dev_alarm.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-10-27 heyuanjie87 first version.
  9. * 2013-05-17 aozima initial alarm event & mutex in system init.
  10. * 2020-10-15 zhangsz add alarm flags hour minute second.
  11. * 2020-11-09 zhangsz fix alarm set when modify rtc time.
  12. */
  13. #include <rtthread.h>
  14. #include <rtdevice.h>
  15. #include <sys/time.h>
  16. #define RT_RTC_YEARS_MAX 137
  17. #ifdef RT_USING_SOFT_RTC
  18. #define RT_ALARM_DELAY 0
  19. #else
  20. #define RT_ALARM_DELAY 2
  21. #endif
  22. #if (defined(RT_USING_RTC) && defined(RT_USING_ALARM))
  23. static struct rt_alarm_container _container;
  24. rt_inline rt_uint32_t alarm_mkdaysec(struct tm *time)
  25. {
  26. rt_uint32_t sec;
  27. sec = time->tm_sec;
  28. sec += time->tm_min * 60;
  29. sec += time->tm_hour * 3600;
  30. return (sec);
  31. }
  32. static rt_err_t alarm_set(struct rt_alarm *alarm)
  33. {
  34. rt_device_t device;
  35. struct rt_rtc_wkalarm wkalarm;
  36. rt_err_t ret;
  37. device = rt_device_find("rtc");
  38. if (device == RT_NULL)
  39. {
  40. return (RT_ERROR);
  41. }
  42. if (alarm->flag & RT_ALARM_STATE_START)
  43. wkalarm.enable = RT_TRUE;
  44. else
  45. wkalarm.enable = RT_FALSE;
  46. wkalarm.tm_sec = alarm->wktime.tm_sec;
  47. wkalarm.tm_min = alarm->wktime.tm_min;
  48. wkalarm.tm_hour = alarm->wktime.tm_hour;
  49. wkalarm.tm_mday = alarm->wktime.tm_mday;
  50. wkalarm.tm_mon = alarm->wktime.tm_mon;
  51. wkalarm.tm_year = alarm->wktime.tm_year;
  52. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_ALARM, &wkalarm);
  53. if ((ret == RT_EOK) && wkalarm.enable)
  54. {
  55. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_ALARM, &wkalarm);
  56. if (ret == RT_EOK)
  57. {
  58. /*
  59. some RTC device like RX8025,it's alarms precision is 1 minute.
  60. in this case,low level RTC driver should set wkalarm->tm_sec to 0.
  61. */
  62. alarm->wktime.tm_sec = wkalarm.tm_sec;
  63. alarm->wktime.tm_min = wkalarm.tm_min;
  64. alarm->wktime.tm_hour = wkalarm.tm_hour;
  65. alarm->wktime.tm_mday = wkalarm.tm_mday;
  66. alarm->wktime.tm_mon = wkalarm.tm_mon;
  67. alarm->wktime.tm_year = wkalarm.tm_year;
  68. }
  69. }
  70. return (ret);
  71. }
  72. static void alarm_wakeup(struct rt_alarm *alarm, struct tm *now)
  73. {
  74. rt_uint32_t sec_alarm, sec_now;
  75. rt_bool_t wakeup = RT_FALSE;
  76. time_t timestamp;
  77. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  78. sec_now = alarm_mkdaysec(now);
  79. if (alarm->flag & RT_ALARM_STATE_START)
  80. {
  81. switch (alarm->flag & 0xFF00)
  82. {
  83. case RT_ALARM_ONESHOT:
  84. {
  85. sec_alarm = timegm(&alarm->wktime);
  86. sec_now = timegm(now);
  87. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  88. {
  89. /* stop alarm */
  90. alarm->flag &= ~RT_ALARM_STATE_START;
  91. alarm_set(alarm);
  92. wakeup = RT_TRUE;
  93. }
  94. }
  95. break;
  96. case RT_ALARM_SECOND:
  97. {
  98. alarm->wktime.tm_hour = now->tm_hour;
  99. alarm->wktime.tm_min = now->tm_min;
  100. alarm->wktime.tm_sec = now->tm_sec + 1;
  101. if (alarm->wktime.tm_sec > 59)
  102. {
  103. alarm->wktime.tm_sec = 0;
  104. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  105. if (alarm->wktime.tm_min > 59)
  106. {
  107. alarm->wktime.tm_min = 0;
  108. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  109. if (alarm->wktime.tm_hour > 23)
  110. {
  111. alarm->wktime.tm_hour = 0;
  112. }
  113. }
  114. }
  115. wakeup = RT_TRUE;
  116. }
  117. break;
