clock_time.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-12-08 Bernard fix the issue of _timevalue.tv_usec initialization,
  9. * which found by Rob <rdent@iinet.net.au>
  10. */
  11. #include <rtdevice.h>
  12. #include <time.h>
  13. #include "clock_time.h"
  14. static struct timeval _timevalue;
  15. int clock_time_system_init()
  16. {
  17. time_t time;
  18. rt_tick_t tick;
  19. rt_device_t device;
  20. time = 0;
  21. device = rt_device_find("rtc");
  22. if (device != RT_NULL)
  23. {
  24. /* get realtime seconds */
  25. rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time);
  26. }
  27. /* get tick */
  28. tick = rt_tick_get();
  29. _timevalue.tv_usec = (tick%RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK;
  30. _timevalue.tv_sec = time - tick/RT_TICK_PER_SECOND - 1;
  31. return 0;
  32. }
  33. INIT_COMPONENT_EXPORT(clock_time_system_init);
  34. int clock_time_to_tick(const struct timespec *time)
  35. {
  36. int tick;
  37. long nsecond, second;
  38. struct timespec tp;
  39. RT_ASSERT(time != RT_NULL);
  40. tick = RT_WAITING_FOREVER;
  41. if (time != RT_NULL)
  42. {
  43. /* get current tp */
  44. clock_gettime(CLOCK_REALTIME, &tp);
  45. if ((time->tv_nsec - tp.tv_nsec) < 0)
  46. {
  47. nsecond = (long)NANOSECOND_PER_SECOND - (tp.tv_nsec - time->tv_nsec);
  48. second = time->tv_sec - tp.tv_sec - 1;
  49. }
  50. else
  51. {
  52. nsecond = time->tv_nsec - tp.tv_nsec;
  53. second = time->tv_sec - tp.tv_sec;
  54. }
  55. /*
  56. * Warning: NANOSECOND_PER_SECOND is unsigned long, division method instruction will be `divu`.
  57. * so then result is overflow undefined behavior.
  58. */
  59. tick = (int)(second * RT_TICK_PER_SECOND + (long)(nsecond * RT_TICK_PER_SECOND) / (long)NANOSECOND_PER_SECOND);
  60. if (tick < 0) tick = 0;
  61. }
  62. return tick;
  63. }
  64. RTM_EXPORT(clock_time_to_tick);
  65. int clock_getres(clockid_t clockid, struct timespec *res)
  66. {
  67. int ret = 0;
  68. if (res == RT_NULL)
  69. {
  70. rt_set_errno(EINVAL);
  71. return -1;
  72. }
  73. switch (clockid)
  74. {
  75. case CLOCK_REALTIME:
  76. res->tv_sec = 0;
  77. res->tv_nsec = NANOSECOND_PER_SECOND/RT_TICK_PER_SECOND;
  78. break;
  79. #ifdef RT_USING_CPUTIME
  80. case CLOCK_MONOTONIC:
  81. case CLOCK_CPUTIME_ID:
  82. res->tv_sec = 0;
  83. res->tv_nsec = clock_cpu_getres();
  84. break;
  85. #endif
  86. default:
  87. ret = -1;
  88. rt_set_errno(EINVAL);
  89. break;
  90. }
  91. return ret;
  92. }
  93. RTM_EXPORT(clock_getres);
  94. int clock_gettime(clockid_t clockid, struct timespec *tp)
  95. {
  96. int ret = 0;
  97. if (tp == RT_NULL)
  98. {
  99. rt_set_errno(EINVAL);
  100. return -1;
  101. }
  102. switch (clockid)
  103. {
  104. case CLOCK_REALTIME:
  105. {
  106. /* get tick */
  107. rt_tick_t tick = rt_tick_get();
  108. tp->tv_sec = _timevalue.tv_sec + tick / RT_TICK_PER_SECOND;
  109. tp->tv_nsec = (_timevalue.tv_usec + (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK) * 1000;
  110. }
  111. break;
  112. #ifdef RT_USING_CPUTIME
  113. case CLOCK_MONOTONIC:
  114. case CLOCK_CPUTIME_ID:
  115. {
  116. float unit = 0;
  117. uint64_t cpu_tick;
  118. unit = clock_cpu_getres();
  119. cpu_tick = clock_cpu_gettime();
  120. tp->tv_sec = ((uint64_t)(cpu_tick * unit)) / NANOSECOND_PER_SECOND;
  121. tp->tv_nsec = ((uint64_t)(cpu_tick * unit)) % NANOSECOND_PER_SECOND;
  122. }
  123. break;
  124. #endif
  125. default:
  126. rt_set_errno(EINVAL);
  127. ret = -1;
  128. }
  129. return ret;
  130. }
  131. RTM_EXPORT(clock_gettime);
  132. int clock_settime(clockid_t clockid, const struct timespec *tp)
  133. {
  134. int second;
  135. rt_tick_t tick;
  136. rt_device_t device;
  137. if ((clockid != CLOCK_REALTIME) || (tp == RT_NULL))
  138. {
  139. rt_set_errno(EINVAL);
  140. return -1;
  141. }
  142. /* get second */
  143. second = tp->tv_sec;
  144. /* get tick */
  145. tick = rt_tick_get();
  146. /* update timevalue */
  147. _timevalue.tv_usec = MICROSECOND_PER_SECOND - (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK;
