drv_can.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-08-05 Xeon Xu the first version
  9. * 2019-01-22 YLZ port from stm324xx-HAL to bsp stm3210x-HAL
  10. * 2019-02-19 YLZ add support EXTID RTR Frame. modify send, recv functions.
  11. * fix bug.port to BSP [stm32]
  12. * 2019-03-27 YLZ support double can channels, support stm32F4xx (only Legacy mode).
  13. * 2019-06-17 YLZ port to new STM32F1xx HAL V1.1.3.
  14. */
  15. #include "drv_can.h"
  16. #ifdef BSP_USING_CAN
  17. #define LOG_TAG "drv_can"
  18. #include <drv_log.h>
  19. /* attention !!! baud calculation example: Tclk / ((ss + bs1 + bs2) * brp) 36 / ((1 + 8 + 3) * 3) = 1MHz*/
  20. #if defined (SOC_SERIES_STM32F1)/* APB1 36MHz(max) */
  21. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  22. {
  23. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 3)},
  24. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_3TQ | 5)},
  25. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 6)},
  26. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 12)},
  27. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 24)},
  28. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 30)},
  29. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 60)},
  30. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 150)},
  31. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 300)}
  32. };
  33. #elif defined (SOC_SERIES_STM32F4)/* APB1 45MHz(max) */
  34. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  35. {
  36. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 3)},
  37. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_5TQ | 4)},
  38. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 6)},
  39. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 12)},
  40. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 24)},
  41. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 30)},
  42. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 60)},
  43. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 150)},
  44. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 300)}
  45. };
  46. #elif defined (SOC_SERIES_STM32F7)/* APB1 54MHz(max) */
  47. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  48. {
  49. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 3)},
  50. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_7TQ | 4)},
  51. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 6)},
  52. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 12)},
  53. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 24)},
  54. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 30)},
  55. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 60)},
  56. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 150)},
  57. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 300)}
  58. };
  59. #endif
  60. #ifdef BSP_USING_CAN1
  61. static struct stm32_can drv_can1 =
  62. {
  63. .name = "can1",
  64. .CanHandle.Instance = CAN1,
  65. };
  66. #endif
  67. #ifdef BSP_USING_CAN2
  68. static struct stm32_can drv_can2 =
  69. {
  70. "can2",
  71. .CanHandle.Instance = CAN2,
  72. };
  73. #endif
  74. static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
  75. {
  76. rt_uint32_t len, index;
  77. len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
  78. for (index = 0; index < len; index++)
  79. {
  80. if (can_baud_rate_tab[index].baud_rate == baud)
  81. return index;
  82. }
  83. return 0; /* default baud is CAN1MBaud */
  84. }
  85. static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
  86. {
  87. struct stm32_can *drv_can;
  88. rt_uint32_t baud_index;
  89. RT_ASSERT(can);
  90. RT_ASSERT(cfg);
  91. drv_can = (struct stm32_can *)can->parent.user_data;
  92. RT_ASSERT(drv_can);
  93. drv_can->CanHandle.Init.TimeTriggeredMode = DISABLE;
  94. drv_can->CanHandle.Init.AutoBusOff = ENABLE;
  95. drv_can->CanHandle.Init.AutoWakeUp = DISABLE;
  96. drv_can->CanHandle.Init.AutoRetransmission = DISABLE;
  97. drv_can->CanHandle.Init.ReceiveFifoLocked = DISABLE;
  98. drv_can->CanHandle.Init.TransmitFifoPriority = ENABLE;
  99. switch (cfg->mode)
  100. {
  101. case RT_CAN_MODE_NORMAL:
  102. drv_can->CanHandle.Init.Mode = CAN_MODE_NORMAL;
