fsl_phy.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. /*
  2. * Copyright (c) 2015, Freescale Semiconductor, Inc.
  3. * Copyright 2016-2017 NXP
  4. *
  5. * Redistribution and use in source and binary forms, with or without modification,
  6. * are permitted provided that the following conditions are met:
  7. *
  8. * o Redistributions of source code must retain the above copyright notice, this list
  9. * of conditions and the following disclaimer.
  10. *
  11. * o Redistributions in binary form must reproduce the above copyright notice, this
  12. * list of conditions and the following disclaimer in the documentation and/or
  13. * other materials provided with the distribution.
  14. *
  15. * o Neither the name of the copyright holder nor the names of its
  16. * contributors may be used to endorse or promote products derived from this
  17. * software without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  21. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  22. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
  23. * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  24. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  25. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  26. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  28. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. */
  30. #include "fsl_phy.h"
  31. #include <rtthread.h>
  32. /*******************************************************************************
  33. * Definitions
  34. ******************************************************************************/
  35. /*! @brief Defines the timeout macro. */
  36. #define PHY_TIMEOUT_COUNT 0xFFFFU
  37. /*******************************************************************************
  38. * Prototypes
  39. ******************************************************************************/
  40. /*!
  41. * @brief Get the ENET instance from peripheral base address.
  42. *
  43. * @param base ENET peripheral base address.
  44. * @return ENET instance.
  45. */
  46. extern uint32_t ENET_GetInstance(ENET_Type *base);
  47. /*******************************************************************************
  48. * Variables
  49. ******************************************************************************/
  50. #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
  51. /*! @brief Pointers to enet clocks for each instance. */
  52. extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
  53. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  54. /*******************************************************************************
  55. * Code
  56. ******************************************************************************/
  57. status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
  58. {
  59. uint32_t bssReg;
  60. uint32_t counter = PHY_TIMEOUT_COUNT;
  61. uint32_t idReg = 0;
  62. status_t result = kStatus_Success;
  63. uint32_t instance = ENET_GetInstance(base);
  64. uint32_t timeDelay;
  65. uint32_t ctlReg = 0;
  66. #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
  67. /* Set SMI first. */
  68. CLOCK_EnableClock(s_enetClock[instance]);
  69. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  70. ENET_SetSMI(base, srcClock_Hz, false);
  71. /* Initialization after PHY stars to work. */
  72. while ((idReg != PHY_CONTROL_ID1) && (counter != 0))
  73. {
  74. PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
  75. counter --;
  76. }
  77. if (!counter)
  78. {
  79. return kStatus_Fail;
  80. }
  81. /* Reset PHY. */
  82. counter = 6;
  83. result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
  84. if (result == kStatus_Success)
  85. {
  86. #if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
  87. uint32_t data = 0;
  88. result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
  89. if ( result != kStatus_Success)
  90. {
  91. return result;
  92. }
  93. result = PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
  94. if (result != kStatus_Success)
  95. {
  96. return result;
  97. }
  98. #endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
  99. /* Set the negotiation. */
  100. result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
  101. (PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
  102. PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
  103. if (result == kStatus_Success)
  104. {
  105. result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
  106. (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
  107. if (result == kStatus_Success)
  108. {
  109. /* Check auto negotiation complete. */
  110. while (counter --)
  111. {
  112. result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
  113. if ( result == kStatus_Success)
  114. {
  115. PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
  116. if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctlReg & PHY_LINK_READY_MASK))
  117. {
  118. /* Wait a moment for Phy status stable. */
  119. for (timeDelay = 0; timeDelay < PHY_TIMEOUT_COUNT; timeDelay ++)
