drv_usart.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-10-30 SummerGift first version
  9. * 2020-03-16 SummerGift add device close feature
  10. * 2020-03-20 SummerGift fix bug caused by ORE
  11. * 2020-05-02 whj4674672 support stm32h7 uart dma
  12. * 2020-09-09 forest-rain support stm32wl uart
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include "board.h"
  16. #include "drv_usart.h"
  17. #include "drv_config.h"
  18. #ifdef RT_USING_SERIAL
  19. //#define DRV_DEBUG
  20. #define LOG_TAG "drv.usart"
  21. #include <drv_log.h>
  22. #if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
  23. !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
  24. !defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_LPUART1)
  25. #error "Please define at least one BSP_USING_UARTx"
  26. /* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */
  27. #endif
  28. #ifdef RT_SERIAL_USING_DMA
  29. static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag);
  30. #endif
  31. enum
  32. {
  33. #ifdef BSP_USING_UART1
  34. UART1_INDEX,
  35. #endif
  36. #ifdef BSP_USING_UART2
  37. UART2_INDEX,
  38. #endif
  39. #ifdef BSP_USING_UART3
  40. UART3_INDEX,
  41. #endif
  42. #ifdef BSP_USING_UART4
  43. UART4_INDEX,
  44. #endif
  45. #ifdef BSP_USING_UART5
  46. UART5_INDEX,
  47. #endif
  48. #ifdef BSP_USING_UART6
  49. UART6_INDEX,
  50. #endif
  51. #ifdef BSP_USING_UART7
  52. UART7_INDEX,
  53. #endif
  54. #ifdef BSP_USING_UART8
  55. UART8_INDEX,
  56. #endif
  57. #ifdef BSP_USING_LPUART1
  58. LPUART1_INDEX,
  59. #endif
  60. };
  61. static struct stm32_uart_config uart_config[] =
  62. {
  63. #ifdef BSP_USING_UART1
  64. UART1_CONFIG,
  65. #endif
  66. #ifdef BSP_USING_UART2
  67. UART2_CONFIG,
  68. #endif
  69. #ifdef BSP_USING_UART3
  70. UART3_CONFIG,
  71. #endif
  72. #ifdef BSP_USING_UART4
  73. UART4_CONFIG,
  74. #endif
  75. #ifdef BSP_USING_UART5
  76. UART5_CONFIG,
  77. #endif
  78. #ifdef BSP_USING_UART6
  79. UART6_CONFIG,
  80. #endif
  81. #ifdef BSP_USING_UART7
  82. UART7_CONFIG,
  83. #endif
  84. #ifdef BSP_USING_UART8
  85. UART8_CONFIG,
  86. #endif
  87. #ifdef BSP_USING_LPUART1
  88. LPUART1_CONFIG,
  89. #endif
  90. };
  91. static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
  92. static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
  93. {
  94. struct stm32_uart *uart;
  95. RT_ASSERT(serial != RT_NULL);
  96. RT_ASSERT(cfg != RT_NULL);
  97. uart = rt_container_of(serial, struct stm32_uart, serial);
  98. uart->handle.Instance = uart->config->Instance;
  99. uart->handle.Init.BaudRate = cfg->baud_rate;
  100. uart->handle.Init.Mode = UART_MODE_TX_RX;
  101. #ifdef USART_CR1_OVER8
  102. uart->handle.Init.OverSampling = cfg->baud_rate > 5000000 ? UART_OVERSAMPLING_8 : UART_OVERSAMPLING_16;
  103. #else
  104. uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
  105. #endif /* USART_CR1_OVER8 */
  106. switch (cfg->flowcontrol)
  107. {
  108. case RT_SERIAL_FLOWCONTROL_NONE:
  109. uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  110. break;
  111. case RT_SERIAL_FLOWCONTROL_CTSRTS:
  112. uart->handle.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
  113. break;
  114. default:
  115. uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  116. break;
  117. }
  118. switch (cfg->data_bits)
  119. {
  120. case DATA_BITS_8:
  121. if (cfg->parity == PARITY_ODD || cfg->parity == PARITY_EVEN)
  122. uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
  123. else
  124. uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
  125. break;
  126. case DATA_BITS_9:
  127. uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
  128. break;