  103. break;
  104. case RT_CAN_MODE_LISEN:
  105. drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT;
  106. break;
  107. case RT_CAN_MODE_LOOPBACK:
  108. drv_can->CanHandle.Init.Mode = CAN_MODE_LOOPBACK;
  109. break;
  110. case RT_CAN_MODE_LOOPBACKANLISEN:
  111. drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK;
  112. break;
  113. }
  114. baud_index = get_can_baud_index(cfg->baud_rate);
  115. drv_can->CanHandle.Init.SyncJumpWidth = BAUD_DATA(SJW, baud_index);
  116. drv_can->CanHandle.Init.TimeSeg1 = BAUD_DATA(BS1, baud_index);
  117. drv_can->CanHandle.Init.TimeSeg2 = BAUD_DATA(BS2, baud_index);
  118. drv_can->CanHandle.Init.Prescaler = BAUD_DATA(RRESCL, baud_index);
  119. /* init can */
  120. if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
  121. {
  122. return -RT_ERROR;
  123. }
  124. /* default filter config */
  125. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  126. /* can start */
  127. HAL_CAN_Start(&drv_can->CanHandle);
  128. return RT_EOK;
  129. }
  130. static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
  131. {
  132. rt_uint32_t argval;
  133. struct stm32_can *drv_can;
  134. struct rt_can_filter_config *filter_cfg;
  135. RT_ASSERT(can != RT_NULL);
  136. drv_can = (struct stm32_can *)can->parent.user_data;
  137. RT_ASSERT(drv_can != RT_NULL);
  138. switch (cmd)
  139. {
  140. case RT_DEVICE_CTRL_CLR_INT:
  141. argval = (rt_uint32_t) arg;
  142. if (argval == RT_DEVICE_FLAG_INT_RX)
  143. {
  144. if (CAN1 == drv_can->CanHandle.Instance)
  145. {
  146. HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
  147. HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
  148. }
  149. #ifdef CAN2
  150. if (CAN2 == drv_can->CanHandle.Instance)
  151. {
  152. HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
  153. HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
  154. }
  155. #endif
  156. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  157. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
  158. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
  159. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  160. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
  161. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
  162. }
  163. else if (argval == RT_DEVICE_FLAG_INT_TX)
  164. {
  165. if (CAN1 == drv_can->CanHandle.Instance)
  166. {
  167. HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
  168. }
  169. #ifdef CAN2
  170. if (CAN2 == drv_can->CanHandle.Instance)
  171. {
  172. HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
  173. }
  174. #endif
  175. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
  176. }
  177. else if (argval == RT_DEVICE_CAN_INT_ERR)
  178. {
  179. if (CAN1 == drv_can->CanHandle.Instance)
  180. {
  181. NVIC_DisableIRQ(CAN1_SCE_IRQn);
  182. }
  183. #ifdef CAN2
  184. if (CAN2 == drv_can->CanHandle.Instance)
  185. {
  186. NVIC_DisableIRQ(CAN2_SCE_IRQn);
  187. }
  188. #endif
  189. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
  190. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
  191. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
  192. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
  193. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
  194. }
  195. break;
  196. case RT_DEVICE_CTRL_SET_INT:
  197. argval = (rt_uint32_t) arg;
  198. if (argval == RT_DEVICE_FLAG_INT_RX)
  199. {
  200. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  201. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
  202. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
  203. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  204. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
  205. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
  206. if (CAN1 == drv_can->CanHandle.Instance)
  207. {
  208. HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 1, 0);
  209. HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
  210. HAL_NVIC_SetPriority(CAN1_RX1_IRQn, 1, 0);
  211. HAL_NVIC_EnableIRQ(CAN1_RX1_IRQn);
  212. }
  213. #ifdef CAN2
  214. if (CAN2 == drv_can->CanHandle.Instance)
  215. {
  216. HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 1, 0);
