board.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. /*
  2. * Copyright (c) 2021 hpmicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_dram_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_sdxc_soc_drv.h"
  21. #include "hpm_pllctl_drv.h"
  22. static board_timer_cb timer_cb;
  23. /**
  24. * @brief FLASH configuration option definitions:
  25. * option[0]:
  26. * [31:16] 0xfcf9 - FLASH configuration option tag
  27. * [15:4] 0 - Reserved
  28. * [3:0] option words (exclude option[0])
  29. * option[1]:
  30. * [31:28] Flash probe type
  31. * 0 - SFDP SDR / 1 - SFDP DDR
  32. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  33. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  34. * 6 - OctaBus DDR (SPI -> OPI DDR)
  35. * 8 - Xccela DDR (SPI -> OPI DDR)
  36. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  37. * [27:24] Command Pads after Power-on Reset
  38. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  39. * [23:20] Command Pads after Configuring FLASH
  40. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  41. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  42. * 0 - Not needed
  43. * 1 - QE bit is at bit 6 in Status Register 1
  44. * 2 - QE bit is at bit1 in Status Register 2
  45. * 3 - QE bit is at bit7 in Status Register 2
  46. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  47. * [15:8] Dummy cycles
  48. * 0 - Auto-probed / detected / default value
  49. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  50. * [7:4] Misc.
  51. * 0 - Not used
  52. * 1 - SPI mode
  53. * 2 - Internal loopback
  54. * 3 - External DQS
  55. * [3:0] Frequency option
  56. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  57. *
  58. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  59. * [31:20] Reserved
  60. * [19:16] IO voltage
  61. * 0 - 3V / 1 - 1.8V
  62. * [15:12] Pin group
  63. * 0 - 1st group / 1 - 2nd group
  64. * [11:8] Connection selection
  65. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  66. * [7:0] Drive Strength
  67. * 0 - Default value
  68. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  69. * JESD216)
  70. * [31:16] reserved
  71. * [15:12] Sector Erase Command Option, not required here
  72. * [11:8] Sector Size Option, not required here
  73. * [7:0] Flash Size Option
  74. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  75. */
  76. #if defined(FLASH_XIP) && FLASH_XIP
  77. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  78. #endif
  79. void board_init_console(void)
  80. {
  81. #if BOARD_CONSOLE_TYPE == console_type_uart
  82. console_config_t cfg;
  83. /* Configure the UART clock to 24MHz */
  84. clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
  85. cfg.type = BOARD_CONSOLE_TYPE;
  86. cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
  87. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
  88. cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
  89. init_uart_pins((UART_Type *) cfg.base);
  90. console_init(&cfg);
  91. #else
  92. while(1);
  93. #endif
  94. }
  95. void board_print_clock_freq(void)
  96. {
  97. printf("==============================\n");
  98. printf(" %s clock summary\n", BOARD_NAME);
  99. printf("==============================\n");
  100. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  101. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  102. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  103. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  104. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  105. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  106. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  107. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  108. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  109. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  110. printf("dram:\t\t %luHz\n", clock_get_frequency(clock_dram));
  111. printf("display:\t %luHz\n", clock_get_frequency(clock_display));