  129. default:
  130. uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
  131. break;
  132. }
  133. switch (cfg->stop_bits)
  134. {
  135. case STOP_BITS_1:
  136. uart->handle.Init.StopBits = UART_STOPBITS_1;
  137. break;
  138. case STOP_BITS_2:
  139. uart->handle.Init.StopBits = UART_STOPBITS_2;
  140. break;
  141. default:
  142. uart->handle.Init.StopBits = UART_STOPBITS_1;
  143. break;
  144. }
  145. switch (cfg->parity)
  146. {
  147. case PARITY_NONE:
  148. uart->handle.Init.Parity = UART_PARITY_NONE;
  149. break;
  150. case PARITY_ODD:
  151. uart->handle.Init.Parity = UART_PARITY_ODD;
  152. break;
  153. case PARITY_EVEN:
  154. uart->handle.Init.Parity = UART_PARITY_EVEN;
  155. break;
  156. default:
  157. uart->handle.Init.Parity = UART_PARITY_NONE;
  158. break;
  159. }
  160. #ifdef RT_SERIAL_USING_DMA
  161. if (!(serial->parent.open_flag & RT_DEVICE_OFLAG_OPEN)) {
  162. uart->dma_rx.remaining_cnt = cfg->bufsz;
  163. }
  164. #endif
  165. if (HAL_UART_Init(&uart->handle) != HAL_OK)
  166. {
  167. return -RT_ERROR;
  168. }
  169. return RT_EOK;
  170. }
  171. static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
  172. {
  173. struct stm32_uart *uart;
  174. #ifdef RT_SERIAL_USING_DMA
  175. rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
  176. #endif
  177. RT_ASSERT(serial != RT_NULL);
  178. uart = rt_container_of(serial, struct stm32_uart, serial);
  179. switch (cmd)
  180. {
  181. /* disable interrupt */
  182. case RT_DEVICE_CTRL_CLR_INT:
  183. /* disable rx irq */
  184. NVIC_DisableIRQ(uart->config->irq_type);
  185. /* disable interrupt */
  186. __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
  187. #ifdef RT_SERIAL_USING_DMA
  188. /* disable DMA */
  189. if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
  190. {
  191. HAL_NVIC_DisableIRQ(uart->config->dma_rx->dma_irq);
  192. if (HAL_DMA_Abort(&(uart->dma_rx.handle)) != HAL_OK)
  193. {
  194. RT_ASSERT(0);
  195. }
  196. if (HAL_DMA_DeInit(&(uart->dma_rx.handle)) != HAL_OK)
  197. {
  198. RT_ASSERT(0);
  199. }
  200. }
  201. else if(ctrl_arg == RT_DEVICE_FLAG_DMA_TX)
  202. {
  203. HAL_NVIC_DisableIRQ(uart->config->dma_tx->dma_irq);
  204. if (HAL_DMA_DeInit(&(uart->dma_tx.handle)) != HAL_OK)
  205. {
  206. RT_ASSERT(0);
  207. }
  208. }
  209. #endif
  210. break;
  211. /* enable interrupt */
  212. case RT_DEVICE_CTRL_SET_INT:
  213. /* enable rx irq */
  214. HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
  215. HAL_NVIC_EnableIRQ(uart->config->irq_type);
  216. /* enable interrupt */
  217. __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE);
  218. break;
  219. #ifdef RT_SERIAL_USING_DMA
  220. case RT_DEVICE_CTRL_CONFIG:
  221. stm32_dma_config(serial, ctrl_arg);
  222. break;
  223. #endif
  224. case RT_DEVICE_CTRL_CLOSE:
  225. if (HAL_UART_DeInit(&(uart->handle)) != HAL_OK )
  226. {
  227. RT_ASSERT(0)
  228. }
  229. break;
  230. }
  231. return RT_EOK;
  232. }
  233. rt_uint32_t stm32_uart_get_mask(rt_uint32_t word_length, rt_uint32_t parity)
  234. {
  235. rt_uint32_t mask;
  236. if (word_length == UART_WORDLENGTH_8B)
  237. {
  238. if (parity == UART_PARITY_NONE)
  239. {
  240. mask = 0x00FFU ;
  241. }
  242. else
  243. {
  244. mask = 0x007FU ;
  245. }
  246. }
  247. #ifdef UART_WORDLENGTH_9B
  248. else if (word_length == UART_WORDLENGTH_9B)
  249. {
  250. if (parity == UART_PARITY_NONE)
  251. {
  252. mask = 0x01FFU ;
  253. }
  254. else
  255. {
  256. mask = 0x00FFU ;
  257. }
  258. }
  259. #endif
  260. #ifdef UART_WORDLENGTH_7B
  261. else if (word_length == UART_WORDLENGTH_7B)
  262. {
  263. if (parity == UART_PARITY_NONE)
  264. {