  217. HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
  218. HAL_NVIC_SetPriority(CAN2_RX1_IRQn, 1, 0);
  219. HAL_NVIC_EnableIRQ(CAN2_RX1_IRQn);
  220. }
  221. #endif
  222. }
  223. else if (argval == RT_DEVICE_FLAG_INT_TX)
  224. {
  225. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
  226. if (CAN1 == drv_can->CanHandle.Instance)
  227. {
  228. HAL_NVIC_SetPriority(CAN1_TX_IRQn, 1, 0);
  229. HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
  230. }
  231. #ifdef CAN2
  232. if (CAN2 == drv_can->CanHandle.Instance)
  233. {
  234. HAL_NVIC_SetPriority(CAN2_TX_IRQn, 1, 0);
  235. HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
  236. }
  237. #endif
  238. }
  239. else if (argval == RT_DEVICE_CAN_INT_ERR)
  240. {
  241. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
  242. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
  243. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
  244. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
  245. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
  246. if (CAN1 == drv_can->CanHandle.Instance)
  247. {
  248. HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 1, 0);
  249. HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
  250. }
  251. #ifdef CAN2
  252. if (CAN2 == drv_can->CanHandle.Instance)
  253. {
  254. HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 1, 0);
  255. HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
  256. }
  257. #endif
  258. }
  259. break;
  260. case RT_CAN_CMD_SET_FILTER:
  261. if (RT_NULL == arg)
  262. {
  263. /* default filter config */
  264. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  265. }
  266. else
  267. {
  268. filter_cfg = (struct rt_can_filter_config *)arg;
  269. /* get default filter */
  270. for (int i = 0; i < filter_cfg->count; i++)
  271. {
  272. drv_can->FilterConfig.FilterBank = filter_cfg->items[i].hdr;
  273. drv_can->FilterConfig.FilterIdHigh = (filter_cfg->items[i].id >> 13) & 0xFFFF;
  274. drv_can->FilterConfig.FilterIdLow = ((filter_cfg->items[i].id << 3) |
  275. (filter_cfg->items[i].ide << 2) |
  276. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  277. drv_can->FilterConfig.FilterMaskIdHigh = (filter_cfg->items[i].mask >> 16) & 0xFFFF;
  278. drv_can->FilterConfig.FilterMaskIdLow = filter_cfg->items[i].mask & 0xFFFF;
  279. drv_can->FilterConfig.FilterMode = filter_cfg->items[i].mode;
  280. /* Filter conf */
  281. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  282. }
  283. }
  284. break;
  285. case RT_CAN_CMD_SET_MODE:
  286. argval = (rt_uint32_t) arg;
  287. if (argval != RT_CAN_MODE_NORMAL &&
  288. argval != RT_CAN_MODE_LISEN &&
  289. argval != RT_CAN_MODE_LOOPBACK &&
  290. argval != RT_CAN_MODE_LOOPBACKANLISEN)
  291. {
  292. return -RT_ERROR;
  293. }
  294. if (argval != drv_can->device.config.mode)
  295. {
  296. drv_can->device.config.mode = argval;
  297. return _can_config(&drv_can->device, &drv_can->device.config);
  298. }
  299. break;
  300. case RT_CAN_CMD_SET_BAUD:
  301. argval = (rt_uint32_t) arg;
  302. if (argval != CAN1MBaud &&
  303. argval != CAN800kBaud &&
  304. argval != CAN500kBaud &&
  305. argval != CAN250kBaud &&
  306. argval != CAN125kBaud &&
  307. argval != CAN100kBaud &&
  308. argval != CAN50kBaud &&
  309. argval != CAN20kBaud &&
  310. argval != CAN10kBaud)
  311. {
  312. return -RT_ERROR;
  313. }
  314. if (argval != drv_can->device.config.baud_rate)
  315. {
  316. drv_can->device.config.baud_rate = argval;
  317. return _can_config(&drv_can->device, &drv_can->device.config);
  318. }
  319. break;
  320. case RT_CAN_CMD_SET_PRIV:
  321. argval = (rt_uint32_t) arg;
  322. if (argval != RT_CAN_MODE_PRIV &&
  323. argval != RT_CAN_MODE_NOPRIV)
  324. {
  325. return -RT_ERROR;
  326. }
  327. if (argval != drv_can->device.config.privmode)
  328. {
  329. drv_can->device.config.privmode = argval;
  330. return _can_config(&drv_can->device, &drv_can->device.config);
  331. }
  332. break;
  333. case RT_CAN_CMD_GET_STATUS:
  334. {
  335. rt_uint32_t errtype;
  336. errtype = drv_can->CanHandle.Instance->ESR;
  337. drv_can->device.status.rcverrcnt = errtype >> 24;