  112. printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
  113. printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
  114. printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
  115. printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
  116. printf("==============================\n");
  117. }
  118. void board_init_uart(UART_Type *ptr)
  119. {
  120. init_uart_pins(ptr);
  121. }
  122. void board_init_ahb(void)
  123. {
  124. clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
  125. }
  126. void board_print_banner(void)
  127. {
  128. const uint8_t banner[] = {"\n\
  129. ----------------------------------------------------------------------\n\
  130. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  131. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  132. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  133. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  134. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  135. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  136. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  137. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  138. ----------------------------------------------------------------------\n"};
  139. printf("%s", banner);
  140. }
  141. static void board_turnoff_rgb_led(void)
  142. {
  143. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  144. HPM_IOC->PAD[IOC_PAD_PB18].FUNC_CTL = IOC_PB18_FUNC_CTL_GPIO_B_18;
  145. HPM_IOC->PAD[IOC_PAD_PB19].FUNC_CTL = IOC_PB19_FUNC_CTL_GPIO_B_19;
  146. HPM_IOC->PAD[IOC_PAD_PB20].FUNC_CTL = IOC_PB20_FUNC_CTL_GPIO_B_20;
  147. HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
  148. HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
  149. HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
  150. }
  151. void board_init(void)
  152. {
  153. board_turnoff_rgb_led();
  154. board_init_clock();
  155. board_init_console();
  156. board_init_pmp();
  157. board_init_ahb();
  158. #if BOARD_SHOW_CLOCK
  159. board_print_clock_freq();
  160. #endif
  161. #if BOARD_SHOW_BANNER
  162. board_print_banner();
  163. #endif
  164. }
  165. void board_init_sdram_pins(void)
  166. {
  167. init_sdram_pins();
  168. }
  169. uint32_t board_init_dram_clock(void)
  170. {
  171. clock_set_source_divider(clock_dram, clk_src_pll2_clk0, 2U); /* 166Mhz */
  172. return clock_get_frequency(clock_dram);
  173. }
  174. void board_power_cycle_lcd(void)
  175. {
  176. /* turn off backlight */
  177. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  178. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 0);
  179. board_delay_ms(150);
  180. /* power recycle */
  181. gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
  182. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 0);
  183. board_delay_ms(20);
  184. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 1);
  185. board_delay_ms(150);
  186. /* turn on backlight */
  187. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 1);
  188. }
  189. void board_init_lcd(void)
  190. {
  191. board_init_lcd_clock();
  192. init_lcd_pins(BOARD_LCD_BASE);
  193. board_power_cycle_lcd();
  194. board_delay_ms(10);
  195. board_power_cycle_lcd();
  196. }
  197. void board_delay_ms(uint32_t ms)
  198. {
  199. clock_cpu_delay_ms(ms);
  200. }
  201. void board_timer_isr(void)
  202. {
  203. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  204. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  205. timer_cb();
  206. }
  207. }
  208. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  209. void board_timer_create(uint32_t ms, void *cb)
  210. {
  211. uint32_t gptmr_freq;
  212. gptmr_channel_config_t config;
  213. timer_cb = (board_timer_cb)cb;
  214. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  215. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  216. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  217. config.reload = gptmr_freq / 1000 * ms;