  265. mask = 0x007FU ;
  266. }
  267. else
  268. {
  269. mask = 0x003FU ;
  270. }
  271. }
  272. else
  273. {
  274. mask = 0x0000U;
  275. }
  276. #endif
  277. return mask;
  278. }
  279. static int stm32_putc(struct rt_serial_device *serial, char c)
  280. {
  281. struct stm32_uart *uart;
  282. RT_ASSERT(serial != RT_NULL);
  283. uart = rt_container_of(serial, struct stm32_uart, serial);
  284. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  285. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
  286. || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32L5) \
  287. || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32F3) \
  288. || defined(SOC_SERIES_STM32U5)
  289. uart->handle.Instance->TDR = c;
  290. #else
  291. uart->handle.Instance->DR = c;
  292. #endif
  293. while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET);
  294. return 1;
  295. }
  296. static int stm32_getc(struct rt_serial_device *serial)
  297. {
  298. int ch;
  299. struct stm32_uart *uart;
  300. RT_ASSERT(serial != RT_NULL);
  301. uart = rt_container_of(serial, struct stm32_uart, serial);
  302. ch = -1;
  303. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
  304. {
  305. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
  306. || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32L5) \
  307. || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)|| defined(SOC_SERIES_STM32F3) \
  308. || defined(SOC_SERIES_STM32U5)
  309. ch = uart->handle.Instance->RDR & stm32_uart_get_mask(uart->handle.Init.WordLength, uart->handle.Init.Parity);
  310. #else
  311. ch = uart->handle.Instance->DR & stm32_uart_get_mask(uart->handle.Init.WordLength, uart->handle.Init.Parity);
  312. #endif
  313. }
  314. return ch;
  315. }
  316. static rt_ssize_t stm32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
  317. {
  318. struct stm32_uart *uart;
  319. RT_ASSERT(serial != RT_NULL);
  320. RT_ASSERT(buf != RT_NULL);
  321. uart = rt_container_of(serial, struct stm32_uart, serial);
  322. if (size == 0)
  323. {
  324. return 0;
  325. }
  326. if (RT_SERIAL_DMA_TX == direction)
  327. {
  328. if (HAL_UART_Transmit_DMA(&uart->handle, buf, size) == HAL_OK)
  329. {
  330. return size;
  331. }
  332. else
  333. {
  334. return 0;
  335. }
  336. }
  337. return 0;
  338. }
  339. #ifdef RT_SERIAL_USING_DMA
  340. static void dma_recv_isr(struct rt_serial_device *serial, rt_uint8_t isr_flag)
  341. {
  342. struct stm32_uart *uart;
  343. rt_base_t level;
  344. rt_size_t recv_len, counter;
  345. RT_ASSERT(serial != RT_NULL);
  346. uart = rt_container_of(serial, struct stm32_uart, serial);
  347. level = rt_hw_interrupt_disable();
  348. recv_len = 0;
  349. counter = __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
  350. switch (isr_flag)
  351. {
  352. case UART_RX_DMA_IT_IDLE_FLAG:
  353. if (counter <= uart->dma_rx.remaining_cnt)
  354. recv_len = uart->dma_rx.remaining_cnt - counter;
  355. else
  356. recv_len = serial->config.bufsz + uart->dma_rx.remaining_cnt - counter;
  357. break;
  358. case UART_RX_DMA_IT_HT_FLAG:
  359. if (counter < uart->dma_rx.remaining_cnt)
  360. recv_len = uart->dma_rx.remaining_cnt - counter;
  361. break;
  362. case UART_RX_DMA_IT_TC_FLAG:
  363. if(counter >= uart->dma_rx.remaining_cnt)
  364. recv_len = serial->config.bufsz + uart->dma_rx.remaining_cnt - counter;
  365. default:
  366. break;
  367. }
  368. if (recv_len)
  369. {
  370. uart->dma_rx.remaining_cnt = counter;
  371. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  372. }
  373. rt_hw_interrupt_enable(level);
  374. }
  375. #endif
  376. /**
  377. * Uart common interrupt process. This need add to uart ISR.
