sensor.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2020-02-22 luhuadong support custom commands
  10. */
  11. #include <drivers/sensor.h>
  12. #define DBG_TAG "sensor"
  13. #define DBG_LVL DBG_INFO
  14. #include <rtdbg.h>
  15. #include <string.h>
  16. static char *const sensor_name_str[] =
  17. {
  18. "none",
  19. "acce_", /* Accelerometer */
  20. "gyro_", /* Gyroscope */
  21. "mag_", /* Magnetometer */
  22. "temp_", /* Temperature */
  23. "humi_", /* Relative Humidity */
  24. "baro_", /* Barometer */
  25. "li_", /* Ambient light */
  26. "pr_", /* Proximity */
  27. "hr_", /* Heart Rate */
  28. "tvoc_", /* TVOC Level */
  29. "noi_", /* Noise Loudness */
  30. "step_", /* Step sensor */
  31. "forc_", /* Force sensor */
  32. "dust_", /* Dust sensor */
  33. "eco2_", /* eCO2 sensor */
  34. "gnss_", /* GPS/GNSS sensor */
  35. "tof_", /* TOF sensor */
  36. "spo2_", /* SpO2 sensor */
  37. "iaq_", /* IAQ sensor */
  38. "etoh_", /* EtOH sensor */
  39. "bp_", /* Blood Pressure */
  40. "volt_", /* Voltage sensor */
  41. "curr_", /* Current sensor */
  42. "pow_" /* Power sensor */
  43. };
  44. /* Sensor interrupt correlation function */
  45. /*
  46. * Sensor interrupt handler function
  47. */
  48. void rt_sensor_cb(rt_sensor_t sen)
  49. {
  50. if (sen->parent.rx_indicate == RT_NULL)
  51. {
  52. return;
  53. }
  54. if (sen->irq_handle != RT_NULL)
  55. {
  56. sen->irq_handle(sen);
  57. }
  58. /* The buffer is not empty. Read the data in the buffer first */
  59. if (sen->data_len > 0)
  60. {
  61. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  62. }
  63. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  64. {
  65. /* The interrupt mode only produces one data at a time */
  66. sen->parent.rx_indicate(&sen->parent, 1);
  67. }
  68. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  69. {
  70. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  71. }
  72. }
  73. /* ISR for sensor interrupt */
  74. static void irq_callback(void *args)
  75. {
  76. rt_sensor_t sensor = (rt_sensor_t)args;
  77. rt_uint8_t i;
  78. if (sensor->module)
  79. {
  80. /* Invoke a callback for all sensors in the module */
  81. for (i = 0; i < sensor->module->sen_num; i++)
  82. {
  83. rt_sensor_cb(sensor->module->sen[i]);
  84. }
  85. }
  86. else
  87. {
  88. rt_sensor_cb(sensor);
  89. }
  90. }
  91. /* Sensor interrupt initialization function */
  92. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  93. {
  94. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  95. {
  96. return -RT_EINVAL;
  97. }
  98. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  99. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  100. {
  101. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  102. }
  103. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  104. {
  105. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  106. }
  107. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  108. {
  109. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  110. }
  111. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  112. LOG_I("interrupt init success");
  113. return 0;
  114. }
  115. // local rt_sensor_ops
  116. static rt_ssize_t local_fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len)
  117. {
  118. LOG_D("Undefined fetch_data");
  119. return 0;
  120. }
  121. static rt_err_t local_control(struct rt_sensor_device *sensor, int cmd, void *arg)
  122. {
  123. LOG_D("Undefined control");
  124. return -RT_ERROR;
  125. }
  126. static struct rt_sensor_ops local_ops =
  127. {
  128. .fetch_data = local_fetch_data,
  129. .control = local_control
  130. };
  131. /* RT-Thread Device Interface */
  132. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  133. {
  134. rt_sensor_t sensor = (rt_sensor_t)dev;
  135. RT_ASSERT(dev != RT_NULL);
  136. rt_err_t res = RT_EOK;
  137. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  138. if (sensor->module)
  139. {
  140. /* take the module mutex */
  141. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  142. }
  143. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  144. {
  145. /* Allocate memory for the sensor buffer */
  146. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  147. if (sensor->data_buf == RT_NULL)
