drv_spi.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-5 SummerGift first version
  9. * 2018-12-11 greedyhao Porting for stm32f7xx
  10. * 2019-01-03 zylx modify DMA initialization and spixfer function
  11. * 2020-01-15 whj4674672 Porting for stm32h7xx
  12. * 2020-06-18 thread-liu Porting for stm32mp1xx
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. #include "board.h"
  18. #ifdef RT_USING_SPI
  19. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  20. #include "drv_spi.h"
  21. #include "drv_config.h"
  22. #include <string.h>
  23. //#define DRV_DEBUG
  24. #define LOG_TAG "drv.spi"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI5
  41. SPI5_INDEX,
  42. #endif
  43. #ifdef BSP_USING_SPI6
  44. SPI6_INDEX,
  45. #endif
  46. };
  47. static struct stm32_spi_config spi_config[] =
  48. {
  49. #ifdef BSP_USING_SPI1
  50. SPI1_BUS_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_SPI2
  53. SPI2_BUS_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_SPI3
  56. SPI3_BUS_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_SPI4
  59. SPI4_BUS_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_SPI5
  62. SPI5_BUS_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_SPI6
  65. SPI6_BUS_CONFIG,
  66. #endif
  67. };
  68. static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  69. static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  70. {
  71. RT_ASSERT(spi_drv != RT_NULL);
  72. RT_ASSERT(cfg != RT_NULL);
  73. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  74. if (cfg->mode & RT_SPI_SLAVE)
  75. {
  76. spi_handle->Init.Mode = SPI_MODE_SLAVE;
  77. }
  78. else
  79. {
  80. spi_handle->Init.Mode = SPI_MODE_MASTER;
  81. }
  82. if (cfg->mode & RT_SPI_3WIRE)
  83. {
  84. spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
  85. }
  86. else
  87. {
  88. spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
  89. }
  90. if (cfg->data_width == 8)
  91. {
  92. spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
  93. spi_handle->TxXferSize = 8;
  94. spi_handle->RxXferSize = 8;
  95. }
  96. else if (cfg->data_width == 16)
  97. {
  98. spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
  99. }
  100. else
  101. {
  102. return RT_EIO;
  103. }
  104. if (cfg->mode & RT_SPI_CPHA)
  105. {
  106. spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
  107. }
  108. else
  109. {
  110. spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
  111. }
  112. if (cfg->mode & RT_SPI_CPOL)
  113. {
  114. spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
  115. }
  116. else
  117. {
  118. spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
  119. }
  120. if (cfg->mode & RT_SPI_NO_CS)
  121. {
  122. spi_handle->Init.NSS = SPI_NSS_HARD_OUTPUT;
  123. }
  124. else
  125. {
  126. spi_handle->Init.NSS = SPI_NSS_SOFT;
  127. }
  128. uint32_t SPI_APB_CLOCK;
  129. #if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
  130. SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
  131. #elif defined(SOC_SERIES_STM32H7)
  132. SPI_APB_CLOCK = HAL_RCC_GetSysClockFreq();
  133. #else
  134. SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq();
  135. #endif
  136. if (cfg->max_hz >= SPI_APB_CLOCK / 2)
  137. {
  138. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  139. }
  140. else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
  141. {
  142. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  143. }
  144. else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
  145. {
  146. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  147. }
  148. else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
  149. {
  150. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  151. }
  152. else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
  153. {
  154. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  155. }
  156. else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
  157. {
  158. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  159. }
  160. else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
  161. {
  162. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
  163. }
  164. else
  165. {
  166. /* min prescaler 256 */
  167. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  168. }
  169. LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
  170. #if defined(SOC_SERIES_STM32MP1)
  171. HAL_RCC_GetSystemCoreClockFreq(),
  172. #else
  173. HAL_RCC_GetSysClockFreq(),
  174. #endif
  175. SPI_APB_CLOCK,
  176. cfg->max_hz,
  177. spi_handle->Init.BaudRatePrescaler);
  178. if (cfg->mode & RT_SPI_MSB)
  179. {
  180. spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
  181. }
  182. else
  183. {
  184. spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
  185. }
  186. spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
  187. spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  188. spi_handle->State = HAL_SPI_STATE_RESET;
  189. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
  190. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  191. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  192. spi_handle->Init.Mode = SPI_MODE_MASTER;
  193. spi_handle->Init.NSS = SPI_NSS_SOFT;
  194. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  195. spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  196. spi_handle->Init.CRCPolynomial = 7;
  197. spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  198. spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  199. spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  200. spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  201. spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  202. spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
  203. spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