  338. drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
  339. drv_can->device.status.lasterrtype = errtype & 0x70;
  340. drv_can->device.status.errcode = errtype & 0x07;
  341. rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
  342. }
  343. break;
  344. }
  345. return RT_EOK;
  346. }
  347. static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  348. {
  349. CAN_HandleTypeDef *hcan;
  350. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  351. struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
  352. CAN_TxHeaderTypeDef txheader = {0};
  353. HAL_CAN_StateTypeDef state = hcan->State;
  354. /* Check the parameters */
  355. RT_ASSERT(IS_CAN_IDTYPE(pmsg->ide));
  356. RT_ASSERT(IS_CAN_RTR(pmsg->rtr));
  357. RT_ASSERT(IS_CAN_DLC(pmsg->len));
  358. if ((state == HAL_CAN_STATE_READY) ||
  359. (state == HAL_CAN_STATE_LISTENING))
  360. {
  361. /*check select mailbox is empty */
  362. switch (1 << box_num)
  363. {
  364. case CAN_TX_MAILBOX0:
  365. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME0) != SET)
  366. {
  367. /* Change CAN state */
  368. hcan->State = HAL_CAN_STATE_ERROR;
  369. /* Return function status */
  370. return -RT_ERROR;
  371. }
  372. break;
  373. case CAN_TX_MAILBOX1:
  374. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME1) != SET)
  375. {
  376. /* Change CAN state */
  377. hcan->State = HAL_CAN_STATE_ERROR;
  378. /* Return function status */
  379. return -RT_ERROR;
  380. }
  381. break;
  382. case CAN_TX_MAILBOX2:
  383. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME2) != SET)
  384. {
  385. /* Change CAN state */
  386. hcan->State = HAL_CAN_STATE_ERROR;
  387. /* Return function status */
  388. return -RT_ERROR;
  389. }
  390. break;
  391. default:
  392. RT_ASSERT(0);
  393. break;
  394. }
  395. if (RT_CAN_STDID == pmsg->ide)
  396. {
  397. txheader.IDE = CAN_ID_STD;
  398. RT_ASSERT(IS_CAN_STDID(pmsg->id));
  399. txheader.StdId = pmsg->id;
  400. }
  401. else
  402. {
  403. txheader.IDE = CAN_ID_EXT;
  404. RT_ASSERT(IS_CAN_EXTID(pmsg->id));
  405. txheader.ExtId = pmsg->id;
  406. }
  407. if (RT_CAN_DTR == pmsg->rtr)
  408. {
  409. txheader.RTR = CAN_RTR_DATA;
  410. }
  411. else
  412. {
  413. txheader.RTR = CAN_RTR_REMOTE;
  414. }
  415. /* Set up the Id */
  416. if (RT_CAN_STDID == pmsg->ide)
  417. {
  418. hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.StdId << CAN_TI0R_STID_Pos) | txheader.RTR;
  419. }
  420. else
  421. {
  422. hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.ExtId << CAN_TI0R_EXID_Pos) | txheader.IDE | txheader.RTR;
  423. }
  424. /* Set up the DLC */
  425. hcan->Instance->sTxMailBox[box_num].TDTR = pmsg->len & 0x0FU;
  426. /* Set up the data field */
  427. WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDHR,
  428. ((uint32_t)pmsg->data[7] << CAN_TDH0R_DATA7_Pos) |
  429. ((uint32_t)pmsg->data[6] << CAN_TDH0R_DATA6_Pos) |
  430. ((uint32_t)pmsg->data[5] << CAN_TDH0R_DATA5_Pos) |
  431. ((uint32_t)pmsg->data[4] << CAN_TDH0R_DATA4_Pos));
  432. WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDLR,
  433. ((uint32_t)pmsg->data[3] << CAN_TDL0R_DATA3_Pos) |
  434. ((uint32_t)pmsg->data[2] << CAN_TDL0R_DATA2_Pos) |
  435. ((uint32_t)pmsg->data[1] << CAN_TDL0R_DATA1_Pos) |
  436. ((uint32_t)pmsg->data[0] << CAN_TDL0R_DATA0_Pos));
  437. /* Request transmission */
  438. SET_BIT(hcan->Instance->sTxMailBox[box_num].TIR, CAN_TI0R_TXRQ);
  439. return RT_EOK;
  440. }
  441. else
  442. {
  443. /* Update error code */
  444. hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
  445. return -RT_ERROR;
  446. }
  447. }
  448. static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  449. {
  450. HAL_StatusTypeDef status;
  451. CAN_HandleTypeDef *hcan;
  452. struct rt_can_msg *pmsg;
  453. CAN_RxHeaderTypeDef rxheader = {0};
  454. RT_ASSERT(can);
  455. hcan = &((struct stm32_can *)can->parent.user_data)->CanHandle;
  456. pmsg = (struct rt_can_msg *) buf;
  457. /* get data */
  458. status = HAL_CAN_GetRxMessage(hcan, fifo, &rxheader, pmsg->data);
  459. if (HAL_OK != status)
  460. return -RT_ERROR;
  461. /* get id */
  462. if (CAN_ID_STD == rxheader.IDE)
  463. {
  464. pmsg->ide = RT_CAN_STDID;
