera clock to 24MHz */
  511. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  512. freq = clock_get_frequency(clock_camera1);
  513. } else {
  514. /* Invalid camera instance */
  515. }
  516. return freq;
  517. }
  518. uint32_t board_init_lcd_clock(void)
  519. {
  520. uint32_t freq;
  521. clock_add_to_group(clock_display, 0);
  522. /* Configure LCDC clock to 29.7MHz */
  523. clock_set_source_divider(clock_display, clock_source_pll4_clk0, 20U);
  524. freq = clock_get_frequency(clock_display);
  525. return freq;
  526. }
  527. uint32_t board_init_adc12_clock(ADC12_Type *ptr)
  528. {
  529. uint32_t freq = 0;
  530. switch ((uint32_t) ptr) {
  531. case HPM_ADC0_BASE:
  532. /* Configure the ADC clock to 200MHz */
  533. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  534. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  535. freq = clock_get_frequency(clock_adc0);
  536. break;
  537. case HPM_ADC1_BASE:
  538. /* Configure the ADC clock to 200MHz */
  539. clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
  540. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  541. freq = clock_get_frequency(clock_adc1);
  542. break;
  543. case HPM_ADC2_BASE:
  544. /* Configure the ADC clock to 200MHz */
  545. clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
  546. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  547. freq = clock_get_frequency(clock_adc2);
  548. break;
  549. default:
  550. /* Invalid ADC instance */
  551. break;
  552. }
  553. return freq;
  554. }
  555. uint32_t board_init_dao_clock(void)
  556. {
  557. clock_add_to_group(clock_dao, 0);
  558. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  559. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud0_clk);
  560. return clock_get_frequency(clock_dao);
  561. }
  562. uint32_t board_init_pdm_clock(void)
  563. {
  564. clock_add_to_group(clock_pdm, 0);
  565. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  566. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  567. return clock_get_frequency(clock_pdm);
  568. }
  569. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  570. {
  571. if (ptr == HPM_I2S0) {
  572. clock_add_to_group(clock_i2s0, 0);
  573. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  574. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  575. return clock_get_frequency(clock_i2s0);
  576. }
  577. return 0;
  578. }
  579. uint32_t board_init_adc16_clock(ADC16_Type *ptr)
  580. {
  581. uint32_t freq = 0;
  582. if (ptr == HPM_ADC3) {
  583. /* Configure the ADC clock to 200MHz */
  584. clock_set_adc_source(clock_adc3, clk_adc_src_ana1);
  585. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  586. freq = clock_get_frequency(clock_adc3);
  587. }
  588. return freq;
  589. }
  590. void board_init_can(CAN_Type *ptr)
  591. {
  592. init_can_pins(ptr);
  593. }
  594. uint32_t board_init_can_clock(CAN_Type *ptr)
  595. {
  596. uint32_t freq = 0;
  597. if (ptr == HPM_CAN0) {
  598. /* Set the CAN0 peripheral clock to 80MHz */
  599. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  600. freq = clock_get_frequency(clock_can0);
  601. } else if (ptr == HPM_CAN1) {
  602. /* Set the CAN1 peripheral clock to 80MHz */
  603. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  604. freq = clock_get_frequency(clock_can1);
  605. } else if (ptr == HPM_CAN2) {
  606. /* Set the CAN2 peripheral clock to 80MHz */
  607. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  608. freq = clock_get_frequency(clock_can2);
  609. } else if (ptr == HPM_CAN3) {
  610. /* Set the CAN3 peripheral clock to 80MHz */
  611. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  612. freq = clock_get_frequency(clock_can3);
  613. } else {
  614. /* Invalid CAN instance */
  615. }
  616. return freq;
  617. }
  618. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  619. {
  620. uint32_t freq = 0;
  621. if (ptr == HPM_GPTMR0) {
  622. clock_add_to_group(clock_gptmr0, 0);
  623. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  624. freq = clock_get_frequency(clock_gptmr0);
  625. }
  626. else if (ptr == HPM_GPTMR1) {
  627. clock_add_to_group(clock_gptmr1, 0);
  628. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  629. freq = clock_get_frequency(clock_gptmr1);
  630. }
  631. else if (ptr == HPM_GPTMR2) {
  632. clock_add_to_group(clock_gptmr2, 0);
  633. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  634. freq = clock_get_frequency(clock_gptmr2);
  635. }
  636. else if (ptr == HPM_GPTMR3) {
  637. clock_add_to_group(clock_gptmr3, 0);
  638. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  639. freq = clock_get_frequency(clock_gptmr3);
  640. }
  641. else if (ptr == HPM_GPTMR4) {