  378. *
  379. * @param serial serial device
  380. */
  381. static void uart_isr(struct rt_serial_device *serial)
  382. {
  383. struct stm32_uart *uart;
  384. RT_ASSERT(serial != RT_NULL);
  385. uart = rt_container_of(serial, struct stm32_uart, serial);
  386. /* UART in mode Receiver -------------------------------------------------*/
  387. if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) &&
  388. (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET))
  389. {
  390. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
  391. }
  392. #ifdef RT_SERIAL_USING_DMA
  393. else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET)
  394. && (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET))
  395. {
  396. dma_recv_isr(serial, UART_RX_DMA_IT_IDLE_FLAG);
  397. __HAL_UART_CLEAR_IDLEFLAG(&uart->handle);
  398. }
  399. else if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) &&
  400. (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TC) != RESET))
  401. {
  402. if ((serial->parent.open_flag & RT_DEVICE_FLAG_DMA_TX) != 0)
  403. {
  404. HAL_UART_IRQHandler(&(uart->handle));
  405. }
  406. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  407. }
  408. #endif
  409. else
  410. {
  411. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET)
  412. {
  413. __HAL_UART_CLEAR_OREFLAG(&uart->handle);
  414. }
  415. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET)
  416. {
  417. __HAL_UART_CLEAR_NEFLAG(&uart->handle);
  418. }
  419. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET)
  420. {
  421. __HAL_UART_CLEAR_FEFLAG(&uart->handle);
  422. }
  423. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET)
  424. {
  425. __HAL_UART_CLEAR_PEFLAG(&uart->handle);
  426. }
  427. #if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32WL) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0) \
  428. && !defined(SOC_SERIES_STM32L0) && !defined(SOC_SERIES_STM32G0) && !defined(SOC_SERIES_STM32H7) \
  429. && !defined(SOC_SERIES_STM32G4) && !defined(SOC_SERIES_STM32MP1) && !defined(SOC_SERIES_STM32WB) \
  430. && !defined(SOC_SERIES_STM32L5) && !defined(SOC_SERIES_STM32U5)
  431. #ifdef SOC_SERIES_STM32F3
  432. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBDF) != RESET)
  433. {
  434. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBDF);
  435. }
  436. #else
  437. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET)
  438. {
  439. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD);
  440. }
  441. #endif
  442. #endif
  443. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET)
  444. {
  445. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS);
  446. }
  447. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET)
  448. {
  449. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
  450. }
  451. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
  452. {
  453. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
  454. }
  455. }
  456. }
  457. #if defined(BSP_USING_UART1)
  458. void USART1_IRQHandler(void)
  459. {
  460. /* enter interrupt */
  461. rt_interrupt_enter();
  462. uart_isr(&(uart_obj[UART1_INDEX].serial));
  463. /* leave interrupt */
  464. rt_interrupt_leave();
  465. }
  466. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA)
  467. void UART1_DMA_RX_IRQHandler(void)
  468. {
  469. /* enter interrupt */
  470. rt_interrupt_enter();
  471. HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_rx.handle);
  472. /* leave interrupt */
  473. rt_interrupt_leave();
  474. }
  475. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */
  476. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA)
  477. void UART1_DMA_TX_IRQHandler(void)
  478. {
  479. /* enter interrupt */
  480. rt_interrupt_enter();
  481. HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_tx.handle);
  482. /* leave interrupt */
  483. rt_interrupt_leave();
  484. }
  485. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA) */
