sensor_cmd.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2019-07-16 WillianChan Increase the output of sensor information
  10. * 2020-02-22 luhuadong Add vendor info and sensor types for cmd
  11. */
  12. #include "sensor.h"
  13. #define DBG_TAG "sensor.cmd"
  14. #define DBG_LVL DBG_INFO
  15. #include <rtdbg.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. static rt_sem_t sensor_rx_sem = RT_NULL;
  19. static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
  20. {
  21. switch (sensor->info.type)
  22. {
  23. case RT_SENSOR_CLASS_ACCE:
  24. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mg, timestamp:%5d", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, sensor_data->timestamp);
  25. break;
  26. case RT_SENSOR_CLASS_GYRO:
  27. LOG_I("num:%3d, x:%8d, y:%8d, z:%8d dps, timestamp:%5d", num, sensor_data->data.gyro.x / 1000, sensor_data->data.gyro.y / 1000, sensor_data->data.gyro.z / 1000, sensor_data->timestamp);
  28. break;
  29. case RT_SENSOR_CLASS_MAG:
  30. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mGauss, timestamp:%5d", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, sensor_data->timestamp);
  31. break;
  32. case RT_SENSOR_CLASS_TEMP:
  33. LOG_I("num:%3d, temp:%3d.%d C, timestamp:%5d", num, sensor_data->data.temp / 10, sensor_data->data.temp % 10, sensor_data->timestamp);
  34. break;
  35. case RT_SENSOR_CLASS_HUMI:
  36. LOG_I("num:%3d, humi:%3d.%d%%, timestamp:%5d", num, sensor_data->data.humi / 10, sensor_data->data.humi % 10, sensor_data->timestamp);
  37. break;
  38. case RT_SENSOR_CLASS_BARO:
  39. LOG_I("num:%3d, press:%5d pa, timestamp:%5d", num, sensor_data->data.baro, sensor_data->timestamp);
  40. break;
  41. case RT_SENSOR_CLASS_LIGHT:
  42. LOG_I("num:%3d, light:%5d lux, timestamp:%5d", num, sensor_data->data.light, sensor_data->timestamp);
  43. break;
  44. case RT_SENSOR_CLASS_PROXIMITY:
  45. LOG_I("num:%3d, distance:%5d, timestamp:%5d", num, sensor_data->data.proximity, sensor_data->timestamp);
  46. break;
  47. case RT_SENSOR_CLASS_HR:
  48. LOG_I("num:%3d, heart rate:%5d bpm, timestamp:%5d", num, sensor_data->data.hr, sensor_data->timestamp);
  49. break;
  50. case RT_SENSOR_CLASS_TVOC:
  51. LOG_I("num:%3d, tvoc:%5d ppb, timestamp:%5d", num, sensor_data->data.tvoc, sensor_data->timestamp);
  52. break;
  53. case RT_SENSOR_CLASS_NOISE:
  54. LOG_I("num:%3d, noise:%5d, timestamp:%5d", num, sensor_data->data.noise, sensor_data->timestamp);
  55. break;
  56. case RT_SENSOR_CLASS_STEP:
  57. LOG_I("num:%3d, step:%5d, timestamp:%5d", num, sensor_data->data.step, sensor_data->timestamp);
  58. break;
  59. case RT_SENSOR_CLASS_FORCE:
  60. LOG_I("num:%3d, force:%5d, timestamp:%5d", num, sensor_data->data.force, sensor_data->timestamp);
  61. break;
  62. case RT_SENSOR_CLASS_DUST:
  63. LOG_I("num:%3d, dust:%5d ug/m3, timestamp:%5d", num, sensor_data->data.dust, sensor_data->timestamp);
  64. break;
  65. case RT_SENSOR_CLASS_ECO2:
  66. LOG_I("num:%3d, eco2:%5d ppm, timestamp:%5d", num, sensor_data->data.eco2, sensor_data->timestamp);
  67. break;
  68. default:
  69. break;
  70. }
  71. }
  72. static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
  73. {
  74. rt_sem_release(sensor_rx_sem);
  75. return 0;
  76. }
  77. static void sensor_fifo_rx_entry(void *parameter)
  78. {
  79. rt_device_t dev = (rt_device_t)parameter;
  80. rt_sensor_t sensor = (rt_sensor_t)parameter;
  81. struct rt_sensor_data *data = RT_NULL;
  82. struct rt_sensor_info info;
  83. rt_size_t res, i;