  642. clock_add_to_group(clock_gptmr4, 0);
  643. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
  644. freq = clock_get_frequency(clock_gptmr4);
  645. }
  646. else if (ptr == HPM_GPTMR5) {
  647. clock_add_to_group(clock_gptmr5, 0);
  648. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
  649. freq = clock_get_frequency(clock_gptmr5);
  650. }
  651. else if (ptr == HPM_GPTMR6) {
  652. clock_add_to_group(clock_gptmr6, 0);
  653. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
  654. freq = clock_get_frequency(clock_gptmr6);
  655. }
  656. else if (ptr == HPM_GPTMR7) {
  657. clock_add_to_group(clock_gptmr7, 0);
  658. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
  659. freq = clock_get_frequency(clock_gptmr7);
  660. }
  661. else {
  662. /* Invalid instance */
  663. }
  664. }
  665. /*
  666. * this function will be called during startup to initialize external memory for data use
  667. */
  668. void _init_ext_ram(void)
  669. {
  670. uint32_t dram_clk_in_hz;
  671. board_init_sdram_pins();
  672. dram_clk_in_hz = board_init_dram_clock();
  673. dram_config_t config = {0};
  674. dram_sdram_config_t sdram_config = {0};
  675. dram_default_config(HPM_DRAM, &config);
  676. config.dqs = DRAM_DQS_INTERNAL;
  677. dram_init(HPM_DRAM, &config);
  678. sdram_config.bank_num = DRAM_SDRAM_BANK_NUM_4;
  679. sdram_config.prescaler = 0x3;
  680. sdram_config.burst_len_in_byte = 8;
  681. sdram_config.auto_refresh_count_in_one_burst = 1;
  682. sdram_config.col_addr_bits = DRAM_SDRAM_COLUMN_ADDR_9_BITS;
  683. sdram_config.cas_latency = DRAM_SDRAM_CAS_LATENCY_3;
  684. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  685. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  686. sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
  687. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  688. sdram_config.cke_off_in_ns = 42; /* Trcd */
  689. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  690. sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
  691. sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
  692. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  693. sdram_config.idle_timeout_in_ns = 6;
  694. sdram_config.cs_mux_pin = DRAM_IO_MUX_NOT_USED;
  695. sdram_config.cs = BOARD_SDRAM_CS;
  696. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  697. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  698. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  699. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  700. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  701. sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
  702. sdram_config.delay_cell_value = 29;
  703. dram_config_sdram(HPM_DRAM, dram_clk_in_hz, &sdram_config);
  704. }
  705. void board_init_sd_pins(SDXC_Type *ptr)
  706. {
  707. init_sdxc_pins(ptr, false);
  708. }
  709. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq)
  710. {
  711. uint32_t actual_freq = 0;
  712. do {
  713. if (ptr != HPM_SDXC1) {
  714. break;
  715. }
  716. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  717. sdxc_enable_sd_clock(ptr, false);
  718. /* Configure the clock below 400KHz for the identification state */
  719. if (freq <= 400000UL) {
  720. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  721. }
  722. /* configure the clock to 24MHz for the SDR12/Default speed */
  723. else if (freq <= 25000000UL) {
  724. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  725. }
  726. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  727. else if (freq <= 50000000UL) {
  728. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  729. }
  730. /* Configure the clock to 100MHz for the SDR50 */
  731. else if (freq <= 100000000UL) {
  732. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  733. }
  734. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  735. else if (freq <= 208000000UL) {
  736. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  737. }
  738. /* For other unsupported clock ranges, configure the clock to 24MHz */
  739. else {
  740. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  741. }
  742. sdxc_enable_sd_clock(ptr, true);
  743. actual_freq = clock_get_frequency(sdxc_clk);
  744. } while (false);
  745. return actual_freq;
  746. }
  747. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  748. {
  749. /* This feature is not supported */
  750. }
  751. bool board_sd_detect_card(SDXC_Type *ptr)
  752. {
  753. return ((BOARD_APP_SDCARD_CDN_GPIO_CTRL->DI[GPIO_DI_GPIOD].VALUE & (1UL << BOARD_APP_SDCARD_CDN_GPIO_PIN)) == 0U);
  754. }
  755. static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
  756. {
  757. pwm_cmp_config_t cmp_config = {0};
