sensor_cmd.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2019-07-16 WillianChan Increase the output of sensor information
  10. * 2020-02-22 luhuadong Add vendor info and sensor types for cmd
  11. */
  12. #include <drivers/sensor.h>
  13. #define DBG_TAG "sensor.cmd"
  14. #define DBG_LVL DBG_INFO
  15. #include <rtdbg.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. static rt_sem_t sensor_rx_sem = RT_NULL;
  19. static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
  20. {
  21. switch (sensor->info.type)
  22. {
  23. case RT_SENSOR_CLASS_ACCE:
  24. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mg, timestamp:%5d", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, sensor_data->timestamp);
  25. break;
  26. case RT_SENSOR_CLASS_GYRO:
  27. LOG_I("num:%3d, x:%8d, y:%8d, z:%8d dps, timestamp:%5d", num, sensor_data->data.gyro.x / 1000, sensor_data->data.gyro.y / 1000, sensor_data->data.gyro.z / 1000, sensor_data->timestamp);
  28. break;
  29. case RT_SENSOR_CLASS_MAG:
  30. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mGauss, timestamp:%5d", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, sensor_data->timestamp);
  31. break;
  32. case RT_SENSOR_CLASS_GNSS:
  33. LOG_I("num:%3d, lon:%5d, lat:%5d, timestamp:%5d", num, sensor_data->data.coord.longitude, sensor_data->data.coord.latitude, sensor_data->timestamp);
  34. break;
  35. case RT_SENSOR_CLASS_TEMP:
  36. LOG_I("num:%3d, temp:%3d.%d C, timestamp:%5d", num, sensor_data->data.temp / 10, (rt_uint32_t)sensor_data->data.temp % 10, sensor_data->timestamp);
  37. break;
  38. case RT_SENSOR_CLASS_HUMI:
  39. LOG_I("num:%3d, humi:%3d.%d%%, timestamp:%5d", num, sensor_data->data.humi / 10, sensor_data->data.humi % 10, sensor_data->timestamp);
  40. break;
  41. case RT_SENSOR_CLASS_BARO:
  42. LOG_I("num:%3d, press:%5d pa, timestamp:%5d", num, sensor_data->data.baro, sensor_data->timestamp);
  43. break;
  44. case RT_SENSOR_CLASS_LIGHT:
  45. LOG_I("num:%3d, light:%5d lux, timestamp:%5d", num, sensor_data->data.light, sensor_data->timestamp);
  46. break;
  47. case RT_SENSOR_CLASS_PROXIMITY:
  48. case RT_SENSOR_CLASS_TOF:
  49. LOG_I("num:%3d, distance:%5d, timestamp:%5d", num, sensor_data->data.proximity, sensor_data->timestamp);
  50. break;
  51. case RT_SENSOR_CLASS_HR:
  52. LOG_I("num:%3d, heart rate:%5d bpm, timestamp:%5d", num, sensor_data->data.hr, sensor_data->timestamp);
  53. break;
  54. case RT_SENSOR_CLASS_TVOC:
  55. LOG_I("num:%3d, tvoc:%5d ppb, timestamp:%5d", num, sensor_data->data.tvoc, sensor_data->timestamp);
  56. break;
  57. case RT_SENSOR_CLASS_NOISE:
  58. LOG_I("num:%3d, noise:%5d, timestamp:%5d", num, sensor_data->data.noise, sensor_data->timestamp);
  59. break;
  60. case RT_SENSOR_CLASS_STEP:
  61. LOG_I("num:%3d, step:%5d, timestamp:%5d", num, sensor_data->data.step, sensor_data->timestamp);
  62. break;
  63. case RT_SENSOR_CLASS_FORCE:
  64. LOG_I("num:%3d, force:%5d, timestamp:%5d", num, sensor_data->data.force, sensor_data->timestamp);
  65. break;
  66. case RT_SENSOR_CLASS_DUST:
  67. LOG_I("num:%3d, dust:%5d ug/m3, timestamp:%5d", num, sensor_data->data.dust, sensor_data->timestamp);
  68. break;
  69. case RT_SENSOR_CLASS_ECO2:
  70. LOG_I("num:%3d, eco2:%5d ppm, timestamp:%5d", num, sensor_data->data.eco2, sensor_data->timestamp);
  71. break;
  72. case RT_SENSOR_CLASS_IAQ:
  73. LOG_I("num:%3d, IAQ:%5d.%d , timestamp:%5d", num, sensor_data->data.iaq / 10, sensor_data->data.iaq % 10, sensor_data->timestamp);
  74. break;
  75. case RT_SENSOR_CLASS_ETOH:
  76. LOG_I("num:%3d, EtOH:%5d.%03d ppm, timestamp:%5d", num, sensor_data->data.etoh / 1000, sensor_data->data.etoh % 1000, sensor_data->timestamp);
  77. break;
  78. case RT_SENSOR_CLASS_BP:
  79. LOG_I("num:%3d, bp.sbp:%5d mmHg, bp.dbp:%5d mmHg, timestamp:%5d", num, sensor_data->data.bp.sbp, sensor_data->data.bp.dbp, sensor_data->timestamp);
  80. break;
  81. case RT_SENSOR_CLASS_VOLTAGE:
  82. LOG_I("num:%3d, voltage:%5d mV, timestamp:%5d", num, sensor_data->data.mv, sensor_data->timestamp);
  83. break;
  84. case RT_SENSOR_CLASS_CURRENT:
  85. LOG_I("num:%3d, current:%5d mA, timestamp:%5d", num, sensor_data->data.ma, sensor_data->timestamp);
  86. break;
  87. case RT_SENSOR_CLASS_POWER:
  88. LOG_I("num:%3d, power:%5d mW, timestamp:%5d", num, sensor_data->data.mv, sensor_data->timestamp);
  89. break;
  90. default:
  91. break;
  92. }
  93. }
  94. static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
  95. {
  96. rt_sem_release(sensor_rx_sem);
  97. return 0;
  98. }
  99. static void sensor_fifo_rx_entry(void *parameter)
  100. {
  101. rt_device_t dev = (rt_device_t)parameter;
  102. rt_sensor_t sensor = (rt_sensor_t)parameter;
  103. struct rt_sensor_data *data = RT_NULL;
  104. struct rt_sensor_info info;
  105. rt_size_t res, i;
  106. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  107. data = (struct rt_sensor_data *)rt_malloc(sizeof(struct rt_sensor_data) * info.fifo_max);
  108. if (data == RT_NULL)
  109. {
  110. LOG_E("Memory allocation failed!");
  111. }
  112. while (1)
  113. {
  114. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  115. res = rt_device_read(dev, 0, data, info.fifo_max);
  116. for (i = 0; i < res; i++)
  117. {
  118. sensor_show_data(i, sensor, &data[i]);
  119. }
  120. }
  121. }
  122. static void sensor_fifo(int argc, char **argv)
  123. {
  124. static rt_thread_t tid1 = RT_NULL;
  125. rt_device_t dev = RT_NULL;
  126. rt_sensor_t sensor;
  127. dev = rt_device_find(argv[1]);
  128. if (dev == RT_NULL)
  129. {
  130. LOG_E("Can't find device:%s", argv[1]);
  131. return;
  132. }
  133. sensor = (rt_sensor_t)dev;
  134. if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
  135. {
  136. LOG_E("open device failed!");
  137. return;
  138. }
  139. if (sensor_rx_sem == RT_NULL)
  140. {
  141. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  142. }
  143. else
  144. {
  145. LOG_E("The thread is running, please reboot and try again");
  146. return;
  147. }
  148. tid1 = rt_thread_create("sen_rx_thread",
  149. sensor_fifo_rx_entry, sensor,
  150. 1024,
  151. 15, 5);
  152. if (tid1 != RT_NULL)
  153. rt_thread_startup(tid1);
  154. rt_device_set_rx_indicate(dev, rx_callback);
  155. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  156. }
  157. #ifdef RT_USING_FINSH
  158. MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
  159. #endif