  218. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  219. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  220. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  221. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  222. }
  223. void board_i2c_bus_clear(I2C_Type *ptr)
  224. {
  225. init_i2c_pins_as_gpio(ptr);
  226. if (ptr == BOARD_CAP_I2C_BASE) {
  227. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  228. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  229. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  230. printf("CLK is low, please power cycle the board\n");
  231. while (1) {}
  232. }
  233. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  234. printf("SDA is low, try to issue I2C bus clear\n");
  235. } else {
  236. printf("I2C bus is ready\n");
  237. return;
  238. }
  239. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  240. for (uint8_t i = 0; i < 3; i++) {
  241. for (uint32_t j = 0; j < 9; j++) {
  242. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  243. board_delay_ms(10);
  244. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  245. board_delay_ms(10);
  246. }
  247. board_delay_ms(100);
  248. }
  249. printf("I2C bus is cleared\n");
  250. }
  251. }
  252. void board_init_i2c(I2C_Type *ptr)
  253. {
  254. hpm_stat_t stat;
  255. uint32_t freq;
  256. i2c_config_t config;
  257. board_i2c_bus_clear(ptr);
  258. init_i2c_pins(ptr);
  259. clock_add_to_group(clock_i2c0, 0);
  260. clock_add_to_group(clock_i2c1, 0);
  261. clock_add_to_group(clock_i2c2, 0);
  262. clock_add_to_group(clock_i2c3, 0);
  263. /* Configure the I2C clock to 24MHz */
  264. clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  265. config.i2c_mode = i2c_mode_normal;
  266. config.is_10bit_addressing = false;
  267. freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
  268. stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
  269. if (stat != status_success) {
  270. printf("failed to initialize i2c 0x%lx\n", BOARD_CAP_I2C_BASE);
  271. while (1) {}
  272. }
  273. }
  274. uint32_t board_init_uart_clock(UART_Type *ptr)
  275. {
  276. uint32_t freq = 0;
  277. if (ptr == HPM_UART0) {
  278. clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
  279. freq = clock_get_frequency(clock_uart0);
  280. }
  281. else if (ptr == HPM_UART1) {
  282. clock_set_source_divider(clock_uart1, clk_src_osc24m, 1);
  283. freq = clock_get_frequency(clock_uart1);
  284. }
  285. else if (ptr == HPM_UART2) {
  286. clock_set_source_divider(clock_uart2, clk_src_osc24m, 1);
  287. freq = clock_get_frequency(clock_uart2);
  288. }
  289. else if (ptr == HPM_UART3) {
  290. clock_set_source_divider(clock_uart3, clk_src_osc24m, 1);
  291. freq = clock_get_frequency(clock_uart3);
  292. }
  293. else if (ptr == HPM_UART4) {
  294. clock_set_source_divider(clock_uart4, clk_src_osc24m, 1);
  295. freq = clock_get_frequency(clock_uart4);
  296. }
  297. else if (ptr == HPM_UART5) {
  298. clock_set_source_divider(clock_uart5, clk_src_osc24m, 1);
  299. freq = clock_get_frequency(clock_uart5);
  300. }
  301. else if (ptr == HPM_UART6) {
  302. clock_set_source_divider(clock_uart6, clk_src_osc24m, 1);
  303. freq = clock_get_frequency(clock_uart6);
  304. }
  305. else if (ptr == HPM_UART7) {
  306. clock_set_source_divider(clock_uart7, clk_src_osc24m, 1);
  307. freq = clock_get_frequency(clock_uart7);
  308. }
  309. else if (ptr == HPM_UART8) {
  310. clock_set_source_divider(clock_uart8, clk_src_osc24m, 1);
  311. freq = clock_get_frequency(clock_uart8);
  312. }
  313. else if (ptr == HPM_UART9) {
  314. clock_set_source_divider(clock_uart9, clk_src_osc24m, 1);
  315. freq = clock_get_frequency(clock_uart9);
  316. }
  317. else if (ptr == HPM_UART10) {
  318. clock_set_source_divider(clock_uart10, clk_src_osc24m, 1);
  319. freq = clock_get_frequency(clock_uart10);
  320. }
  321. else if (ptr == HPM_UART11) {
  322. clock_set_source_divider(clock_uart11, clk_src_osc24m, 1);
