123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- /*
- * Copyright (c) 2006-2018, RT-Thread Development Team
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Change Logs:
- * Date Author Notes
- */
- #include <math.h>
- /*
- * COPYRIGHT: See COPYING in the top level directory
- * PROJECT: ReactOS CRT
- * FILE: lib/crt/math/cos.c
- * PURPOSE: Generic C Implementation of cos
- * PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org)
- */
- #define PRECISION 9
- static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
- static double cos_sign_tbl[] = {1,-1,-1,1};
- static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
- static double sin_sign_tbl[] = {1,-1,-1,1};
- double sin(double x)
- {
- int quadrant;
- double x2, result;
- /* Calculate the quadrant */
- quadrant = x * (2./M_PI);
- /* Get offset inside quadrant */
- x = x - quadrant * (M_PI/2.);
- /* Normalize quadrant to [0..3] */
- quadrant = (quadrant - 1) & 0x3;
- /* Fixup value for the generic function */
- x += sin_off_tbl[quadrant];
- /* Calculate the negative of the square of x */
- x2 = - (x * x);
- /* This is an unrolled taylor series using <PRECISION> iterations
- * Example with 4 iterations:
- * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
- * To save multiplications and to keep the precision high, it's performed
- * like this:
- * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
- */
- /* Start with 0, compiler will optimize this away */
- result = 0;
- #if (PRECISION >= 10)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
- result *= x2;
- #endif
- #if (PRECISION >= 9)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
- result *= x2;
- #endif
- #if (PRECISION >= 8)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
- result *= x2;
- #endif
- #if (PRECISION >= 7)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
- result *= x2;
- #endif
- #if (PRECISION >= 6)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
- result *= x2;
- #endif
- #if (PRECISION >= 5)
- result += 1./(1.*2*3*4*5*6*7*8*9*10);
- result *= x2;
- #endif
- result += 1./(1.*2*3*4*5*6*7*8);
- result *= x2;
- result += 1./(1.*2*3*4*5*6);
- result *= x2;
- result += 1./(1.*2*3*4);
- result *= x2;
- result += 1./(1.*2);
- result *= x2;
- result += 1;
- /* Apply correct sign */
- result *= sin_sign_tbl[quadrant];
- return result;
- }
- double cos(double x)
- {
- int quadrant;
- double x2, result;
- /* Calculate the quadrant */
- quadrant = x * (2./M_PI);
- /* Get offset inside quadrant */
- x = x - quadrant * (M_PI/2.);
- /* Normalize quadrant to [0..3] */
- quadrant = quadrant & 0x3;
- /* Fixup value for the generic function */
- x += cos_off_tbl[quadrant];
- /* Calculate the negative of the square of x */
- x2 = - (x * x);
- /* This is an unrolled taylor series using <PRECISION> iterations
- * Example with 4 iterations:
- * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
- * To save multiplications and to keep the precision high, it's performed
- * like this:
- * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
- */
- /* Start with 0, compiler will optimize this away */
- result = 0;
- #if (PRECISION >= 10)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
- result *= x2;
- #endif
- #if (PRECISION >= 9)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
- result *= x2;
- #endif
- #if (PRECISION >= 8)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
- result *= x2;
- #endif
- #if (PRECISION >= 7)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
- result *= x2;
- #endif
- #if (PRECISION >= 6)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
- result *= x2;
- #endif
- #if (PRECISION >= 5)
- result += 1./(1.*2*3*4*5*6*7*8*9*10);
- result *= x2;
- #endif
- result += 1./(1.*2*3*4*5*6*7*8);
- result *= x2;
- result += 1./(1.*2*3*4*5*6);
- result *= x2;
- result += 1./(1.*2*3*4);
- result *= x2;
- result += 1./(1.*2);
- result *= x2;
- result += 1;
- /* Apply correct sign */
- result *= cos_sign_tbl[quadrant];
- return result;
- }
|