  160. static void sensor_irq_rx_entry(void *parameter)
  161. {
  162. rt_device_t dev = (rt_device_t)parameter;
  163. rt_sensor_t sensor = (rt_sensor_t)parameter;
  164. struct rt_sensor_data data;
  165. rt_size_t res, i = 0;
  166. while (1)
  167. {
  168. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  169. res = rt_device_read(dev, 0, &data, 1);
  170. if (res == 1)
  171. {
  172. sensor_show_data(i++, sensor, &data);
  173. }
  174. }
  175. }
  176. static void sensor_int(int argc, char **argv)
  177. {
  178. static rt_thread_t tid1 = RT_NULL;
  179. rt_device_t dev = RT_NULL;
  180. rt_sensor_t sensor;
  181. dev = rt_device_find(argv[1]);
  182. if (dev == RT_NULL)
  183. {
  184. LOG_E("Can't find device:%s", argv[1]);
  185. return;
  186. }
  187. sensor = (rt_sensor_t)dev;
  188. if (sensor_rx_sem == RT_NULL)
  189. {
  190. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  191. }
  192. else
  193. {
  194. LOG_E("The thread is running, please reboot and try again");
  195. return;
  196. }
  197. tid1 = rt_thread_create("sen_rx_thread",
  198. sensor_irq_rx_entry, sensor,
  199. 1024,
  200. 15, 5);
  201. if (tid1 != RT_NULL)
  202. rt_thread_startup(tid1);
  203. rt_device_set_rx_indicate(dev, rx_callback);
  204. if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
  205. {
  206. LOG_E("open device failed!");
  207. return;
  208. }
  209. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  210. }
  211. #ifdef RT_USING_FINSH
  212. MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
  213. #endif
  214. static void sensor_polling(int argc, char **argv)
  215. {
  216. rt_uint16_t num = 10;
  217. rt_device_t dev = RT_NULL;
  218. rt_sensor_t sensor;
  219. struct rt_sensor_data data;
  220. rt_size_t res, i;
  221. rt_int32_t delay;
  222. rt_err_t result;
  223. dev = rt_device_find(argv[1]);
  224. if (dev == RT_NULL)
  225. {
  226. LOG_E("Can't find device:%s", argv[1]);
  227. return;
  228. }
  229. if (argc > 2)
  230. num = atoi(argv[2]);
  231. sensor = (rt_sensor_t)dev;
  232. delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100;
  233. result = rt_device_open(dev, RT_DEVICE_FLAG_RDONLY);
  234. if (result != RT_EOK)
  235. {
  236. LOG_E("open device failed! error code : %d", result);
  237. return;
  238. }
  239. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)100);
  240. for (i = 0; i < num; i++)
  241. {
  242. res = rt_device_read(dev, 0, &data, 1);
  243. if (res != 1)
  244. {
  245. LOG_E("read data failed!size is %d", res);
  246. }
  247. else
  248. {
  249. sensor_show_data(i, sensor, &data);
  250. }
  251. rt_thread_mdelay(delay);
  252. }
  253. rt_device_close(dev);
  254. }
  255. #ifdef RT_USING_FINSH
  256. MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
  257. #endif
  258. static int sensor(int argc, char **argv)
  259. {
  260. static rt_device_t dev = RT_NULL;
  261. struct rt_sensor_data data;
  262. rt_sensor_t sensor;
  263. rt_size_t res, i;
  264. rt_int32_t delay;
  265. /* If the number of arguments less than 2 */
  266. if (argc < 2)
  267. {
  268. rt_kprintf("\n");
  269. rt_kprintf("sensor [OPTION] [PARAM]\n");
  270. rt_kprintf(" probe <dev_name> Probe sensor by given name\n");