  323. freq = clock_get_frequency(clock_uart11);
  324. }
  325. else if (ptr == HPM_UART12) {
  326. clock_set_source_divider(clock_uart12, clk_src_osc24m, 1);
  327. freq = clock_get_frequency(clock_uart12);
  328. }
  329. else if (ptr == HPM_UART13) {
  330. clock_set_source_divider(clock_uart13, clk_src_osc24m, 1);
  331. freq = clock_get_frequency(clock_uart13);
  332. }
  333. else if (ptr == HPM_UART14) {
  334. clock_set_source_divider(clock_uart14, clk_src_osc24m, 1);
  335. freq = clock_get_frequency(clock_uart14);
  336. }
  337. else if (ptr == HPM_UART15) {
  338. clock_set_source_divider(clock_uart15, clk_src_osc24m, 1);
  339. freq = clock_get_frequency(clock_uart15);
  340. }
  341. else {
  342. /* Unsupported instance */
  343. }
  344. return freq;
  345. }
  346. uint32_t board_init_spi_clock(SPI_Type *ptr)
  347. {
  348. uint32_t freq = 0;
  349. if (ptr == HPM_SPI0) {
  350. /* SPI0 clock configure */
  351. clock_add_to_group(clock_spi0, 0);
  352. clock_set_source_divider(clock_spi0, clk_src_pll1_clk1, 5U);
  353. freq = clock_get_frequency(clock_spi0);
  354. }
  355. else if (ptr == HPM_SPI1) {
  356. /* SPI1 clock configure */
  357. clock_add_to_group(clock_spi1, 0);
  358. clock_set_source_divider(clock_spi1, clk_src_pll1_clk1, 5U);
  359. freq = clock_get_frequency(clock_spi1);
  360. }
  361. else if (ptr == HPM_SPI2) {
  362. /* SPI2 clock configure */
  363. clock_add_to_group(clock_spi2, 0);
  364. clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U);
  365. freq = clock_get_frequency(clock_spi2);
  366. }
  367. else if (ptr == HPM_SPI3) {
  368. /* SPI3 clock configure */
  369. clock_add_to_group(clock_spi3, 0);
  370. clock_set_source_divider(clock_spi3, clk_src_pll1_clk1, 5U);
  371. freq = clock_get_frequency(clock_spi3);
  372. }
  373. else {
  374. /* Invalid instance */
  375. }
  376. return freq;
  377. }
  378. void board_init_cap_touch(void)
  379. {
  380. init_cap_pins();
  381. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  382. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  383. board_delay_ms(1);
  384. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
  385. board_delay_ms(10);
  386. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  387. gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  388. board_init_i2c(BOARD_CAP_I2C_BASE);
  389. }
  390. void board_init_gpio_pins(void)
  391. {
  392. init_gpio_pins();
  393. }
  394. void board_init_spi_pins(SPI_Type *ptr)
  395. {
  396. init_spi_pins(ptr);
  397. }
  398. void board_init_led_pins(void)
  399. {
  400. init_led_pins_as_gpio();
  401. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  402. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  403. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  404. }
  405. void board_led_toggle(void)
  406. {
  407. static uint8_t i;
  408. gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_G_GPIO_PIN);
  409. i++;
  410. i = i % 3;
  411. }
  412. void board_led_write(bool state)
  413. {
  414. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state ? BOARD_LED_ON_LEVEL : BOARD_LED_OFF_LEVEL);
  415. }
  416. void board_init_cam_pins(void)
  417. {
  418. init_cam_pins(HPM_CAM0);
  419. }
  420. void board_init_usb_pins(void)
  421. {
  422. /* set pull-up for USBx OC pins */
  423. init_usb_pins(HPM_USB0);
  424. /* configure USBx OC Flag pins as input function */
  425. gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
  426. }
  427. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  428. {
  429. }
  430. void board_init_pmp(void)
  431. {
  432. extern uint32_t __noncacheable_start__[];
  433. extern uint32_t __noncacheable_end__[];
  434. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  435. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  436. uint32_t length = end_addr - start_addr;
  437. if (length == 0) {
  438. return;
  439. }
  440. /* Ensure the address and the length are power of 2 aligned */