  204. spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
  205. #endif
  206. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  207. {
  208. return RT_EIO;
  209. }
  210. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
  211. || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
  212. SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
  213. #endif
  214. /* DMA configuration */
  215. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  216. {
  217. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  218. __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
  219. /* NVIC configuration for DMA transfer complete interrupt */
  220. HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
  221. HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
  222. }
  223. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  224. {
  225. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  226. __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
  227. /* NVIC configuration for DMA transfer complete interrupt */
  228. HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 0, 1);
  229. HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
  230. }
  231. LOG_D("%s init done", spi_drv->config->bus_name);
  232. return RT_EOK;
  233. }
  234. static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  235. {
  236. HAL_StatusTypeDef state;
  237. rt_size_t message_length, already_send_length;
  238. rt_uint16_t send_length;
  239. rt_uint8_t *recv_buf;
  240. const rt_uint8_t *send_buf;
  241. RT_ASSERT(device != RT_NULL);
  242. RT_ASSERT(device->bus != RT_NULL);
  243. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  244. RT_ASSERT(message != RT_NULL);
  245. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  246. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  247. struct stm32_hw_spi_cs *cs = device->parent.user_data;
  248. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
  249. {
  250. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
  251. }
  252. LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
  253. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
  254. spi_drv->config->bus_name,
  255. (uint32_t)message->send_buf,
  256. (uint32_t)message->recv_buf, message->length);
  257. message_length = message->length;
  258. recv_buf = message->recv_buf;
  259. send_buf = message->send_buf;
  260. while (message_length)
  261. {
  262. /* the HAL library use uint16 to save the data length */
  263. if (message_length > 65535)
  264. {
  265. send_length = 65535;
  266. message_length = message_length - 65535;
  267. }
  268. else
  269. {
  270. send_length = message_length;
  271. message_length = 0;
  272. }
  273. /* calculate the start address */
  274. already_send_length = message->length - send_length - message_length;
  275. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  276. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  277. /* start once data exchange in DMA mode */
  278. if (message->send_buf && message->recv_buf)
  279. {
  280. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
  281. {
  282. state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
  283. }
  284. else
  285. {
  286. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
  287. }
  288. }
  289. else if (message->send_buf)
  290. {
  291. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  292. {
  293. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
  294. }
  295. else
  296. {
  297. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
  298. }
  299. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  300. {
  301. /* release the CS by disable SPI when using 3 wires SPI */
  302. __HAL_SPI_DISABLE(spi_handle);
  303. }
  304. }
  305. else
  306. {
  307. memset((uint8_t *)recv_buf, 0xff, send_length);
  308. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  309. {
  310. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
  311. }
  312. else
  313. {
  314. /* clear the old error flag */
  315. __HAL_SPI_CLEAR_OVRFLAG(spi_handle);
  316. state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
  317. }
  318. }
  319. if (state != HAL_OK)
  320. {
  321. LOG_I("spi transfer error : %d", state);
  322. message->length = 0;
  323. spi_handle->State = HAL_SPI_STATE_READY;
  324. }
  325. else
  326. {
  327. LOG_D("%s transfer done", spi_drv->config->bus_name);
  328. }
  329. /* For simplicity reasons, this example is just waiting till the end of the
  330. transfer, but application may perform other tasks while transfer operation
  331. is ongoing. */
  332. while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
  333. }
  334. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
  335. {
  336. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
  337. }
  338. return message->length;
  339. }
  340. static rt_err_t spi_configure(struct rt_spi_device *device,
  341. struct rt_spi_configuration *configuration)
  342. {
  343. RT_ASSERT(device != RT_NULL);
  344. RT_ASSERT(configuration != RT_NULL);
  345. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  346. spi_drv->cfg = configuration;
  347. return stm32_spi_init(spi_drv, configuration);
  348. }
  349. static const struct rt_spi_ops stm_spi_ops =
  350. {
  351. .configure = spi_configure,
  352. .xfer = spixfer,
  353. };
  354. static int rt_hw_spi_bus_init(void)
  355. {
  356. rt_err_t result;
  357. for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  358. {
  359. spi_bus_obj[i].config = &spi_config[i];
  360. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  361. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  362. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  363. {
  364. /* Configure the DMA handler for Transmission process */