  148. {
  149. res = -RT_ENOMEM;
  150. goto __exit;
  151. }
  152. }
  153. if (sensor->ops->control != RT_NULL)
  154. {
  155. local_ctrl = sensor->ops->control;
  156. }
  157. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  158. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  159. {
  160. /* If polling mode is supported, configure it to polling mode */
  161. local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING);
  162. }
  163. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  164. {
  165. /* If interrupt mode is supported, configure it to interrupt mode */
  166. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
  167. {
  168. /* Initialization sensor interrupt */
  169. rt_sensor_irq_init(sensor);
  170. sensor->config.mode = RT_SENSOR_MODE_INT;
  171. }
  172. }
  173. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  174. {
  175. /* If fifo mode is supported, configure it to fifo mode */
  176. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
  177. {
  178. /* Initialization sensor interrupt */
  179. rt_sensor_irq_init(sensor);
  180. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  181. }
  182. }
  183. else
  184. {
  185. res = -RT_EINVAL;
  186. goto __exit;
  187. }
  188. /* Configure power mode to normal mode */
  189. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  190. {
  191. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  192. }
  193. __exit:
  194. if (sensor->module)
  195. {
  196. /* release the module mutex */
  197. rt_mutex_release(sensor->module->lock);
  198. }
  199. return res;
  200. }
  201. static rt_err_t rt_sensor_close(rt_device_t dev)
  202. {
  203. rt_sensor_t sensor = (rt_sensor_t)dev;
  204. int i;
  205. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  206. RT_ASSERT(dev != RT_NULL);
  207. if (sensor->module)
  208. {
  209. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  210. }
  211. if (sensor->ops->control != RT_NULL)
  212. {
  213. local_ctrl = sensor->ops->control;
  214. }
  215. /* Configure power mode to power down mode */
  216. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  217. {
  218. sensor->config.power = RT_SENSOR_POWER_DOWN;
  219. }
  220. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
  221. {
  222. for (i = 0; i < sensor->module->sen_num; i ++)
  223. {
  224. if (sensor->module->sen[i]->parent.ref_count > 0)
  225. goto __exit;
  226. }
  227. /* Free memory for the sensor buffer */
  228. for (i = 0; i < sensor->module->sen_num; i ++)
  229. {
  230. if (sensor->module->sen[i]->data_buf != RT_NULL)
  231. {
  232. rt_free(sensor->module->sen[i]->data_buf);
  233. sensor->module->sen[i]->data_buf = RT_NULL;
  234. }
  235. }
  236. }
  237. if (sensor->config.mode != RT_SENSOR_MODE_POLLING)
  238. {
  239. /* Sensor disable interrupt */
  240. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  241. {
  242. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  243. }
  244. }
  245. __exit:
  246. if (sensor->module)
  247. {
  248. rt_mutex_release(sensor->module->lock);
  249. }
  250. return RT_EOK;
  251. }
  252. static rt_ssize_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  253. {
  254. rt_sensor_t sensor = (rt_sensor_t)dev;
  255. rt_size_t result = 0;
  256. RT_ASSERT(dev != RT_NULL);
  257. if (buf == NULL || len == 0)
  258. {
  259. return 0;
  260. }
  261. if (sensor->module)
  262. {
  263. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  264. }
  265. /* The buffer is not empty. Read the data in the buffer first */
  266. if (sensor->data_len > 0)
  267. {
  268. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  269. {
  270. len = sensor->data_len / sizeof(struct rt_sensor_data);
  271. }
  272. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  273. /* Clear the buffer */
  274. sensor->data_len = 0;
  275. result = len;
  276. }
  277. else
  278. {
  279. /* If the buffer is empty read the data */
  280. if (sensor->ops->fetch_data != RT_NULL)
  281. {
  282. result = sensor->ops->fetch_data(sensor, buf, len);
  283. }
  284. }
  285. if (sensor->module)
  286. {
  287. rt_mutex_release(sensor->module->lock);
  288. }
  289. return result;
  290. }
  291. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  292. {
  293. rt_sensor_t sensor = (rt_sensor_t)dev;