  441. assert((length & (length - 1U)) == 0U);
  442. assert((start_addr & (length - 1U)) == 0U);
  443. pmp_entry_t pmp_entry[1];
  444. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  445. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  446. pmp_entry[0].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  447. pmp_entry[0].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  448. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  449. }
  450. void board_init_clock(void)
  451. {
  452. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  453. hpm_core_clock = cpu0_freq;
  454. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  455. /* Configure the External OSC ramp-up time: ~9ms */
  456. HPM_PLLCTL->XTAL = PLLCTL_XTAL_RAMP_TIME_SET(32UL * 1000UL * 9U);
  457. /* Select clock setting preset1 */
  458. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  459. }
  460. /* Add most Clocks to group 0 */
  461. clock_add_to_group(clock_cpu0, 0);
  462. clock_add_to_group(clock_mchtmr0, 0);
  463. clock_add_to_group(clock_axi0, 0);
  464. clock_add_to_group(clock_axi1, 0);
  465. clock_add_to_group(clock_axi2, 0);
  466. clock_add_to_group(clock_ahb, 0);
  467. clock_add_to_group(clock_dram, 0);
  468. clock_add_to_group(clock_xpi0, 0);
  469. clock_add_to_group(clock_xpi1, 0);
  470. clock_add_to_group(clock_gptmr0, 0);
  471. clock_add_to_group(clock_gptmr1, 0);
  472. clock_add_to_group(clock_gptmr2, 0);
  473. clock_add_to_group(clock_gptmr3, 0);
  474. clock_add_to_group(clock_gptmr4, 0);
  475. clock_add_to_group(clock_gptmr5, 0);
  476. clock_add_to_group(clock_gptmr6, 0);
  477. clock_add_to_group(clock_gptmr7, 0);
  478. clock_add_to_group(clock_uart0, 0);
  479. clock_add_to_group(clock_uart1, 0);
  480. clock_add_to_group(clock_uart2, 0);
  481. clock_add_to_group(clock_uart3, 0);
  482. clock_add_to_group(clock_uart6, 0);
  483. clock_add_to_group(clock_uart13, 0);
  484. clock_add_to_group(clock_uart14, 0);
  485. clock_add_to_group(clock_i2c0, 0);
  486. clock_add_to_group(clock_i2c1, 0);
  487. clock_add_to_group(clock_i2c2, 0);
  488. clock_add_to_group(clock_i2c3, 0);
  489. clock_add_to_group(clock_spi0, 0);
  490. clock_add_to_group(clock_spi1, 0);
  491. clock_add_to_group(clock_spi2, 0);
  492. clock_add_to_group(clock_spi3, 0);
  493. clock_add_to_group(clock_can0, 0);
  494. clock_add_to_group(clock_can1, 0);
  495. clock_add_to_group(clock_can2, 0);
  496. clock_add_to_group(clock_can3, 0);
  497. clock_add_to_group(clock_display, 0);
  498. clock_add_to_group(clock_sdxc0, 0);
  499. clock_add_to_group(clock_sdxc1, 0);
  500. clock_add_to_group(clock_camera0, 0);
  501. clock_add_to_group(clock_camera1, 0);
  502. clock_add_to_group(clock_ptpc, 0);
  503. clock_add_to_group(clock_ref0, 0);
  504. clock_add_to_group(clock_ref1, 0);
  505. clock_add_to_group(clock_watchdog0, 0);
  506. clock_add_to_group(clock_eth0, 0);
  507. clock_add_to_group(clock_eth1, 0);
  508. clock_add_to_group(clock_sdp, 0);
  509. clock_add_to_group(clock_xdma, 0);
  510. clock_add_to_group(clock_ram0, 0);
  511. clock_add_to_group(clock_ram1, 0);
  512. clock_add_to_group(clock_usb0, 0);
  513. clock_add_to_group(clock_usb1, 0);
  514. clock_add_to_group(clock_jpeg, 0);
  515. clock_add_to_group(clock_pdma, 0);
  516. clock_add_to_group(clock_kman, 0);
  517. clock_add_to_group(clock_gpio, 0);
  518. clock_add_to_group(clock_mbx0, 0);
  519. clock_add_to_group(clock_hdma, 0);
  520. clock_add_to_group(clock_rng, 0);
  521. clock_add_to_group(clock_mot0, 0);
  522. clock_add_to_group(clock_mot1, 0);
  523. clock_add_to_group(clock_mot2, 0);
  524. clock_add_to_group(clock_mot3, 0);
  525. clock_add_to_group(clock_acmp, 0);
  526. clock_add_to_group(clock_dao, 0);
  527. clock_add_to_group(clock_msyn, 0);
  528. clock_add_to_group(clock_lmm0, 0);
  529. clock_add_to_group(clock_lmm1, 0);
  530. clock_add_to_group(clock_adc0, 0);
  531. clock_add_to_group(clock_adc1, 0);
  532. clock_add_to_group(clock_adc2, 0);