  120. {
  121. __ASM("nop");
  122. }
  123. break;
  124. }
  125. }
  126. rt_kprintf("[PHY] wait autonegotiation complete...\n");
  127. rt_thread_delay(RT_TICK_PER_SECOND);
  128. if (!counter)
  129. {
  130. return kStatus_PHY_AutoNegotiateFail;
  131. }
  132. }
  133. }
  134. }
  135. }
  136. return result;
  137. }
  138. status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
  139. {
  140. uint32_t counter;
  141. /* Clear the SMI interrupt event. */
  142. ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
  143. /* Starts a SMI write command. */
  144. ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
  145. /* Wait for SMI complete. */
  146. for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
  147. {
  148. if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
  149. {
  150. break;
  151. }
  152. }
  153. /* Check for timeout. */
  154. if (!counter)
  155. {
  156. return kStatus_PHY_SMIVisitTimeout;
  157. }
  158. /* Clear MII interrupt event. */
  159. ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
  160. return kStatus_Success;
  161. }
  162. status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
  163. {
  164. assert(dataPtr);
  165. uint32_t counter;
  166. /* Clear the MII interrupt event. */
  167. ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
  168. /* Starts a SMI read command operation. */
  169. ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
  170. /* Wait for MII complete. */
  171. for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
  172. {
  173. if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
  174. {
  175. break;
  176. }
  177. }
  178. /* Check for timeout. */
  179. if (!counter)
  180. {
  181. return kStatus_PHY_SMIVisitTimeout;
  182. }
  183. /* Get data from MII register. */
  184. *dataPtr = ENET_ReadSMIData(base);
  185. /* Clear MII interrupt event. */
  186. ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
  187. return kStatus_Success;
  188. }
  189. status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable)
  190. {
  191. status_t result;
  192. uint32_t data = 0;
  193. /* Set the loop mode. */
  194. if (enable)
  195. {
  196. if (mode == kPHY_LocalLoop)
  197. {
  198. if (speed == kPHY_Speed100M)
  199. {
  200. data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
  201. }
  202. else
  203. {
  204. data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
  205. }
  206. return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, data);
  207. }
  208. else
  209. {
  210. /* First read the current status in control register. */
  211. result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
  212. if (result == kStatus_Success)
  213. {
  214. return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
  215. }
  216. }
  217. }
  218. else
  219. {
  220. /* Disable the loop mode. */
  221. if (mode == kPHY_LocalLoop)
  222. {
  223. /* First read the current status in control register. */
  224. result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
  225. if (result == kStatus_Success)
  226. {
  227. data &= ~PHY_BCTL_LOOP_MASK;
  228. return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
  229. }
  230. }
  231. else
  232. {
  233. /* First read the current status in control one register. */
  234. result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
  235. if (result == kStatus_Success)
  236. {
  237. return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
  238. }
  239. }
  240. }
  241. return result;
  242. }
  243. status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
  244. {
  245. assert(status);
  246. status_t result = kStatus_Success;
  247. uint32_t data;
  248. /* Read the basic status register. */
  249. result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &data);
  250. if (result == kStatus_Success)
  251. {
  252. if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
  253. {
  254. /* link down. */
  255. *status = false;
  256. }
  257. else
  258. {
  259. /* link up. */
  260. *status = true;
  261. }
  262. }
  263. return result;
  264. }
  265. status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
  266. {
  267. assert(duplex);
  268. status_t result = kStatus_Success;
  269. uint32_t data, ctlReg;
  270. /* Read the control two register. */
  271. result = PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
  272. if (result == kStatus_Success)
  273. {
  274. data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
  275. if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
  276. {
  277. /* Full duplex. */
  278. *duplex = kPHY_FullDuplex;
  279. }
  280. else
  281. {
  282. /* Half duplex. */
  283. *duplex = kPHY_HalfDuplex;
  284. }
  285. data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
  286. if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
  287. {
  288. /* 100M speed. */
  289. *speed = kPHY_Speed100M;
  290. }
  291. else
  292. { /* 10M speed. */
  293. *speed = kPHY_Speed10M;
  294. }
  295. }
  296. return result;
  297. }