  84. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  85. data = (struct rt_sensor_data *)rt_malloc(sizeof(struct rt_sensor_data) * info.fifo_max);
  86. if (data == RT_NULL)
  87. {
  88. LOG_E("Memory allocation failed!");
  89. }
  90. while (1)
  91. {
  92. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  93. res = rt_device_read(dev, 0, data, info.fifo_max);
  94. for (i = 0; i < res; i++)
  95. {
  96. sensor_show_data(i, sensor, &data[i]);
  97. }
  98. }
  99. }
  100. static void sensor_fifo(int argc, char **argv)
  101. {
  102. static rt_thread_t tid1 = RT_NULL;
  103. rt_device_t dev = RT_NULL;
  104. rt_sensor_t sensor;
  105. dev = rt_device_find(argv[1]);
  106. if (dev == RT_NULL)
  107. {
  108. LOG_E("Can't find device:%s", argv[1]);
  109. return;
  110. }
  111. sensor = (rt_sensor_t)dev;
  112. if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
  113. {
  114. LOG_E("open device failed!");
  115. return;
  116. }
  117. if (sensor_rx_sem == RT_NULL)
  118. {
  119. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  120. }
  121. else
  122. {
  123. LOG_E("The thread is running, please reboot and try again");
  124. return;
  125. }
  126. tid1 = rt_thread_create("sen_rx_thread",
  127. sensor_fifo_rx_entry, sensor,
  128. 1024,
  129. 15, 5);
  130. if (tid1 != RT_NULL)
  131. rt_thread_startup(tid1);
  132. rt_device_set_rx_indicate(dev, rx_callback);
  133. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  134. }
  135. #ifdef FINSH_USING_MSH
  136. MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
  137. #endif
  138. static void sensor_irq_rx_entry(void *parameter)
  139. {
  140. rt_device_t dev = (rt_device_t)parameter;
  141. rt_sensor_t sensor = (rt_sensor_t)parameter;
  142. struct rt_sensor_data data;
  143. rt_size_t res, i = 0;
  144. while (1)
  145. {
  146. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  147. res = rt_device_read(dev, 0, &data, 1);
  148. if (res == 1)
  149. {
  150. sensor_show_data(i++, sensor, &data);
  151. }
  152. }
  153. }
  154. static void sensor_int(int argc, char **argv)
  155. {
  156. static rt_thread_t tid1 = RT_NULL;
  157. rt_device_t dev = RT_NULL;
  158. rt_sensor_t sensor;
  159. dev = rt_device_find(argv[1]);
  160. if (dev == RT_NULL)
  161. {
  162. LOG_E("Can't find device:%s", argv[1]);
  163. return;
  164. }
  165. sensor = (rt_sensor_t)dev;
  166. if (sensor_rx_sem == RT_NULL)
  167. {
  168. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  169. }
  170. else
  171. {
  172. LOG_E("The thread is running, please reboot and try again");
  173. return;
  174. }
  175. tid1 = rt_thread_create("sen_rx_thread",
  176. sensor_irq_rx_entry, sensor,
  177. 1024,
  178. 15, 5);
  179. if (tid1 != RT_NULL)
  180. rt_thread_startup(tid1);
  181. rt_device_set_rx_indicate(dev, rx_callback);
  182. if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
  183. {
  184. LOG_E("open device failed!");
  185. return;
  186. }
  187. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  188. }
  189. #ifdef FINSH_USING_MSH
  190. MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
  191. #endif
  192. static void sensor_polling(int argc, char **argv)
  193. {
  194. uint16_t num = 10;
  195. rt_device_t dev = RT_NULL;
  196. rt_sensor_t sensor;
  197. struct rt_sensor_data data;
  198. rt_size_t res, i;
  199. rt_int32_t delay;
  200. dev = rt_device_find(argv[1]);
  201. if (dev == RT_NULL)
  202. {
  203. LOG_E("Can't find device:%s", argv[1]);
  204. return;