  758. pwm_output_channel_t ch_config = {0};
  759. pwm_stop_counter(ptr);
  760. pwm_get_default_cmp_config(ptr, &cmp_config);
  761. pwm_get_default_output_channel_config(ptr, &ch_config);
  762. pwm_set_reload(ptr, 0, 0xF);
  763. pwm_set_start_count(ptr, 0, 0);
  764. cmp_config.mode = pwm_cmp_mode_output_compare;
  765. cmp_config.cmp = 0x10;
  766. cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
  767. pwm_config_cmp(ptr, cmp_index, &cmp_config);
  768. ch_config.cmp_start_index = cmp_index;
  769. ch_config.cmp_end_index = cmp_index;
  770. ch_config.invert_output = false;
  771. pwm_config_output_channel(ptr, pin, &ch_config);
  772. }
  773. void board_init_rgb_pwm_pins(void)
  774. {
  775. trgm_output_t config = {0};
  776. board_turnoff_rgb_led();
  777. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
  778. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
  779. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
  780. init_rgb_pwm_pins();
  781. config.type = 0;
  782. config.invert = false;
  783. /* Red: TRGM1 P1 */
  784. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
  785. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
  786. /* Green: TRGM0 P6 */
  787. config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
  788. trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
  789. /* Blue: TRGM1 P3 */
  790. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
  791. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
  792. }
  793. void board_disable_output_rgb_led(uint8_t color)
  794. {
  795. switch (color) {
  796. case BOARD_RGB_RED:
  797. trgm_disable_io_output(HPM_TRGM1, 1 << 1);
  798. break;
  799. case BOARD_RGB_GREEN:
  800. trgm_disable_io_output(HPM_TRGM0, 1 << 6);
  801. break;
  802. case BOARD_RGB_BLUE:
  803. trgm_disable_io_output(HPM_TRGM1, 1 << 3);
  804. break;
  805. default:
  806. while (1) {
  807. ;
  808. }
  809. }
  810. }
  811. void board_enable_output_rgb_led(uint8_t color)
  812. {
  813. switch (color) {
  814. case BOARD_RGB_RED:
  815. trgm_enable_io_output(HPM_TRGM1, 1 << 1);
  816. break;
  817. case BOARD_RGB_GREEN:
  818. trgm_enable_io_output(HPM_TRGM0, 1 << 6);
  819. break;
  820. case BOARD_RGB_BLUE:
  821. trgm_enable_io_output(HPM_TRGM1, 1 << 3);
  822. break;
  823. default:
  824. while (1) {
  825. ;
  826. }
  827. }
  828. }
  829. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  830. {
  831. /* set clock source */
  832. if (ptr == HPM_ENET0) {
  833. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  834. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  835. } else if (ptr == HPM_ENET1) {
  836. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
  837. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  838. } else {
  839. return status_invalid_argument;
  840. }
  841. return status_success;
  842. }
  843. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  844. {
  845. if (internal == false) {
  846. return status_success;
  847. }
  848. /* Configure Enet clock to output reference clock */
  849. if (ptr == HPM_ENET0) {
  850. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet0 */
  851. clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5);
  852. } else if (ptr == HPM_ENET1) {
  853. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet1 */
  854. clock_set_source_divider(clock_eth1, clk_src_pll2_clk1, 5); /* set 50MHz for enet1 */
  855. } else {
  856. return status_invalid_argument;
  857. }
  858. return status_success;
  859. }
  860. void board_init_adc12_pins(void)
  861. {
  862. init_adc12_pins();
  863. }
  864. void board_init_adc16_pins(void)
  865. {
  866. init_adc16_pins();
  867. }
  868. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  869. {
  870. init_enet_pins(ptr);
  871. if (ptr == HPM_ENET0) {
  872. gpio_set_pin_output_with_initial(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 0);
  873. } else if (ptr == HPM_ENET1) {
  874. gpio_set_pin_output_with_initial(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  875. } else {
  876. return status_invalid_argument;
  877. }
  878. return status_success;
  879. }
  880. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  881. {
  882. if (ptr == HPM_ENET0) {
  883. gpio_write_pin(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 0);
  884. board_delay_ms(1);
  885. gpio_write_pin(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 1);
  886. } else if (ptr == HPM_ENET1) {
  887. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  888. board_delay_ms(1);
  889. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 1);
  890. } else {
  891. return status_invalid_argument;
  892. }
  893. return status_success;
  894. }