  294. rt_err_t result = RT_EOK;
  295. RT_ASSERT(dev != RT_NULL);
  296. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  297. if (sensor->module)
  298. {
  299. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  300. }
  301. if (sensor->ops->control != RT_NULL)
  302. {
  303. local_ctrl = sensor->ops->control;
  304. }
  305. switch (cmd)
  306. {
  307. case RT_SENSOR_CTRL_GET_ID:
  308. if (args)
  309. {
  310. result = local_ctrl(sensor, RT_SENSOR_CTRL_GET_ID, args);
  311. }
  312. break;
  313. case RT_SENSOR_CTRL_GET_INFO:
  314. if (args)
  315. {
  316. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  317. }
  318. break;
  319. case RT_SENSOR_CTRL_SET_RANGE:
  320. /* Configuration measurement range */
  321. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  322. if (result == RT_EOK)
  323. {
  324. sensor->config.range = (rt_int32_t)args;
  325. LOG_D("set range %d", sensor->config.range);
  326. }
  327. break;
  328. case RT_SENSOR_CTRL_SET_ODR:
  329. /* Configuration data output rate */
  330. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  331. if (result == RT_EOK)
  332. {
  333. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  334. LOG_D("set odr %d", sensor->config.odr);
  335. }
  336. break;
  337. case RT_SENSOR_CTRL_SET_POWER:
  338. /* Configuration sensor power mode */
  339. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  340. if (result == RT_EOK)
  341. {
  342. sensor->config.power = (rt_uint32_t)args & 0xFF;
  343. LOG_D("set power mode code:", sensor->config.power);
  344. }
  345. break;
  346. case RT_SENSOR_CTRL_SELF_TEST:
  347. /* Device self-test */
  348. result = local_ctrl(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  349. break;
  350. default:
  351. if (cmd > RT_SENSOR_CTRL_USER_CMD_START)
  352. {
  353. /* Custom commands */
  354. result = local_ctrl(sensor, cmd, args);
  355. }
  356. else
  357. {
  358. result = -RT_ERROR;
  359. }
  360. break;
  361. }
  362. if (sensor->module)
  363. {
  364. rt_mutex_release(sensor->module->lock);
  365. }
  366. return result;
  367. }
  368. #ifdef RT_USING_DEVICE_OPS
  369. const static struct rt_device_ops rt_sensor_ops =
  370. {
  371. RT_NULL,
  372. rt_sensor_open,
  373. rt_sensor_close,
  374. rt_sensor_read,
  375. RT_NULL,
  376. rt_sensor_control
  377. };
  378. #endif
  379. /*
  380. * sensor register
  381. */
  382. int rt_hw_sensor_register(rt_sensor_t sensor,
  383. const char *name,
  384. rt_uint32_t flag,
  385. void *data)
  386. {
  387. rt_int8_t result;
  388. rt_device_t device;
  389. RT_ASSERT(sensor != RT_NULL);
  390. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  391. if (sensor->ops == RT_NULL)
  392. {
  393. sensor->ops = &local_ops;
  394. }
  395. /* Add a type name for the sensor device */
  396. sensor_name = sensor_name_str[sensor->info.type];
  397. device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  398. if (device_name == RT_NULL)
  399. {
  400. LOG_E("device_name calloc failed!");
  401. return -RT_ERROR;
  402. }
  403. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  404. strcat(device_name, name);
  405. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  406. {
  407. /* Create a mutex lock for the module */
  408. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
  409. if (sensor->module->lock == RT_NULL)
  410. {
  411. rt_free(device_name);
  412. return -RT_ERROR;
  413. }
  414. }
  415. device = &sensor->parent;
  416. #ifdef RT_USING_DEVICE_OPS
  417. device->ops = &rt_sensor_ops;
  418. #else
  419. device->init = RT_NULL;
  420. device->open = rt_sensor_open;
  421. device->close = rt_sensor_close;
  422. device->read = rt_sensor_read;
  423. device->write = RT_NULL;
  424. device->control = rt_sensor_control;
  425. #endif
  426. device->type = RT_Device_Class_Sensor;
  427. device->rx_indicate = RT_NULL;
  428. device->tx_complete = RT_NULL;
  429. device->user_data = data;
  430. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  431. if (result != RT_EOK)
  432. {
  433. LOG_E("rt_sensor[%s] register err code: %d", device_name, result);
  434. rt_free(device_name);
  435. return result;
  436. }
  437. LOG_I("rt_sensor[%s] init success", device_name);
  438. rt_free(device_name);
  439. return RT_EOK;
  440. }