  465. pmsg->id = rxheader.StdId;
  466. }
  467. else
  468. {
  469. pmsg->ide = RT_CAN_EXTID;
  470. pmsg->id = rxheader.ExtId;
  471. }
  472. /* get type */
  473. if (CAN_RTR_DATA == rxheader.RTR)
  474. {
  475. pmsg->rtr = RT_CAN_DTR;
  476. }
  477. else
  478. {
  479. pmsg->rtr = RT_CAN_RTR;
  480. }
  481. /* get len */
  482. pmsg->len = rxheader.DLC;
  483. /* get hdr */
  484. pmsg->hdr = rxheader.FilterMatchIndex;
  485. return RT_EOK;
  486. }
  487. static const struct rt_can_ops _can_ops =
  488. {
  489. _can_config,
  490. _can_control,
  491. _can_sendmsg,
  492. _can_recvmsg,
  493. };
  494. static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
  495. {
  496. CAN_HandleTypeDef *hcan;
  497. RT_ASSERT(can);
  498. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  499. switch (fifo)
  500. {
  501. case CAN_RX_FIFO0:
  502. /* save to user list */
  503. if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_MSG_PENDING))
  504. {
  505. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  506. }
  507. /* Check FULL flag for FIFO0 */
  508. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_FULL))
  509. {
  510. /* Clear FIFO0 FULL Flag */
  511. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
  512. }
  513. /* Check Overrun flag for FIFO0 */
  514. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_OVERRUN))
  515. {
  516. /* Clear FIFO0 Overrun Flag */
  517. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
  518. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  519. }
  520. break;
  521. case CAN_RX_FIFO1:
  522. /* save to user list */
  523. if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_MSG_PENDING))
  524. {
  525. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  526. }
  527. /* Check FULL flag for FIFO1 */
  528. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_FULL))
  529. {
  530. /* Clear FIFO1 FULL Flag */
  531. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
  532. }
  533. /* Check Overrun flag for FIFO1 */
  534. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_OVERRUN))
  535. {
  536. /* Clear FIFO1 Overrun Flag */
  537. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
  538. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  539. }
  540. break;
  541. }
  542. }
  543. #ifdef BSP_USING_CAN1
  544. /**
  545. * @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
  546. */
  547. void CAN1_TX_IRQHandler(void)
  548. {
  549. rt_interrupt_enter();
  550. CAN_HandleTypeDef *hcan;
  551. hcan = &drv_can1.CanHandle;
  552. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
  553. {
  554. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
  555. {
  556. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
  557. }
  558. else
  559. {
  560. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  561. }
  562. /* Write 0 to Clear transmission status flag RQCPx */
  563. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
  564. }
  565. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
  566. {
  567. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
  568. {
  569. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
  570. }
  571. else
  572. {
  573. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  574. }
  575. /* Write 0 to Clear transmission status flag RQCPx */
  576. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
  577. }
  578. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
  579. {
  580. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
  581. {
  582. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
  583. }
  584. else
  585. {
  586. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  587. }
  588. /* Write 0 to Clear transmission status flag RQCPx */
  589. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
  590. }
  591. rt_interrupt_leave();
  592. }
  593. /**
  594. * @brief This function handles CAN1 RX0 interrupts.
  595. */
  596. void CAN1_RX0_IRQHandler(void)
  597. {
  598. rt_interrupt_enter();
  599. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
  600. rt_interrupt_leave();
  601. }
  602. /**
  603. * @brief This function handles CAN1 RX1 interrupts.