  486. #endif /* BSP_USING_UART1 */
  487. #if defined(BSP_USING_UART2)
  488. void USART2_IRQHandler(void)
  489. {
  490. /* enter interrupt */
  491. rt_interrupt_enter();
  492. uart_isr(&(uart_obj[UART2_INDEX].serial));
  493. /* leave interrupt */
  494. rt_interrupt_leave();
  495. }
  496. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA)
  497. void UART2_DMA_RX_IRQHandler(void)
  498. {
  499. /* enter interrupt */
  500. rt_interrupt_enter();
  501. HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_rx.handle);
  502. /* leave interrupt */
  503. rt_interrupt_leave();
  504. }
  505. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA) */
  506. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA)
  507. void UART2_DMA_TX_IRQHandler(void)
  508. {
  509. /* enter interrupt */
  510. rt_interrupt_enter();
  511. HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_tx.handle);
  512. /* leave interrupt */
  513. rt_interrupt_leave();
  514. }
  515. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA) */
  516. #endif /* BSP_USING_UART2 */
  517. #if defined(BSP_USING_UART3)
  518. void USART3_IRQHandler(void)
  519. {
  520. /* enter interrupt */
  521. rt_interrupt_enter();
  522. uart_isr(&(uart_obj[UART3_INDEX].serial));
  523. /* leave interrupt */
  524. rt_interrupt_leave();
  525. }
  526. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_RX_USING_DMA)
  527. void UART3_DMA_RX_IRQHandler(void)
  528. {
  529. /* enter interrupt */
  530. rt_interrupt_enter();
  531. HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_rx.handle);
  532. /* leave interrupt */
  533. rt_interrupt_leave();
  534. }
  535. #endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART3_RX_USING_DMA) */
  536. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_TX_USING_DMA)
  537. void UART3_DMA_TX_IRQHandler(void)
  538. {
  539. /* enter interrupt */
  540. rt_interrupt_enter();
  541. HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_tx.handle);
  542. /* leave interrupt */
  543. rt_interrupt_leave();
  544. }
  545. #endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART3_TX_USING_DMA) */
  546. #endif /* BSP_USING_UART3*/
  547. #if defined(BSP_USING_UART4)
  548. void UART4_IRQHandler(void)
  549. {
  550. /* enter interrupt */
  551. rt_interrupt_enter();
  552. uart_isr(&(uart_obj[UART4_INDEX].serial));
  553. /* leave interrupt */
  554. rt_interrupt_leave();
  555. }
  556. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_RX_USING_DMA)
  557. void UART4_DMA_RX_IRQHandler(void)
  558. {
  559. /* enter interrupt */
  560. rt_interrupt_enter();
  561. HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_rx.handle);
  562. /* leave interrupt */
  563. rt_interrupt_leave();
  564. }
  565. #endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART4_RX_USING_DMA) */
  566. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_TX_USING_DMA)
  567. void UART4_DMA_TX_IRQHandler(void)
  568. {
  569. /* enter interrupt */
  570. rt_interrupt_enter();
  571. HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_tx.handle);
  572. /* leave interrupt */
  573. rt_interrupt_leave();
  574. }
  575. #endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART4_TX_USING_DMA) */
  576. #endif /* BSP_USING_UART4*/
  577. #if defined(BSP_USING_UART5)
  578. void UART5_IRQHandler(void)
  579. {
  580. /* enter interrupt */
  581. rt_interrupt_enter();
  582. uart_isr(&(uart_obj[UART5_INDEX].serial));
  583. /* leave interrupt */
  584. rt_interrupt_leave();
  585. }
  586. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA)
  587. void UART5_DMA_RX_IRQHandler(void)
  588. {
  589. /* enter interrupt */
  590. rt_interrupt_enter();
  591. HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_rx.handle);
  592. /* leave interrupt */
  593. rt_interrupt_leave();
  594. }
  595. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA) */
  596. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA)