  205. }
  206. if (argc > 2)
  207. num = atoi(argv[2]);
  208. sensor = (rt_sensor_t)dev;
  209. delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100;
  210. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  211. {
  212. LOG_E("open device failed!");
  213. return;
  214. }
  215. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)100);
  216. for (i = 0; i < num; i++)
  217. {
  218. res = rt_device_read(dev, 0, &data, 1);
  219. if (res != 1)
  220. {
  221. LOG_E("read data failed!size is %d", res);
  222. }
  223. else
  224. {
  225. sensor_show_data(i, sensor, &data);
  226. }
  227. rt_thread_mdelay(delay);
  228. }
  229. rt_device_close(dev);
  230. }
  231. #ifdef FINSH_USING_MSH
  232. MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
  233. #endif
  234. static void sensor(int argc, char **argv)
  235. {
  236. static rt_device_t dev = RT_NULL;
  237. struct rt_sensor_data data;
  238. rt_sensor_t sensor;
  239. rt_size_t res, i;
  240. rt_int32_t delay;
  241. /* If the number of arguments less than 2 */
  242. if (argc < 2)
  243. {
  244. rt_kprintf("\n");
  245. rt_kprintf("sensor [OPTION] [PARAM]\n");
  246. rt_kprintf(" probe <dev_name> Probe sensor by given name\n");
  247. rt_kprintf(" info Get sensor info\n");
  248. rt_kprintf(" sr <var> Set range to var\n");
  249. rt_kprintf(" sm <var> Set work mode to var\n");
  250. rt_kprintf(" sp <var> Set power mode to var\n");
  251. rt_kprintf(" sodr <var> Set output date rate to var\n");
  252. rt_kprintf(" read [num] Read [num] times sensor\n");
  253. rt_kprintf(" num default 5\n");
  254. return ;
  255. }
  256. else if (!strcmp(argv[1], "info"))
  257. {
  258. struct rt_sensor_info info;
  259. if (dev == RT_NULL)
  260. {
  261. LOG_W("Please probe sensor device first!");
  262. return ;
  263. }
  264. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  265. switch (info.vendor)
  266. {
  267. case RT_SENSOR_VENDOR_UNKNOWN:
  268. rt_kprintf("vendor :unknown vendor\n");
  269. break;
  270. case RT_SENSOR_VENDOR_STM:
  271. rt_kprintf("vendor :STMicroelectronics\n");
  272. break;
  273. case RT_SENSOR_VENDOR_BOSCH:
  274. rt_kprintf("vendor :Bosch\n");
  275. break;
  276. case RT_SENSOR_VENDOR_INVENSENSE:
  277. rt_kprintf("vendor :Invensense\n");
  278. break;
  279. case RT_SENSOR_VENDOR_SEMTECH:
  280. rt_kprintf("vendor :Semtech\n");
  281. break;
  282. case RT_SENSOR_VENDOR_GOERTEK:
  283. rt_kprintf("vendor :Goertek\n");
  284. break;
  285. case RT_SENSOR_VENDOR_MIRAMEMS:
  286. rt_kprintf("vendor :MiraMEMS\n");
  287. break;
  288. case RT_SENSOR_VENDOR_DALLAS:
  289. rt_kprintf("vendor :Dallas\n");
  290. break;
  291. case RT_SENSOR_VENDOR_ASAIR:
  292. rt_kprintf("vendor :Asair\n");
  293. break;
  294. case RT_SENSOR_VENDOR_SHARP:
  295. rt_kprintf("vendor :Sharp\n");
  296. break;
  297. case RT_SENSOR_VENDOR_SENSIRION:
  298. rt_kprintf("vendor :Sensirion\n");
  299. break;
  300. case RT_SENSOR_VENDOR_TI:
  301. rt_kprintf("vendor :Texas Instruments\n");
  302. break;
  303. case RT_SENSOR_VENDOR_PLANTOWER:
  304. rt_kprintf("vendor :Plantower\n");
  305. break;
  306. case RT_SENSOR_VENDOR_AMS:
  307. rt_kprintf("vendor :AMS\n");
  308. break;
  309. }
  310. rt_kprintf("model :%s\n", info.model);
  311. switch (info.unit)
  312. {
  313. case RT_SENSOR_UNIT_NONE:
  314. rt_kprintf("unit :none\n");
  315. break;
  316. case RT_SENSOR_UNIT_MG:
  317. rt_kprintf("unit :mG\n");
  318. break;
  319. case RT_SENSOR_UNIT_MDPS:
  320. rt_kprintf("unit :mdps\n");