  365. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  366. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  367. spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
  368. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  369. spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
  370. #endif
  371. spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
  372. spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  373. spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
  374. spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  375. spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  376. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  377. spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
  378. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1)
  379. spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  380. spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  381. spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
  382. spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
  383. #endif
  384. {
  385. rt_uint32_t tmpreg = 0x00U;
  386. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  387. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  388. SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  389. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  390. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB)
  391. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  392. /* Delay after an RCC peripheral clock enabling */
  393. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  394. #elif defined(SOC_SERIES_STM32MP1)
  395. __HAL_RCC_DMAMUX_CLK_ENABLE();
  396. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  397. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  398. #endif
  399. UNUSED(tmpreg); /* To avoid compiler warnings */
  400. }
  401. }
  402. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  403. {
  404. /* Configure the DMA handler for Transmission process */
  405. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  406. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  407. spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
  408. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  409. spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
  410. #endif
  411. spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  412. spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  413. spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
  414. spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  415. spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  416. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  417. spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
  418. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1)
  419. spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  420. spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  421. spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
  422. spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
  423. #endif
  424. {
  425. rt_uint32_t tmpreg = 0x00U;
  426. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  427. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  428. SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  429. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  430. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB)
  431. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  432. /* Delay after an RCC peripheral clock enabling */
  433. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  434. #elif defined(SOC_SERIES_STM32MP1)
  435. __HAL_RCC_DMAMUX_CLK_ENABLE();
  436. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  437. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  438. #endif
  439. UNUSED(tmpreg); /* To avoid compiler warnings */
  440. }
  441. }
  442. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
  443. RT_ASSERT(result == RT_EOK);
  444. LOG_D("%s bus init done", spi_config[i].bus_name);
  445. }
  446. return result;
  447. }
  448. /**
  449. * Attach the spi device to SPI bus, this function must be used after initialization.
  450. */
  451. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
  452. {
  453. RT_ASSERT(bus_name != RT_NULL);
  454. RT_ASSERT(device_name != RT_NULL);
  455. rt_err_t result;
  456. struct rt_spi_device *spi_device;
  457. struct stm32_hw_spi_cs *cs_pin;
  458. /* initialize the cs pin && select the slave*/
  459. GPIO_InitTypeDef GPIO_Initure;
  460. GPIO_Initure.Pin = cs_gpio_pin;
  461. GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
  462. GPIO_Initure.Pull = GPIO_PULLUP;
  463. GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH;
  464. HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
  465. HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET);
  466. /* attach the device to spi bus*/
  467. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  468. RT_ASSERT(spi_device != RT_NULL);
  469. cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
  470. RT_ASSERT(cs_pin != RT_NULL);
  471. cs_pin->GPIOx = cs_gpiox;
  472. cs_pin->GPIO_Pin = cs_gpio_pin;
  473. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  474. if (result != RT_EOK)
  475. {
  476. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  477. }
  478. RT_ASSERT(result == RT_EOK);
  479. LOG_D("%s attach to %s done", device_name, bus_name);
  480. return result;
  481. }
  482. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  483. void SPI1_IRQHandler(void)
  484. {
  485. /* enter interrupt */
  486. rt_interrupt_enter();
  487. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  488. /* leave interrupt */
  489. rt_interrupt_leave();
  490. }
  491. #endif
  492. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  493. /**
  494. * @brief This function handles DMA Rx interrupt request.