  597. void UART5_DMA_TX_IRQHandler(void)
  598. {
  599. /* enter interrupt */
  600. rt_interrupt_enter();
  601. HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_tx.handle);
  602. /* leave interrupt */
  603. rt_interrupt_leave();
  604. }
  605. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA) */
  606. #endif /* BSP_USING_UART5*/
  607. #if defined(BSP_USING_UART6)
  608. void USART6_IRQHandler(void)
  609. {
  610. /* enter interrupt */
  611. rt_interrupt_enter();
  612. uart_isr(&(uart_obj[UART6_INDEX].serial));
  613. /* leave interrupt */
  614. rt_interrupt_leave();
  615. }
  616. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA)
  617. void UART6_DMA_RX_IRQHandler(void)
  618. {
  619. /* enter interrupt */
  620. rt_interrupt_enter();
  621. HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_rx.handle);
  622. /* leave interrupt */
  623. rt_interrupt_leave();
  624. }
  625. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA) */
  626. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA)
  627. void UART6_DMA_TX_IRQHandler(void)
  628. {
  629. /* enter interrupt */
  630. rt_interrupt_enter();
  631. HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_tx.handle);
  632. /* leave interrupt */
  633. rt_interrupt_leave();
  634. }
  635. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA) */
  636. #endif /* BSP_USING_UART6*/
  637. #if defined(BSP_USING_UART7)
  638. void UART7_IRQHandler(void)
  639. {
  640. /* enter interrupt */
  641. rt_interrupt_enter();
  642. uart_isr(&(uart_obj[UART7_INDEX].serial));
  643. /* leave interrupt */
  644. rt_interrupt_leave();
  645. }
  646. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA)
  647. void UART7_DMA_RX_IRQHandler(void)
  648. {
  649. /* enter interrupt */
  650. rt_interrupt_enter();
  651. HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_rx.handle);
  652. /* leave interrupt */
  653. rt_interrupt_leave();
  654. }
  655. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA) */
  656. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA)
  657. void UART7_DMA_TX_IRQHandler(void)
  658. {
  659. /* enter interrupt */
  660. rt_interrupt_enter();
  661. HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_tx.handle);
  662. /* leave interrupt */
  663. rt_interrupt_leave();
  664. }
  665. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA) */
  666. #endif /* BSP_USING_UART7*/
  667. #if defined(BSP_USING_UART8)
  668. void UART8_IRQHandler(void)
  669. {
  670. /* enter interrupt */
  671. rt_interrupt_enter();
  672. uart_isr(&(uart_obj[UART8_INDEX].serial));
  673. /* leave interrupt */
  674. rt_interrupt_leave();
  675. }
  676. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA)
  677. void UART8_DMA_RX_IRQHandler(void)
  678. {
  679. /* enter interrupt */
  680. rt_interrupt_enter();
  681. HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_rx.handle);
  682. /* leave interrupt */
  683. rt_interrupt_leave();
  684. }
  685. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA) */
  686. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA)
  687. void UART8_DMA_TX_IRQHandler(void)
  688. {
  689. /* enter interrupt */
  690. rt_interrupt_enter();
  691. HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_tx.handle);
  692. /* leave interrupt */
  693. rt_interrupt_leave();
  694. }
  695. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA) */
  696. #endif /* BSP_USING_UART8*/
  697. #if defined(BSP_USING_LPUART1)
  698. void LPUART1_IRQHandler(void)
  699. {
  700. /* enter interrupt */
  701. rt_interrupt_enter();
  702. uart_isr(&(uart_obj[LPUART1_INDEX].serial));
  703. /* leave interrupt */
  704. rt_interrupt_leave();
  705. }
  706. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA)
  707. void LPUART1_DMA_RX_IRQHandler(void)
  708. {
  709. /* enter interrupt */
  710. rt_interrupt_enter();
  711. HAL_DMA_IRQHandler(&uart_obj[LPUART1_INDEX].dma_rx.handle);