  533. clock_add_to_group(clock_adc3, 0);
  534. clock_add_to_group(clock_i2s0, 0);
  535. clock_add_to_group(clock_i2s1, 0);
  536. clock_add_to_group(clock_i2s2, 0);
  537. clock_add_to_group(clock_i2s3, 0);
  538. /* Add the CPU1 clock to Group1 */
  539. clock_add_to_group(clock_mchtmr1, 1);
  540. clock_add_to_group(clock_mbx1, 1);
  541. /* Connect Group0 to CPU0 */
  542. clock_connect_group_to_cpu(0, 0);
  543. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  544. printf("Failed to set pll0_clk0 to %luHz\n", BOARD_CPU_FREQ);
  545. while(1);
  546. }
  547. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  548. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  549. /* Connect Group1 to CPU1 */
  550. clock_connect_group_to_cpu(1, 1);
  551. }
  552. uint32_t board_init_cam_clock(CAM_Type *ptr)
  553. {
  554. uint32_t freq = 0;
  555. if (ptr == HPM_CAM0) {
  556. /* Configure camera clock to 24MHz */
  557. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  558. freq = clock_get_frequency(clock_camera0);
  559. } else if (ptr == HPM_CAM1) {
  560. /* Configure camera clock to 24MHz */
  561. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  562. freq = clock_get_frequency(clock_camera1);
  563. } else {
  564. /* Invalid camera instance */
  565. }
  566. return freq;
  567. }
  568. uint32_t board_init_lcd_clock(void)
  569. {
  570. uint32_t freq;
  571. clock_add_to_group(clock_display, 0);
  572. /* Configure LCDC clock to 29.7MHz */
  573. clock_set_source_divider(clock_display, clock_source_pll4_clk0, 20U);
  574. freq = clock_get_frequency(clock_display);
  575. return freq;
  576. }
  577. uint32_t board_init_adc12_clock(ADC12_Type *ptr)
  578. {
  579. uint32_t freq = 0;
  580. switch ((uint32_t) ptr) {
  581. case HPM_ADC0_BASE:
  582. /* Configure the ADC clock to 200MHz */
  583. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  584. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  585. freq = clock_get_frequency(clock_adc0);
  586. break;
  587. case HPM_ADC1_BASE:
  588. /* Configure the ADC clock to 200MHz */
  589. clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
  590. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  591. freq = clock_get_frequency(clock_adc1);
  592. break;
  593. case HPM_ADC2_BASE:
  594. /* Configure the ADC clock to 200MHz */
  595. clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
  596. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  597. freq = clock_get_frequency(clock_adc2);
  598. break;
  599. default:
  600. /* Invalid ADC instance */
  601. break;
  602. }
  603. return freq;
  604. }
  605. uint32_t board_init_dao_clock(void)
  606. {
  607. clock_add_to_group(clock_dao, 0);
  608. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  609. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud0_clk);
  610. return clock_get_frequency(clock_dao);
  611. }
  612. uint32_t board_init_pdm_clock(void)
  613. {
  614. clock_add_to_group(clock_pdm, 0);
  615. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  616. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  617. return clock_get_frequency(clock_pdm);
  618. }
  619. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  620. {
  621. if (ptr == HPM_I2S0) {
  622. clock_add_to_group(clock_i2s0, 0);
  623. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  624. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  625. return clock_get_frequency(clock_i2s0);
  626. } else {
  627. return 0;
  628. }
  629. }
  630. uint32_t board_init_adc16_clock(ADC16_Type *ptr)
  631. {
  632. uint32_t freq = 0;
  633. if (ptr == HPM_ADC3) {
  634. /* Configure the ADC clock to 200MHz */
  635. clock_set_adc_source(clock_adc3, clk_adc_src_ana1);
  636. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  637. freq = clock_get_frequency(clock_adc3);
  638. }
  639. return freq;
  640. }
  641. void board_init_can(CAN_Type *ptr)
  642. {
  643. init_can_pins(ptr);
  644. }