  118. case RT_ALARM_MINUTE:
  119. {
  120. alarm->wktime.tm_hour = now->tm_hour;
  121. if (alarm->wktime.tm_sec == now->tm_sec)
  122. {
  123. alarm->wktime.tm_min = now->tm_min + 1;
  124. if (alarm->wktime.tm_min > 59)
  125. {
  126. alarm->wktime.tm_min = 0;
  127. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  128. if (alarm->wktime.tm_hour > 23)
  129. {
  130. alarm->wktime.tm_hour = 0;
  131. }
  132. }
  133. wakeup = RT_TRUE;
  134. }
  135. }
  136. break;
  137. case RT_ALARM_HOUR:
  138. {
  139. if ((alarm->wktime.tm_min == now->tm_min) &&
  140. (alarm->wktime.tm_sec == now->tm_sec))
  141. {
  142. alarm->wktime.tm_hour = now->tm_hour + 1;
  143. if (alarm->wktime.tm_hour > 23)
  144. {
  145. alarm->wktime.tm_hour = 0;
  146. }
  147. wakeup = RT_TRUE;
  148. }
  149. }
  150. break;
  151. case RT_ALARM_DAILY:
  152. {
  153. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  154. wakeup = RT_TRUE;
  155. }
  156. break;
  157. case RT_ALARM_WEEKLY:
  158. {
  159. /* alarm at wday */
  160. if (alarm->wktime.tm_wday == now->tm_wday)
  161. {
  162. sec_alarm += alarm->wktime.tm_wday * 24 * 3600;
  163. sec_now += now->tm_wday * 24 * 3600;
  164. if (sec_now == sec_alarm)
  165. wakeup = RT_TRUE;
  166. }
  167. }
  168. break;
  169. case RT_ALARM_MONTHLY:
  170. {
  171. /* monthly someday generate alarm signals */
  172. if (alarm->wktime.tm_mday == now->tm_mday)
  173. {
  174. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  175. wakeup = RT_TRUE;
  176. }
  177. }
  178. break;
  179. case RT_ALARM_YAERLY:
  180. {
  181. if ((alarm->wktime.tm_mday == now->tm_mday) && \
  182. (alarm->wktime.tm_mon == now->tm_mon))
  183. {
  184. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  185. wakeup = RT_TRUE;
  186. }
  187. }
  188. break;
  189. }
  190. if ((wakeup == RT_TRUE) && (alarm->callback != RT_NULL))
  191. {
  192. timestamp = (time_t)0;
  193. get_timestamp(&timestamp);
  194. alarm->callback(alarm, timestamp);
  195. }
  196. }
  197. }
  198. static void alarm_update(rt_uint32_t event)
  199. {
  200. struct rt_alarm *alm_prev = RT_NULL, *alm_next = RT_NULL;
  201. struct rt_alarm *alarm;
  202. rt_int32_t sec_now, sec_alarm, sec_tmp;
  203. rt_int32_t sec_next = 24 * 3600, sec_prev = 0;
  204. time_t timestamp = (time_t)0;
  205. struct tm now;
  206. rt_list_t *next;
  207. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  208. if (!rt_list_isempty(&_container.head))
  209. {
  210. /* get time of now */
  211. get_timestamp(&timestamp);
  212. gmtime_r(&timestamp, &now);
  213. for (next = _container.head.next; next != &_container.head; next = next->next)
  214. {
  215. alarm = rt_list_entry(next, struct rt_alarm, list);
  216. /* check the overtime alarm */
  217. alarm_wakeup(alarm, &now);
  218. }
  219. /* get time of now */
  220. get_timestamp(&timestamp);
  221. gmtime_r(&timestamp, &now);
  222. sec_now = alarm_mkdaysec(&now);
  223. for (next = _container.head.next; next != &_container.head; next = next->next)
  224. {
  225. alarm = rt_list_entry(next, struct rt_alarm, list);
  226. /* calculate seconds from 00:00:00 */
  227. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  228. if (alarm->flag & RT_ALARM_STATE_START)
  229. {
  230. sec_tmp = sec_alarm - sec_now;
  231. if (sec_tmp > 0)
  232. {
  233. /* find alarm after now(now to 23:59:59) and the most recent */
  234. if (sec_tmp < sec_next)
  235. {
  236. sec_next = sec_tmp;
  237. alm_next = alarm;
  238. }
  239. }
  240. else