  495. * @param None
  496. * @retval None
  497. */
  498. void SPI1_DMA_RX_IRQHandler(void)
  499. {
  500. /* enter interrupt */
  501. rt_interrupt_enter();
  502. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
  503. /* leave interrupt */
  504. rt_interrupt_leave();
  505. }
  506. #endif
  507. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  508. /**
  509. * @brief This function handles DMA Tx interrupt request.
  510. * @param None
  511. * @retval None
  512. */
  513. void SPI1_DMA_TX_IRQHandler(void)
  514. {
  515. /* enter interrupt */
  516. rt_interrupt_enter();
  517. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
  518. /* leave interrupt */
  519. rt_interrupt_leave();
  520. }
  521. #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
  522. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  523. void SPI2_IRQHandler(void)
  524. {
  525. /* enter interrupt */
  526. rt_interrupt_enter();
  527. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  528. /* leave interrupt */
  529. rt_interrupt_leave();
  530. }
  531. #endif
  532. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  533. /**
  534. * @brief This function handles DMA Rx interrupt request.
  535. * @param None
  536. * @retval None
  537. */
  538. void SPI2_DMA_RX_IRQHandler(void)
  539. {
  540. /* enter interrupt */
  541. rt_interrupt_enter();
  542. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
  543. /* leave interrupt */
  544. rt_interrupt_leave();
  545. }
  546. #endif
  547. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  548. /**
  549. * @brief This function handles DMA Tx interrupt request.
  550. * @param None
  551. * @retval None
  552. */
  553. void SPI2_DMA_TX_IRQHandler(void)
  554. {
  555. /* enter interrupt */
  556. rt_interrupt_enter();
  557. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
  558. /* leave interrupt */
  559. rt_interrupt_leave();
  560. }
  561. #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
  562. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  563. void SPI3_IRQHandler(void)
  564. {
  565. /* enter interrupt */
  566. rt_interrupt_enter();
  567. HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
  568. /* leave interrupt */
  569. rt_interrupt_leave();
  570. }
  571. #endif
  572. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  573. /**
  574. * @brief This function handles DMA Rx interrupt request.
  575. * @param None
  576. * @retval None
  577. */
  578. void SPI3_DMA_RX_IRQHandler(void)
  579. {
  580. /* enter interrupt */
  581. rt_interrupt_enter();
  582. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
  583. /* leave interrupt */
  584. rt_interrupt_leave();
  585. }
  586. #endif
  587. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  588. /**
  589. * @brief This function handles DMA Tx interrupt request.
  590. * @param None
  591. * @retval None
  592. */
  593. void SPI3_DMA_TX_IRQHandler(void)
  594. {
  595. /* enter interrupt */
  596. rt_interrupt_enter();
  597. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
  598. /* leave interrupt */
  599. rt_interrupt_leave();
  600. }
  601. #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
  602. #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
  603. void SPI4_IRQHandler(void)
  604. {
  605. /* enter interrupt */
  606. rt_interrupt_enter();
  607. HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
  608. /* leave interrupt */
  609. rt_interrupt_leave();
  610. }
  611. #endif
  612. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  613. /**
  614. * @brief This function handles DMA Rx interrupt request.
  615. * @param None
  616. * @retval None
  617. */
  618. void SPI4_DMA_RX_IRQHandler(void)
  619. {
  620. /* enter interrupt */
  621. rt_interrupt_enter();
  622. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
  623. /* leave interrupt */
  624. rt_interrupt_leave();
  625. }
  626. #endif
  627. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  628. /**
  629. * @brief This function handles DMA Tx interrupt request.
  630. * @param None
  631. * @retval None
  632. */
  633. void SPI4_DMA_TX_IRQHandler(void)
  634. {
  635. /* enter interrupt */
  636. rt_interrupt_enter();
  637. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
  638. /* leave interrupt */
  639. rt_interrupt_leave();
  640. }
  641. #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
  642. #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
  643. void SPI5_IRQHandler(void)
  644. {
  645. /* enter interrupt */
  646. rt_interrupt_enter();
  647. HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
  648. /* leave interrupt */
  649. rt_interrupt_leave();
  650. }
  651. #endif
  652. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  653. /**
  654. * @brief This function handles DMA Rx interrupt request.