  271. rt_kprintf(" info Get sensor info\n");
  272. rt_kprintf(" sr <var> Set range to var\n");
  273. rt_kprintf(" sm <var> Set work mode to var\n");
  274. rt_kprintf(" sp <var> Set power mode to var\n");
  275. rt_kprintf(" sodr <var> Set output date rate to var\n");
  276. rt_kprintf(" read [num] Read [num] times sensor\n");
  277. rt_kprintf(" num default 5\n");
  278. return -RT_EINVAL;
  279. }
  280. else if (!strcmp(argv[1], "info"))
  281. {
  282. struct rt_sensor_info info;
  283. if (dev == RT_NULL)
  284. {
  285. LOG_W("Please probe sensor device first!");
  286. return -RT_ERROR;
  287. }
  288. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  289. switch (info.vendor)
  290. {
  291. case RT_SENSOR_VENDOR_UNKNOWN:
  292. rt_kprintf("vendor :unknown vendor\n");
  293. break;
  294. case RT_SENSOR_VENDOR_STM:
  295. rt_kprintf("vendor :STMicroelectronics\n");
  296. break;
  297. case RT_SENSOR_VENDOR_BOSCH:
  298. rt_kprintf("vendor :Bosch\n");
  299. break;
  300. case RT_SENSOR_VENDOR_INVENSENSE:
  301. rt_kprintf("vendor :Invensense\n");
  302. break;
  303. case RT_SENSOR_VENDOR_SEMTECH:
  304. rt_kprintf("vendor :Semtech\n");
  305. break;
  306. case RT_SENSOR_VENDOR_GOERTEK:
  307. rt_kprintf("vendor :Goertek\n");
  308. break;
  309. case RT_SENSOR_VENDOR_MIRAMEMS:
  310. rt_kprintf("vendor :MiraMEMS\n");
  311. break;
  312. case RT_SENSOR_VENDOR_DALLAS:
  313. rt_kprintf("vendor :Dallas\n");
  314. break;
  315. case RT_SENSOR_VENDOR_ASAIR:
  316. rt_kprintf("vendor :Asair\n");
  317. break;
  318. case RT_SENSOR_VENDOR_SHARP:
  319. rt_kprintf("vendor :Sharp\n");
  320. break;
  321. case RT_SENSOR_VENDOR_SENSIRION:
  322. rt_kprintf("vendor :Sensirion\n");
  323. break;
  324. case RT_SENSOR_VENDOR_TI:
  325. rt_kprintf("vendor :Texas Instruments\n");
  326. break;
  327. case RT_SENSOR_VENDOR_PLANTOWER:
  328. rt_kprintf("vendor :Plantower\n");
  329. break;
  330. case RT_SENSOR_VENDOR_AMS:
  331. rt_kprintf("vendor :AMS\n");
  332. break;
  333. case RT_SENSOR_VENDOR_MAXIM:
  334. rt_kprintf("vendor :Maxim Integrated\n");
  335. break;
  336. case RT_SENSOR_VENDOR_MELEXIS:
  337. rt_kprintf("vendor :Melexis\n");
  338. break;
  339. }
  340. rt_kprintf("model :%s\n", info.model);
  341. switch (info.unit)
  342. {
  343. case RT_SENSOR_UNIT_NONE:
  344. rt_kprintf("unit :none\n");
  345. break;
  346. case RT_SENSOR_UNIT_MG:
  347. rt_kprintf("unit :mG\n");
  348. break;
  349. case RT_SENSOR_UNIT_MDPS:
  350. rt_kprintf("unit :mdps\n");
  351. break;
  352. case RT_SENSOR_UNIT_MGAUSS:
  353. rt_kprintf("unit :mGauss\n");
  354. break;
  355. case RT_SENSOR_UNIT_LUX:
  356. rt_kprintf("unit :lux\n");
  357. break;
  358. case RT_SENSOR_UNIT_CM:
  359. rt_kprintf("unit :cm\n");
  360. break;
  361. case RT_SENSOR_UNIT_PA:
  362. rt_kprintf("unit :pa\n");
  363. break;
  364. case RT_SENSOR_UNIT_PERMILLAGE:
  365. rt_kprintf("unit :permillage\n");
  366. break;
  367. case RT_SENSOR_UNIT_DCELSIUS:
  368. rt_kprintf("unit :Celsius\n");
  369. break;
  370. case RT_SENSOR_UNIT_HZ:
  371. rt_kprintf("unit :HZ\n");
  372. break;
  373. case RT_SENSOR_UNIT_ONE:
  374. rt_kprintf("unit :1\n");
  375. break;