  241. {
  242. /* find alarm before now(00:00:00 to now) and furthest from now */
  243. if (sec_tmp < sec_prev)
  244. {
  245. sec_prev = sec_tmp;
  246. alm_prev = alarm;
  247. }
  248. }
  249. }
  250. }
  251. /* enable the alarm after now first */
  252. if (sec_next < 24 * 3600)
  253. {
  254. if (alarm_set(alm_next) == RT_EOK)
  255. _container.current = alm_next;
  256. }
  257. else if (sec_prev < 0)
  258. {
  259. /* enable the alarm before now */
  260. if (alarm_set(alm_prev) == RT_EOK)
  261. _container.current = alm_prev;
  262. }
  263. else
  264. {
  265. if (_container.current != RT_NULL)
  266. {
  267. alarm_set(_container.current);
  268. if (!(_container.current->flag & RT_ALARM_STATE_START))
  269. _container.current = RT_NULL;
  270. }
  271. }
  272. }
  273. rt_mutex_release(&_container.mutex);
  274. }
  275. static int days_of_year_month(int tm_year, int tm_mon)
  276. {
  277. int ret, year;
  278. year = tm_year + 1900;
  279. if (tm_mon == 1)
  280. {
  281. ret = 28 + ((!(year % 4) && (year % 100)) || !(year % 400));
  282. }
  283. else if (((tm_mon <= 6) && (tm_mon % 2 == 0)) || ((tm_mon > 6) && (tm_mon % 2 == 1)))
  284. {
  285. ret = 31;
  286. }
  287. else
  288. {
  289. ret = 30;
  290. }
  291. return (ret);
  292. }
  293. static rt_bool_t is_valid_date(struct tm *date)
  294. {
  295. if ((date->tm_year < 0) || (date->tm_year > RT_RTC_YEARS_MAX))
  296. {
  297. return (RT_FALSE);
  298. }
  299. if ((date->tm_mon < 0) || (date->tm_mon > 11))
  300. {
  301. return (RT_FALSE);
  302. }
  303. if ((date->tm_mday < 1) || \
  304. (date->tm_mday > days_of_year_month(date->tm_year, date->tm_mon)))
  305. {
  306. return (RT_FALSE);
  307. }
  308. return (RT_TRUE);
  309. }
  310. static rt_err_t alarm_setup(rt_alarm_t alarm, struct tm *wktime)
  311. {
  312. rt_err_t ret = -RT_ERROR;
  313. time_t timestamp = (time_t)0;
  314. struct tm *setup, now;
  315. setup = &alarm->wktime;
  316. *setup = *wktime;
  317. /* get time of now */
  318. get_timestamp(&timestamp);
  319. gmtime_r(&timestamp, &now);
  320. /* if these are a "don't care" value,we set them to now*/
  321. if ((setup->tm_sec > 59) || (setup->tm_sec < 0))
  322. setup->tm_sec = now.tm_sec;
  323. if ((setup->tm_min > 59) || (setup->tm_min < 0))
  324. setup->tm_min = now.tm_min;
  325. if ((setup->tm_hour > 23) || (setup->tm_hour < 0))
  326. setup->tm_hour = now.tm_hour;
  327. switch (alarm->flag & 0xFF00)
  328. {
  329. case RT_ALARM_SECOND:
  330. {
  331. alarm->wktime.tm_hour = now.tm_hour;
  332. alarm->wktime.tm_min = now.tm_min;
  333. alarm->wktime.tm_sec = now.tm_sec + 1;
  334. if (alarm->wktime.tm_sec > 59)
  335. {
  336. alarm->wktime.tm_sec = 0;
  337. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  338. if (alarm->wktime.tm_min > 59)
  339. {
  340. alarm->wktime.tm_min = 0;
  341. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  342. if (alarm->wktime.tm_hour > 23)
  343. {
  344. alarm->wktime.tm_hour = 0;
  345. }
  346. }
  347. }
  348. }
  349. break;
  350. case RT_ALARM_MINUTE:
  351. {
  352. alarm->wktime.tm_hour = now.tm_hour;
  353. alarm->wktime.tm_min = now.tm_min + 1;
  354. if (alarm->wktime.tm_min > 59)
  355. {
  356. alarm->wktime.tm_min = 0;
  357. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  358. if (alarm->wktime.tm_hour > 23)
  359. {
  360. alarm->wktime.tm_hour = 0;
  361. }
  362. }
  363. }
  364. break;
  365. case RT_ALARM_HOUR:
  366. {
  367. alarm->wktime.tm_hour = now.tm_hour + 1;