  148. _timevalue.tv_sec = second - tick/RT_TICK_PER_SECOND - 1;
  149. /* update for RTC device */
  150. device = rt_device_find("rtc");
  151. if (device != RT_NULL)
  152. {
  153. /* set realtime seconds */
  154. rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &second);
  155. }
  156. else
  157. return -1;
  158. return 0;
  159. }
  160. RTM_EXPORT(clock_settime);
  161. int clock_nanosleep(clockid_t clockid, int flags, const struct timespec *rqtp, struct timespec *rmtp)
  162. {
  163. if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= 1000000000)
  164. {
  165. rt_set_errno(EINVAL);
  166. return -1;
  167. }
  168. switch (clockid)
  169. {
  170. case CLOCK_REALTIME:
  171. {
  172. rt_tick_t tick;
  173. if (flags & TIMER_ABSTIME == TIMER_ABSTIME)
  174. {
  175. tick = (rqtp->tv_sec - _timevalue.tv_sec) * RT_TICK_PER_SECOND + ((uint64_t)(rqtp->tv_nsec - _timevalue.tv_usec) * RT_TICK_PER_SECOND) / 1000000000;
  176. rt_tick_t rt_tick = rt_tick_get();
  177. tick = tick < rt_tick ? 0 : tick - rt_tick;
  178. }
  179. else
  180. {
  181. tick = rqtp->tv_sec * RT_TICK_PER_SECOND + ((uint64_t)(rqtp->tv_nsec) * RT_TICK_PER_SECOND) / 1000000000;
  182. }
  183. rt_thread_delay(tick);
  184. if (rmtp)
  185. {
  186. tick = rt_tick_get() - tick;
  187. rmtp->tv_sec = tick / RT_TICK_PER_SECOND;
  188. rmtp->tv_nsec = (tick % RT_TICK_PER_SECOND) * (1000000000 / RT_TICK_PER_SECOND);
  189. }
  190. }
  191. break;
  192. #ifdef RT_USING_CPUTIME
  193. case CLOCK_MONOTONIC:
  194. case CLOCK_CPUTIME_ID:
  195. {
  196. uint64_t cpu_tick, cpu_tick_old;
  197. cpu_tick_old = clock_cpu_gettime();
  198. rt_tick_t tick;
  199. float unit = clock_cpu_getres();
  200. cpu_tick = (rqtp->tv_sec * NANOSECOND_PER_SECOND + ((uint64_t)rqtp->tv_nsec * NANOSECOND_PER_SECOND) / 1000000000) / unit;
  201. if (flags & TIMER_ABSTIME == TIMER_ABSTIME)
  202. cpu_tick = cpu_tick < cpu_tick_old ? 0 : cpu_tick - cpu_tick_old;
  203. tick = cpu_tick / (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND);
  204. rt_thread_delay(tick);
  205. if (rmtp)
  206. {
  207. uint64_t rmtp_cpu_tick = clock_cpu_gettime() - tick * (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND);
  208. rmtp->tv_sec = ((int)(rmtp_cpu_tick * unit)) / NANOSECOND_PER_SECOND;
  209. rmtp->tv_nsec = ((int)(rmtp_cpu_tick * unit)) % NANOSECOND_PER_SECOND;
  210. }
  211. while (clock_cpu_gettime() - cpu_tick_old < cpu_tick);
  212. }
  213. break;
  214. #endif
  215. default:
  216. rt_set_errno(EINVAL);
  217. return -1;
  218. }
  219. return 0;
  220. }
  221. RTM_EXPORT(clock_nanosleep);
  222. int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)
  223. {
  224. if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= 1000000000)
  225. {
  226. rt_set_errno(EINVAL);
  227. return -1;
  228. }
  229. #ifdef RT_USING_CPUTIME
  230. uint64_t cpu_tick, cpu_tick_old;
  231. cpu_tick_old = clock_cpu_gettime();
  232. rt_tick_t tick;
  233. float unit = clock_cpu_getres();
  234. cpu_tick = (rqtp->tv_sec * NANOSECOND_PER_SECOND + ((uint64_t)rqtp->tv_nsec * NANOSECOND_PER_SECOND) / 1000000000)/unit;
  235. tick = cpu_tick / (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND);
  236. rt_thread_delay(tick);
  237. if (rmtp)
  238. {
  239. uint64_t rmtp_cpu_tick = clock_cpu_gettime() - tick * (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND);
  240. rmtp->tv_sec = ((int)(rmtp_cpu_tick * unit)) / NANOSECOND_PER_SECOND;
  241. rmtp->tv_nsec = ((int)(rmtp_cpu_tick * unit)) % NANOSECOND_PER_SECOND;
  242. }
  243. while (clock_cpu_gettime() - cpu_tick_old < cpu_tick);
  244. #else
  245. rt_tick_t tick;
  246. tick = rqtp->tv_sec * RT_TICK_PER_SECOND + ((uint64_t)rqtp->tv_nsec * RT_TICK_PER_SECOND) / 1000000000;
  247. rt_thread_delay(tick);
  248. if (rmtp)
  249. {
  250. tick = rt_tick_get() - tick;
  251. /* get the passed time */
  252. rmtp->tv_sec = tick / RT_TICK_PER_SECOND;
  253. rmtp->tv_nsec = (tick % RT_TICK_PER_SECOND) * (1000000000 / RT_TICK_PER_SECOND);
  254. }
  255. #endif
  256. return 0;
  257. }
  258. RTM_EXPORT(nanosleep);