  604. */
  605. void CAN1_RX1_IRQHandler(void)
  606. {
  607. rt_interrupt_enter();
  608. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
  609. rt_interrupt_leave();
  610. }
  611. /**
  612. * @brief This function handles CAN1 SCE interrupts.
  613. */
  614. void CAN1_SCE_IRQHandler(void)
  615. {
  616. rt_uint32_t errtype;
  617. CAN_HandleTypeDef *hcan;
  618. hcan = &drv_can1.CanHandle;
  619. errtype = hcan->Instance->ESR;
  620. rt_interrupt_enter();
  621. HAL_CAN_IRQHandler(hcan);
  622. switch ((errtype & 0x70) >> 4)
  623. {
  624. case RT_CAN_BUS_BIT_PAD_ERR:
  625. drv_can1.device.status.bitpaderrcnt++;
  626. break;
  627. case RT_CAN_BUS_FORMAT_ERR:
  628. drv_can1.device.status.formaterrcnt++;
  629. break;
  630. case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
  631. drv_can1.device.status.ackerrcnt++;
  632. if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
  633. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  634. else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
  635. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  636. else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
  637. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  638. break;
  639. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  640. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  641. drv_can1.device.status.biterrcnt++;
  642. break;
  643. case RT_CAN_BUS_CRC_ERR:
  644. drv_can1.device.status.crcerrcnt++;
  645. break;
  646. }
  647. drv_can1.device.status.lasterrtype = errtype & 0x70;
  648. drv_can1.device.status.rcverrcnt = errtype >> 24;
  649. drv_can1.device.status.snderrcnt = (errtype >> 16 & 0xFF);
  650. drv_can1.device.status.errcode = errtype & 0x07;
  651. hcan->Instance->MSR |= CAN_MSR_ERRI;
  652. rt_interrupt_leave();
  653. }
  654. #endif /* BSP_USING_CAN1 */
  655. #ifdef BSP_USING_CAN2
  656. /**
  657. * @brief This function handles CAN2 TX interrupts.
  658. */
  659. void CAN2_TX_IRQHandler(void)
  660. {
  661. rt_interrupt_enter();
  662. CAN_HandleTypeDef *hcan;
  663. hcan = &drv_can2.CanHandle;
  664. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
  665. {
  666. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
  667. {
  668. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
  669. }
  670. else
  671. {
  672. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  673. }
  674. /* Write 0 to Clear transmission status flag RQCPx */
  675. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
  676. }
  677. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
  678. {
  679. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
  680. {
  681. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
  682. }
  683. else
  684. {
  685. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  686. }
  687. /* Write 0 to Clear transmission status flag RQCPx */
  688. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
  689. }
  690. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
  691. {
  692. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
  693. {
  694. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
  695. }
  696. else
  697. {
  698. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  699. }
  700. /* Write 0 to Clear transmission status flag RQCPx */
  701. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
  702. }
  703. rt_interrupt_leave();
  704. }
  705. /**
  706. * @brief This function handles CAN2 RX0 interrupts.
  707. */
  708. void CAN2_RX0_IRQHandler(void)
  709. {
  710. rt_interrupt_enter();
  711. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
  712. rt_interrupt_leave();
  713. }
  714. /**
  715. * @brief This function handles CAN2 RX1 interrupts.
  716. */
  717. void CAN2_RX1_IRQHandler(void)
  718. {
  719. rt_interrupt_enter();
  720. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
  721. rt_interrupt_leave();
  722. }
  723. /**
  724. * @brief This function handles CAN2 SCE interrupts.