  376. case RT_SENSOR_UNIT_BPM:
  377. rt_kprintf("unit :bpm\n");
  378. break;
  379. case RT_SENSOR_UNIT_MM:
  380. rt_kprintf("unit :mm\n");
  381. break;
  382. case RT_SENSOR_UNIT_MN:
  383. rt_kprintf("unit :mN\n");
  384. break;
  385. case RT_SENSOR_UNIT_PPM:
  386. rt_kprintf("unit :ppm\n");
  387. break;
  388. case RT_SENSOR_UNIT_PPB:
  389. rt_kprintf("unit :ppb\n");
  390. break;
  391. case RT_SENSOR_UNIT_MMHG:
  392. rt_kprintf("unit :mmHg\n");
  393. break;
  394. case RT_SENSOR_UNIT_MV:
  395. rt_kprintf("unit :mV\n");
  396. break;
  397. case RT_SENSOR_UNIT_MA:
  398. rt_kprintf("unit :mA\n");
  399. break;
  400. case RT_SENSOR_UNIT_MW:
  401. rt_kprintf("unit :mW\n");
  402. break;
  403. }
  404. rt_kprintf("range_max :%d\n", info.range_max);
  405. rt_kprintf("range_min :%d\n", info.range_min);
  406. rt_kprintf("period_min:%dms\n", info.period_min);
  407. rt_kprintf("fifo_max :%d\n", info.fifo_max);
  408. }
  409. else if (!strcmp(argv[1], "read"))
  410. {
  411. rt_uint16_t num = 5;
  412. if (dev == RT_NULL)
  413. {
  414. LOG_W("Please probe sensor device first!");
  415. return -RT_ERROR;
  416. }
  417. if (argc == 3)
  418. {
  419. num = atoi(argv[2]);
  420. }
  421. sensor = (rt_sensor_t)dev;
  422. delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100;
  423. for (i = 0; i < num; i++)
  424. {
  425. res = rt_device_read(dev, 0, &data, 1);
  426. if (res != 1)
  427. {
  428. LOG_E("read data failed!size is %d", res);
  429. }
  430. else
  431. {
  432. sensor_show_data(i, sensor, &data);
  433. }
  434. rt_thread_mdelay(delay);
  435. }
  436. }
  437. else if (argc == 3)
  438. {
  439. if (!strcmp(argv[1], "probe"))
  440. {
  441. rt_uint8_t reg = 0xFF;
  442. if (dev)
  443. {
  444. rt_device_close(dev);
  445. }
  446. dev = rt_device_find(argv[2]);
  447. if (dev == RT_NULL)
  448. {
  449. LOG_E("Can't find device:%s", argv[2]);
  450. return -RT_ERROR;
  451. }
  452. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  453. {
  454. LOG_E("open device failed!");
  455. return -RT_ERROR;
  456. }
  457. rt_device_control(dev, RT_SENSOR_CTRL_GET_ID, &reg);
  458. LOG_I("device id: 0x%x!", reg);
  459. }
  460. else if (dev == RT_NULL)
  461. {
  462. LOG_W("Please probe sensor first!");
  463. return -RT_ERROR;
  464. }
  465. else if (!strcmp(argv[1], "sr"))
  466. {
  467. rt_device_control(dev, RT_SENSOR_CTRL_SET_RANGE, (void *)atoi(argv[2]));
  468. }
  469. else if (!strcmp(argv[1], "sm"))
  470. {
  471. rt_device_control(dev, RT_SENSOR_CTRL_SET_MODE, (void *)atoi(argv[2]));
  472. }
  473. else if (!strcmp(argv[1], "sp"))
  474. {
  475. rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER, (void *)atoi(argv[2]));
  476. }
  477. else if (!strcmp(argv[1], "sodr"))
  478. {
  479. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)atoi(argv[2]));
  480. }
  481. else
  482. {
  483. LOG_W("Unknown command, please enter 'sensor' get help information!");
  484. }
  485. }
  486. else
  487. {
  488. LOG_W("Unknown command, please enter 'sensor' get help information!");
  489. }
  490. return RT_EOK;
  491. }
  492. #ifdef RT_USING_FINSH
  493. MSH_CMD_EXPORT(sensor, sensor test function);
  494. #endif