  645. uint32_t board_init_can_clock(CAN_Type *ptr)
  646. {
  647. uint32_t freq = 0;
  648. if (ptr == HPM_CAN0) {
  649. /* Set the CAN0 peripheral clock to 80MHz */
  650. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  651. freq = clock_get_frequency(clock_can0);
  652. } else if (ptr == HPM_CAN1) {
  653. /* Set the CAN1 peripheral clock to 80MHz */
  654. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  655. freq = clock_get_frequency(clock_can1);
  656. } else if (ptr == HPM_CAN2) {
  657. /* Set the CAN2 peripheral clock to 80MHz */
  658. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  659. freq = clock_get_frequency(clock_can2);
  660. } else if (ptr == HPM_CAN3) {
  661. /* Set the CAN3 peripheral clock to 80MHz */
  662. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  663. freq = clock_get_frequency(clock_can3);
  664. } else {
  665. /* Invalid CAN instance */
  666. }
  667. return freq;
  668. }
  669. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  670. {
  671. uint32_t freq = 0;
  672. if (ptr == HPM_GPTMR0) {
  673. clock_add_to_group(clock_gptmr0, 0);
  674. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  675. freq = clock_get_frequency(clock_gptmr0);
  676. }
  677. else if (ptr == HPM_GPTMR1) {
  678. clock_add_to_group(clock_gptmr1, 0);
  679. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  680. freq = clock_get_frequency(clock_gptmr1);
  681. }
  682. else if (ptr == HPM_GPTMR2) {
  683. clock_add_to_group(clock_gptmr2, 0);
  684. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  685. freq = clock_get_frequency(clock_gptmr2);
  686. }
  687. else if (ptr == HPM_GPTMR3) {
  688. clock_add_to_group(clock_gptmr3, 0);
  689. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  690. freq = clock_get_frequency(clock_gptmr3);
  691. }
  692. else if (ptr == HPM_GPTMR4) {
  693. clock_add_to_group(clock_gptmr4, 0);
  694. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
  695. freq = clock_get_frequency(clock_gptmr4);
  696. }
  697. else if (ptr == HPM_GPTMR5) {
  698. clock_add_to_group(clock_gptmr5, 0);
  699. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
  700. freq = clock_get_frequency(clock_gptmr5);
  701. }
  702. else if (ptr == HPM_GPTMR6) {
  703. clock_add_to_group(clock_gptmr6, 0);
  704. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
  705. freq = clock_get_frequency(clock_gptmr6);
  706. }
  707. else if (ptr == HPM_GPTMR7) {
  708. clock_add_to_group(clock_gptmr7, 0);
  709. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
  710. freq = clock_get_frequency(clock_gptmr7);
  711. }
  712. else {
  713. /* Invalid instance */
  714. }
  715. }
  716. /*
  717. * this function will be called during startup to initialize external memory for data use
  718. */
  719. void _init_ext_ram(void)
  720. {
  721. uint32_t dram_clk_in_hz;
  722. board_init_sdram_pins();
  723. dram_clk_in_hz = board_init_dram_clock();
  724. dram_config_t config = {0};
  725. dram_sdram_config_t sdram_config = {0};
  726. dram_default_config(HPM_DRAM, &config);
  727. config.dqs = DRAM_DQS_INTERNAL;
  728. dram_init(HPM_DRAM, &config);
  729. sdram_config.bank_num = DRAM_SDRAM_BANK_NUM_4;
  730. sdram_config.prescaler = 0x3;
  731. sdram_config.burst_len_in_byte = 8;
  732. sdram_config.auto_refresh_count_in_one_burst = 1;
  733. sdram_config.col_addr_bits = DRAM_SDRAM_COLUMN_ADDR_9_BITS;
  734. sdram_config.cas_latency = DRAM_SDRAM_CAS_LATENCY_3;
  735. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  736. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  737. sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
  738. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  739. sdram_config.cke_off_in_ns = 42; /* Trcd */
  740. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  741. sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
  742. sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