  368. if (alarm->wktime.tm_hour > 23)
  369. {
  370. alarm->wktime.tm_hour = 0;
  371. }
  372. }
  373. break;
  374. case RT_ALARM_DAILY:
  375. {
  376. /* do nothing but needed */
  377. }
  378. break;
  379. case RT_ALARM_ONESHOT:
  380. {
  381. /* if these are "don't care" value we set them to now */
  382. if (setup->tm_year == RT_ALARM_TM_NOW)
  383. setup->tm_year = now.tm_year;
  384. if (setup->tm_mon == RT_ALARM_TM_NOW)
  385. setup->tm_mon = now.tm_mon;
  386. if (setup->tm_mday == RT_ALARM_TM_NOW)
  387. setup->tm_mday = now.tm_mday;
  388. /* make sure the setup is valid */
  389. if (!is_valid_date(setup))
  390. goto _exit;
  391. }
  392. break;
  393. case RT_ALARM_WEEKLY:
  394. {
  395. /* if tm_wday is a "don't care" value we set it to now */
  396. if ((setup->tm_wday < 0) || (setup->tm_wday > 6))
  397. setup->tm_wday = now.tm_wday;
  398. }
  399. break;
  400. case RT_ALARM_MONTHLY:
  401. {
  402. /* if tm_mday is a "don't care" value we set it to now */
  403. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  404. setup->tm_mday = now.tm_mday;
  405. }
  406. break;
  407. case RT_ALARM_YAERLY:
  408. {
  409. /* if tm_mon is a "don't care" value we set it to now */
  410. if ((setup->tm_mon < 0) || (setup->tm_mon > 11))
  411. setup->tm_mon = now.tm_mon;
  412. if (setup->tm_mon == 1)
  413. {
  414. /* tm_mon is February */
  415. /* tm_mday should be 1~29.otherwise,it's a "don't care" value */
  416. if ((setup->tm_mday < 1) || (setup->tm_mday > 29))
  417. setup->tm_mday = now.tm_mday;
  418. }
  419. else if (((setup->tm_mon <= 6) && (setup->tm_mon % 2 == 0)) || \
  420. ((setup->tm_mon > 6) && (setup->tm_mon % 2 == 1)))
  421. {
  422. /* Jan,Mar,May,Jul,Aug,Oct,Dec */
  423. /* tm_mday should be 1~31.otherwise,it's a "don't care" value */
  424. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  425. setup->tm_mday = now.tm_mday;
  426. }
  427. else
  428. {
  429. /* tm_mday should be 1~30.otherwise,it's a "don't care" value */
  430. if ((setup->tm_mday < 1) || (setup->tm_mday > 30))
  431. setup->tm_mday = now.tm_mday;
  432. }
  433. }
  434. break;
  435. default:
  436. {
  437. goto _exit;
  438. }
  439. }
  440. if ((setup->tm_hour == 23) && (setup->tm_min == 59) && (setup->tm_sec == 59))
  441. {
  442. /*
  443. for insurance purposes, we will generate an alarm
  444. signal two seconds ahead of.
  445. */
  446. setup->tm_sec = 60 - RT_ALARM_DELAY;
  447. }
  448. /* set initialized state */
  449. alarm->flag |= RT_ALARM_STATE_INITED;
  450. ret = RT_EOK;
  451. _exit:
  452. return (ret);
  453. }
  454. /** \brief send a rtc alarm event
  455. *
  456. * \param dev pointer to RTC device(currently unused,you can ignore it)
  457. * \param event RTC event(currently unused)
  458. * \return none
  459. */
  460. void rt_alarm_update(rt_device_t dev, rt_uint32_t event)
  461. {
  462. rt_event_send(&_container.event, 1);
  463. }
  464. /** \brief modify the alarm setup
  465. *
  466. * \param alarm pointer to alarm
  467. * \param cmd control command
  468. * \param arg argument
  469. */
  470. rt_err_t rt_alarm_control(rt_alarm_t alarm, int cmd, void *arg)
  471. {
  472. rt_err_t ret = -RT_ERROR;
  473. RT_ASSERT(alarm != RT_NULL);
  474. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  475. switch (cmd)
  476. {
  477. case RT_ALARM_CTRL_MODIFY:
  478. {
  479. struct rt_alarm_setup *setup;
  480. RT_ASSERT(arg != RT_NULL);
  481. setup = arg;
  482. rt_alarm_stop(alarm);