  725. */
  726. void CAN2_SCE_IRQHandler(void)
  727. {
  728. rt_uint32_t errtype;
  729. CAN_HandleTypeDef *hcan;
  730. hcan = &drv_can2.CanHandle;
  731. errtype = hcan->Instance->ESR;
  732. rt_interrupt_enter();
  733. HAL_CAN_IRQHandler(hcan);
  734. switch ((errtype & 0x70) >> 4)
  735. {
  736. case RT_CAN_BUS_BIT_PAD_ERR:
  737. drv_can2.device.status.bitpaderrcnt++;
  738. break;
  739. case RT_CAN_BUS_FORMAT_ERR:
  740. drv_can2.device.status.formaterrcnt++;
  741. break;
  742. case RT_CAN_BUS_ACK_ERR:
  743. drv_can2.device.status.ackerrcnt++;
  744. if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
  745. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  746. else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
  747. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  748. else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
  749. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  750. break;
  751. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  752. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  753. drv_can2.device.status.biterrcnt++;
  754. break;
  755. case RT_CAN_BUS_CRC_ERR:
  756. drv_can2.device.status.crcerrcnt++;
  757. break;
  758. }
  759. drv_can2.device.status.lasterrtype = errtype & 0x70;
  760. drv_can2.device.status.rcverrcnt = errtype >> 24;
  761. drv_can2.device.status.snderrcnt = (errtype >> 16 & 0xFF);
  762. drv_can2.device.status.errcode = errtype & 0x07;
  763. hcan->Instance->MSR |= CAN_MSR_ERRI;
  764. rt_interrupt_leave();
  765. }
  766. #endif /* BSP_USING_CAN2 */
  767. /**
  768. * @brief Error CAN callback.
  769. * @param hcan pointer to a CAN_HandleTypeDef structure that contains
  770. * the configuration information for the specified CAN.
  771. * @retval None
  772. */
  773. void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
  774. {
  775. __HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERROR_WARNING |
  776. CAN_IT_ERROR_PASSIVE |
  777. CAN_IT_BUSOFF |
  778. CAN_IT_LAST_ERROR_CODE |
  779. CAN_IT_ERROR |
  780. CAN_IT_RX_FIFO0_MSG_PENDING |
  781. CAN_IT_RX_FIFO0_OVERRUN |
  782. CAN_IT_RX_FIFO0_FULL |
  783. CAN_IT_RX_FIFO1_MSG_PENDING |
  784. CAN_IT_RX_FIFO1_OVERRUN |
  785. CAN_IT_RX_FIFO1_FULL |
  786. CAN_IT_TX_MAILBOX_EMPTY);
  787. }
  788. int rt_hw_can_init(void)
  789. {
  790. struct can_configure config = CANDEFAULTCONFIG;
  791. config.privmode = RT_CAN_MODE_NOPRIV;
  792. config.ticks = 50;
  793. #ifdef RT_CAN_USING_HDR
  794. config.maxhdr = 14;
  795. #ifdef CAN2
  796. config.maxhdr = 28;
  797. #endif
  798. #endif
  799. /* config default filter */
  800. CAN_FilterTypeDef filterConf = {0};
  801. filterConf.FilterIdHigh = 0x0000;
  802. filterConf.FilterIdLow = 0x0000;
  803. filterConf.FilterMaskIdHigh = 0x0000;
  804. filterConf.FilterMaskIdLow = 0x0000;
  805. filterConf.FilterFIFOAssignment = CAN_FILTER_FIFO0;
  806. filterConf.FilterBank = 0;
  807. filterConf.FilterMode = CAN_FILTERMODE_IDMASK;
  808. filterConf.FilterScale = CAN_FILTERSCALE_32BIT;
  809. filterConf.FilterActivation = ENABLE;
  810. filterConf.SlaveStartFilterBank = 14;
  811. #ifdef BSP_USING_CAN1
  812. filterConf.FilterBank = 0;
  813. drv_can1.FilterConfig = filterConf;
  814. drv_can1.device.config = config;
  815. /* register CAN1 device */
  816. rt_hw_can_register(&drv_can1.device,
  817. drv_can1.name,
  818. &_can_ops,
  819. &drv_can1);
  820. #endif /* BSP_USING_CAN1 */
  821. #ifdef BSP_USING_CAN2
  822. filterConf.FilterBank = filterConf.SlaveStartFilterBank;
  823. drv_can2.FilterConfig = filterConf;
  824. drv_can2.device.config = config;
  825. /* register CAN2 device */
  826. rt_hw_can_register(&drv_can2.device,
  827. drv_can2.name,
  828. &_can_ops,
  829. &drv_can2);
  830. #endif /* BSP_USING_CAN2 */
  831. return 0;
  832. }
  833. INIT_BOARD_EXPORT(rt_hw_can_init);
  834. #endif /* BSP_USING_CAN */
  835. /************************** end of file ******************/