  321. break;
  322. case RT_SENSOR_UNIT_MGAUSS:
  323. rt_kprintf("unit :mGauss\n");
  324. break;
  325. case RT_SENSOR_UNIT_LUX:
  326. rt_kprintf("unit :lux\n");
  327. break;
  328. case RT_SENSOR_UNIT_CM:
  329. rt_kprintf("unit :cm\n");
  330. break;
  331. case RT_SENSOR_UNIT_PA:
  332. rt_kprintf("unit :pa\n");
  333. break;
  334. case RT_SENSOR_UNIT_PERMILLAGE:
  335. rt_kprintf("unit :permillage\n");
  336. break;
  337. case RT_SENSOR_UNIT_DCELSIUS:
  338. rt_kprintf("unit :Celsius\n");
  339. break;
  340. case RT_SENSOR_UNIT_HZ:
  341. rt_kprintf("unit :HZ\n");
  342. break;
  343. case RT_SENSOR_UNIT_ONE:
  344. rt_kprintf("unit :1\n");
  345. break;
  346. case RT_SENSOR_UNIT_BPM:
  347. rt_kprintf("unit :bpm\n");
  348. break;
  349. case RT_SENSOR_UNIT_MM:
  350. rt_kprintf("unit :mm\n");
  351. break;
  352. case RT_SENSOR_UNIT_MN:
  353. rt_kprintf("unit :mN\n");
  354. break;
  355. case RT_SENSOR_UNIT_PPM:
  356. rt_kprintf("unit :ppm\n");
  357. break;
  358. case RT_SENSOR_UNIT_PPB:
  359. rt_kprintf("unit :ppb\n");
  360. break;
  361. }
  362. rt_kprintf("range_max :%d\n", info.range_max);
  363. rt_kprintf("range_min :%d\n", info.range_min);
  364. rt_kprintf("period_min:%dms\n", info.period_min);
  365. rt_kprintf("fifo_max :%d\n", info.fifo_max);
  366. }
  367. else if (!strcmp(argv[1], "read"))
  368. {
  369. uint16_t num = 5;
  370. if (dev == RT_NULL)
  371. {
  372. LOG_W("Please probe sensor device first!");
  373. return ;
  374. }
  375. if (argc == 3)
  376. {
  377. num = atoi(argv[2]);
  378. }
  379. sensor = (rt_sensor_t)dev;
  380. delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100;
  381. for (i = 0; i < num; i++)
  382. {
  383. res = rt_device_read(dev, 0, &data, 1);
  384. if (res != 1)
  385. {
  386. LOG_E("read data failed!size is %d", res);
  387. }
  388. else
  389. {
  390. sensor_show_data(i, sensor, &data);
  391. }
  392. rt_thread_mdelay(delay);
  393. }
  394. }
  395. else if (argc == 3)
  396. {
  397. if (!strcmp(argv[1], "probe"))
  398. {
  399. rt_uint8_t reg = 0xFF;
  400. if (dev)
  401. {
  402. rt_device_close(dev);
  403. }
  404. dev = rt_device_find(argv[2]);
  405. if (dev == RT_NULL)
  406. {
  407. LOG_E("Can't find device:%s", argv[1]);
  408. return;
  409. }
  410. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  411. {
  412. LOG_E("open device failed!");
  413. return;
  414. }
  415. rt_device_control(dev, RT_SENSOR_CTRL_GET_ID, &reg);
  416. LOG_I("device id: 0x%x!", reg);
  417. }
  418. else if (dev == RT_NULL)
  419. {
  420. LOG_W("Please probe sensor first!");
  421. return ;
  422. }
  423. else if (!strcmp(argv[1], "sr"))
  424. {
  425. rt_device_control(dev, RT_SENSOR_CTRL_SET_RANGE, (void *)atoi(argv[2]));
  426. }
  427. else if (!strcmp(argv[1], "sm"))
  428. {
  429. rt_device_control(dev, RT_SENSOR_CTRL_SET_MODE, (void *)atoi(argv[2]));
  430. }
  431. else if (!strcmp(argv[1], "sp"))
  432. {
  433. rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER, (void *)atoi(argv[2]));
  434. }
  435. else if (!strcmp(argv[1], "sodr"))
  436. {
  437. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)atoi(argv[2]));
  438. }
  439. else
  440. {
  441. LOG_W("Unknown command, please enter 'sensor' get help information!");
  442. }
  443. }
  444. else
  445. {
  446. LOG_W("Unknown command, please enter 'sensor' get help information!");
  447. }
  448. }
  449. #ifdef FINSH_USING_MSH
  450. MSH_CMD_EXPORT(sensor, sensor test function);
  451. #endif