  483. alarm->flag = setup->flag & 0xFF00;
  484. alarm->wktime = setup->wktime;
  485. ret = alarm_setup(alarm, &alarm->wktime);
  486. }
  487. break;
  488. }
  489. rt_mutex_release(&_container.mutex);
  490. return (ret);
  491. }
  492. /** \brief start an alarm
  493. *
  494. * \param alarm pointer to alarm
  495. * \return RT_EOK
  496. */
  497. rt_err_t rt_alarm_start(rt_alarm_t alarm)
  498. {
  499. rt_int32_t sec_now, sec_old, sec_new;
  500. rt_err_t ret = RT_EOK;
  501. time_t timestamp = (time_t)0;
  502. struct tm now;
  503. if (alarm == RT_NULL)
  504. return (RT_ERROR);
  505. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  506. if (!(alarm->flag & RT_ALARM_STATE_START))
  507. {
  508. if (alarm_setup(alarm, &alarm->wktime) != RT_EOK)
  509. {
  510. ret = -RT_ERROR;
  511. goto _exit;
  512. }
  513. /* get time of now */
  514. get_timestamp(&timestamp);
  515. gmtime_r(&timestamp, &now);
  516. alarm->flag |= RT_ALARM_STATE_START;
  517. /* set alarm */
  518. if (_container.current == RT_NULL)
  519. {
  520. ret = alarm_set(alarm);
  521. }
  522. else
  523. {
  524. sec_now = alarm_mkdaysec(&now);
  525. sec_old = alarm_mkdaysec(&_container.current->wktime);
  526. sec_new = alarm_mkdaysec(&alarm->wktime);
  527. if ((sec_new < sec_old) && (sec_new > sec_now))
  528. {
  529. ret = alarm_set(alarm);
  530. }
  531. else if ((sec_new > sec_now) && (sec_old < sec_now))
  532. {
  533. ret = alarm_set(alarm);
  534. }
  535. else if ((sec_new < sec_old) && (sec_old < sec_now))
  536. {
  537. ret = alarm_set(alarm);
  538. }
  539. else
  540. {
  541. ret = RT_EOK;
  542. goto _exit;
  543. }
  544. }
  545. if (ret == RT_EOK)
  546. {
  547. _container.current = alarm;
  548. }
  549. }
  550. _exit:
  551. rt_mutex_release(&_container.mutex);
  552. return (ret);
  553. }
  554. /** \brief stop an alarm
  555. *
  556. * \param alarm pointer to alarm
  557. * \return RT_EOK
  558. */
  559. rt_err_t rt_alarm_stop(rt_alarm_t alarm)
  560. {
  561. rt_err_t ret = RT_EOK;
  562. if (alarm == RT_NULL)
  563. return (RT_ERROR);
  564. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  565. if (!(alarm->flag & RT_ALARM_STATE_START))
  566. goto _exit;
  567. /* stop alarm */
  568. alarm->flag &= ~RT_ALARM_STATE_START;
  569. if (_container.current == alarm)
  570. {
  571. ret = alarm_set(alarm);
  572. _container.current = RT_NULL;
  573. }
  574. if (ret == RT_EOK)
  575. alarm_update(0);
  576. _exit:
  577. rt_mutex_release(&_container.mutex);
  578. return (ret);
  579. }
  580. /** \brief delete an alarm
  581. *
  582. * \param alarm pointer to alarm
  583. * \return RT_EOK
  584. */
  585. rt_err_t rt_alarm_delete(rt_alarm_t alarm)
  586. {
  587. rt_err_t ret = RT_EOK;
  588. if (alarm == RT_NULL)
  589. return -RT_ERROR;
  590. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  591. /* stop the alarm */
  592. alarm->flag &= ~RT_ALARM_STATE_START;
  593. if (_container.current == alarm)
  594. {
  595. ret = alarm_set(alarm);
  596. _container.current = RT_NULL;
  597. /* set new alarm if necessary */
  598. alarm_update(0);
  599. }
  600. rt_list_remove(&alarm->list);
  601. rt_free(alarm);
  602. rt_mutex_release(&_container.mutex);
  603. return (ret);
  604. }
  605. /** \brief create an alarm
  606. *
  607. * \param flag set alarm mode e.g: RT_ALARM_DAILY
  608. * \param setup pointer to setup infomation
  609. */
  610. rt_alarm_t rt_alarm_create(rt_alarm_callback_t callback, struct rt_alarm_setup *setup)
  611. {