  743. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  744. sdram_config.idle_timeout_in_ns = 6;
  745. sdram_config.cs_mux_pin = DRAM_IO_MUX_NOT_USED;
  746. sdram_config.cs = BOARD_SDRAM_CS;
  747. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  748. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  749. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  750. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  751. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  752. sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
  753. sdram_config.delay_cell_value = 29;
  754. dram_config_sdram(HPM_DRAM, dram_clk_in_hz, &sdram_config);
  755. }
  756. void board_init_sd_pins(SDXC_Type *ptr)
  757. {
  758. if (ptr == HPM_SDXC1) {
  759. init_sdxc_pins(ptr, false);
  760. } else {
  761. while (1) {
  762. }
  763. }
  764. }
  765. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq)
  766. {
  767. uint32_t actual_freq = 0;
  768. do {
  769. if (ptr != HPM_SDXC1) {
  770. break;
  771. }
  772. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  773. sdxc_enable_inverse_clock(ptr, false);
  774. sdxc_enable_sd_clock(ptr, false);
  775. /* Configure the clock below 400KHz for the identification state */
  776. if (freq <= 400000UL) {
  777. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  778. }
  779. /* configure the clock to 24MHz for the SDR12/Default speed */
  780. else if (freq <= 25000000UL) {
  781. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  782. }
  783. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  784. else if (freq <= 50000000UL) {
  785. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  786. }
  787. /* Configure the clock to 100MHz for the SDR50 */
  788. else if (freq <= 100000000UL) {
  789. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  790. }
  791. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  792. else if (freq <= 208000000UL) {
  793. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  794. }
  795. /* For other unsupported clock ranges, configure the clock to 24MHz */
  796. else {
  797. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  798. }
  799. sdxc_enable_inverse_clock(ptr, true);
  800. sdxc_enable_sd_clock(ptr, true);
  801. actual_freq = clock_get_frequency(sdxc_clk);
  802. } while (false);
  803. return actual_freq;
  804. }
  805. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  806. {
  807. if (internal == false) {
  808. return status_success;
  809. }
  810. /* Configure Enet clock to output reference clock */
  811. if (ptr == HPM_ENET0) {
  812. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet0 */
  813. clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5);
  814. } else if (ptr == HPM_ENET1) {
  815. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet1 */
  816. clock_set_source_divider(clock_eth1, clk_src_pll2_clk1, 5); /* set 50MHz for enet1 */
  817. } else {
  818. return status_invalid_argument;
  819. }
  820. return status_success;
  821. }
  822. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  823. {
  824. sdxc_switch_to_1v8_signal(ptr, true);
  825. init_sdxc_pins(ptr, true);
  826. }
  827. bool board_sd_detect_card(SDXC_Type *ptr)
  828. {
  829. return sdxc_is_card_inserted(ptr);
  830. }
  831. void board_init_rgb_pwm_pins(void)
  832. {
  833. init_led_pins_as_pwm();
  834. }
  835. void board_init_beep_pwm_pins(void)
  836. {
  837. init_beep_pwm_pins();
  838. }
  839. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  840. {
  841. init_enet_pins(ptr);
  842. if (ptr == HPM_ENET1) {
  843. gpio_set_pin_output_with_initial(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  844. } else {
  845. return status_invalid_argument;
  846. }
  847. return status_success;
  848. }
  849. void board_reset_enet_phy(ENET_Type *ptr)
  850. {
  851. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  852. board_delay_ms(BOARD_ENET1_PHY_RST_TIME);
  853. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 1);
  854. }