  655. * @param None
  656. * @retval None
  657. */
  658. void SPI5_DMA_RX_IRQHandler(void)
  659. {
  660. /* enter interrupt */
  661. rt_interrupt_enter();
  662. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
  663. /* leave interrupt */
  664. rt_interrupt_leave();
  665. }
  666. #endif
  667. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  668. /**
  669. * @brief This function handles DMA Tx interrupt request.
  670. * @param None
  671. * @retval None
  672. */
  673. void SPI5_DMA_TX_IRQHandler(void)
  674. {
  675. /* enter interrupt */
  676. rt_interrupt_enter();
  677. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
  678. /* leave interrupt */
  679. rt_interrupt_leave();
  680. }
  681. #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
  682. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  683. /**
  684. * @brief This function handles DMA Rx interrupt request.
  685. * @param None
  686. * @retval None
  687. */
  688. void SPI6_DMA_RX_IRQHandler(void)
  689. {
  690. /* enter interrupt */
  691. rt_interrupt_enter();
  692. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
  693. /* leave interrupt */
  694. rt_interrupt_leave();
  695. }
  696. #endif
  697. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  698. /**
  699. * @brief This function handles DMA Tx interrupt request.
  700. * @param None
  701. * @retval None
  702. */
  703. void SPI6_DMA_TX_IRQHandler(void)
  704. {
  705. /* enter interrupt */
  706. rt_interrupt_enter();
  707. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
  708. /* leave interrupt */
  709. rt_interrupt_leave();
  710. }
  711. #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
  712. static void stm32_get_dma_info(void)
  713. {
  714. #ifdef BSP_SPI1_RX_USING_DMA
  715. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  716. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  717. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  718. #endif
  719. #ifdef BSP_SPI1_TX_USING_DMA
  720. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  721. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  722. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  723. #endif
  724. #ifdef BSP_SPI2_RX_USING_DMA
  725. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  726. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  727. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  728. #endif
  729. #ifdef BSP_SPI2_TX_USING_DMA
  730. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  731. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  732. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  733. #endif
  734. #ifdef BSP_SPI3_RX_USING_DMA
  735. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  736. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  737. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  738. #endif
  739. #ifdef BSP_SPI3_TX_USING_DMA
  740. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  741. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  742. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  743. #endif
  744. #ifdef BSP_SPI4_RX_USING_DMA
  745. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  746. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  747. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  748. #endif
  749. #ifdef BSP_SPI4_TX_USING_DMA
  750. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  751. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  752. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  753. #endif
  754. #ifdef BSP_SPI5_RX_USING_DMA
  755. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  756. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  757. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  758. #endif
  759. #ifdef BSP_SPI5_TX_USING_DMA
  760. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  761. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  762. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  763. #endif
  764. #ifdef BSP_SPI6_RX_USING_DMA
  765. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  766. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  767. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  768. #endif
  769. #ifdef BSP_SPI6_TX_USING_DMA
  770. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  771. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  772. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  773. #endif
  774. }
  775. #if defined(SOC_SERIES_STM32F0)
  776. void SPI1_DMA_RX_TX_IRQHandler(void)
  777. {
  778. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  779. SPI1_DMA_TX_IRQHandler();
  780. #endif
  781. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  782. SPI1_DMA_RX_IRQHandler();
  783. #endif
  784. }
  785. void SPI2_DMA_RX_TX_IRQHandler(void)
  786. {
  787. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  788. SPI2_DMA_TX_IRQHandler();
  789. #endif
  790. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  791. SPI2_DMA_RX_IRQHandler();
  792. #endif
  793. }
  794. #endif /* SOC_SERIES_STM32F0 */
  795. int rt_hw_spi_init(void)
  796. {
  797. stm32_get_dma_info();
  798. return rt_hw_spi_bus_init();
  799. }
  800. INIT_BOARD_EXPORT(rt_hw_spi_init);
  801. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
  802. #endif /* RT_USING_SPI */