  612. struct rt_alarm *alarm;
  613. if (setup == RT_NULL)
  614. return (RT_NULL);
  615. alarm = rt_malloc(sizeof(struct rt_alarm));
  616. if (alarm == RT_NULL)
  617. return (RT_NULL);
  618. rt_list_init(&alarm->list);
  619. alarm->wktime = setup->wktime;
  620. alarm->flag = setup->flag & 0xFF00;
  621. alarm->callback = callback;
  622. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  623. rt_list_insert_after(&_container.head, &alarm->list);
  624. rt_mutex_release(&_container.mutex);
  625. return (alarm);
  626. }
  627. /** \brief rtc alarm service thread entry
  628. *
  629. */
  630. static void rt_alarmsvc_thread_init(void *param)
  631. {
  632. rt_uint32_t recv;
  633. _container.current = RT_NULL;
  634. while (1)
  635. {
  636. if (rt_event_recv(&_container.event, 0xFFFF,
  637. RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
  638. RT_WAITING_FOREVER, &recv) == RT_EOK)
  639. {
  640. alarm_update(recv);
  641. }
  642. }
  643. }
  644. struct _alarm_flag
  645. {
  646. const char* name;
  647. rt_uint32_t flag;
  648. };
  649. static const struct _alarm_flag _alarm_flag_tbl[] =
  650. {
  651. {"N", 0xffff}, /* none */
  652. {"O", RT_ALARM_ONESHOT}, /* only alarm once */
  653. {"D", RT_ALARM_DAILY}, /* alarm everyday */
  654. {"W", RT_ALARM_WEEKLY}, /* alarm weekly at Monday or Friday etc. */
  655. {"Mo", RT_ALARM_MONTHLY}, /* alarm monthly at someday */
  656. {"Y", RT_ALARM_YAERLY}, /* alarm yearly at a certain date */
  657. {"H", RT_ALARM_HOUR}, /* alarm each hour at a certain min:second */
  658. {"M", RT_ALARM_MINUTE}, /* alarm each minute at a certain second */
  659. {"S", RT_ALARM_SECOND}, /* alarm each second */
  660. };
  661. static rt_uint8_t _alarm_flag_tbl_size = sizeof(_alarm_flag_tbl) / sizeof(_alarm_flag_tbl[0]);
  662. static rt_uint8_t get_alarm_flag_index(rt_uint32_t alarm_flag)
  663. {
  664. for (rt_uint8_t index = 0; index < _alarm_flag_tbl_size; index++)
  665. {
  666. alarm_flag &= 0xff00;
  667. if (alarm_flag == _alarm_flag_tbl[index].flag)
  668. {
  669. return index;
  670. }
  671. }
  672. return 0;
  673. }
  674. void rt_alarm_dump(void)
  675. {
  676. rt_list_t *next;
  677. rt_alarm_t alarm;
  678. rt_kprintf("| hh:mm:ss | week | flag | en |\n");
  679. rt_kprintf("+----------+------+------+----+\n");
  680. for (next = _container.head.next; next != &_container.head; next = next->next)
  681. {
  682. alarm = rt_list_entry(next, struct rt_alarm, list);
  683. rt_uint8_t flag_index = get_alarm_flag_index(alarm->flag);
  684. rt_kprintf("| %02d:%02d:%02d | %2d | %2s | %2d |\n",
  685. alarm->wktime.tm_hour, alarm->wktime.tm_min, alarm->wktime.tm_sec,
  686. alarm->wktime.tm_wday, _alarm_flag_tbl[flag_index].name, alarm->flag & RT_ALARM_STATE_START);
  687. }
  688. rt_kprintf("+----------+------+------+----+\n");
  689. }
  690. MSH_CMD_EXPORT_ALIAS(rt_alarm_dump, list_alarm, list alarm info);
  691. /** \brief initialize alarm service system
  692. *
  693. * \param none
  694. * \return none
  695. */
  696. int rt_alarm_system_init(void)
  697. {
  698. rt_thread_t tid;
  699. rt_list_init(&_container.head);
  700. rt_event_init(&_container.event, "alarmsvc", RT_IPC_FLAG_FIFO);
  701. rt_mutex_init(&_container.mutex, "alarmsvc", RT_IPC_FLAG_PRIO);
  702. tid = rt_thread_create("alarmsvc",
  703. rt_alarmsvc_thread_init, RT_NULL,
  704. 2048, 10, 5);
  705. if (tid != RT_NULL)
  706. rt_thread_startup(tid);
  707. return 0;
  708. }
  709. INIT_PREV_EXPORT(rt_alarm_system_init);
  710. #endif