  712. /* leave interrupt */
  713. rt_interrupt_leave();
  714. }
  715. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA) */
  716. #endif /* BSP_USING_LPUART1*/
  717. static void stm32_uart_get_dma_config(void)
  718. {
  719. #ifdef BSP_USING_UART1
  720. uart_obj[UART1_INDEX].uart_dma_flag = 0;
  721. #ifdef BSP_UART1_RX_USING_DMA
  722. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  723. static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG;
  724. uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx;
  725. #endif
  726. #ifdef BSP_UART1_TX_USING_DMA
  727. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  728. static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG;
  729. uart_config[UART1_INDEX].dma_tx = &uart1_dma_tx;
  730. #endif
  731. #endif
  732. #ifdef BSP_USING_UART2
  733. uart_obj[UART2_INDEX].uart_dma_flag = 0;
  734. #ifdef BSP_UART2_RX_USING_DMA
  735. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  736. static struct dma_config uart2_dma_rx = UART2_DMA_RX_CONFIG;
  737. uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx;
  738. #endif
  739. #ifdef BSP_UART2_TX_USING_DMA
  740. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  741. static struct dma_config uart2_dma_tx = UART2_DMA_TX_CONFIG;
  742. uart_config[UART2_INDEX].dma_tx = &uart2_dma_tx;
  743. #endif
  744. #endif
  745. #ifdef BSP_USING_UART3
  746. uart_obj[UART3_INDEX].uart_dma_flag = 0;
  747. #ifdef BSP_UART3_RX_USING_DMA
  748. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  749. static struct dma_config uart3_dma_rx = UART3_DMA_RX_CONFIG;
  750. uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx;
  751. #endif
  752. #ifdef BSP_UART3_TX_USING_DMA
  753. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  754. static struct dma_config uart3_dma_tx = UART3_DMA_TX_CONFIG;
  755. uart_config[UART3_INDEX].dma_tx = &uart3_dma_tx;
  756. #endif
  757. #endif
  758. #ifdef BSP_USING_UART4
  759. uart_obj[UART4_INDEX].uart_dma_flag = 0;
  760. #ifdef BSP_UART4_RX_USING_DMA
  761. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  762. static struct dma_config uart4_dma_rx = UART4_DMA_RX_CONFIG;
  763. uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx;
  764. #endif
  765. #ifdef BSP_UART4_TX_USING_DMA
  766. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  767. static struct dma_config uart4_dma_tx = UART4_DMA_TX_CONFIG;
  768. uart_config[UART4_INDEX].dma_tx = &uart4_dma_tx;
  769. #endif
  770. #endif
  771. #ifdef BSP_USING_UART5
  772. uart_obj[UART5_INDEX].uart_dma_flag = 0;
  773. #ifdef BSP_UART5_RX_USING_DMA
  774. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  775. static struct dma_config uart5_dma_rx = UART5_DMA_RX_CONFIG;
  776. uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx;
  777. #endif
  778. #ifdef BSP_UART5_TX_USING_DMA
  779. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  780. static struct dma_config uart5_dma_tx = UART5_DMA_TX_CONFIG;
  781. uart_config[UART5_INDEX].dma_tx = &uart5_dma_tx;
  782. #endif
  783. #endif
  784. #ifdef BSP_USING_UART6
  785. uart_obj[UART6_INDEX].uart_dma_flag = 0;
  786. #ifdef BSP_UART6_RX_USING_DMA
  787. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  788. static struct dma_config uart6_dma_rx = UART6_DMA_RX_CONFIG;
  789. uart_config[UART6_INDEX].dma_rx = &uart6_dma_rx;
  790. #endif
  791. #ifdef BSP_UART6_TX_USING_DMA
  792. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  793. static struct dma_config uart6_dma_tx = UART6_DMA_TX_CONFIG;
  794. uart_config[UART6_INDEX].dma_tx = &uart6_dma_tx;
  795. #endif
  796. #endif
  797. #ifdef BSP_USING_UART7
  798. uart_obj[UART7_INDEX].uart_dma_flag = 0;
  799. #ifdef BSP_UART7_RX_USING_DMA
  800. uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  801. static struct dma_config uart7_dma_rx = UART7_DMA_RX_CONFIG;
  802. uart_config[UART7_INDEX].dma_rx = &uart7_dma_rx;
  803. #endif
  804. #ifdef BSP_UART7_TX_USING_DMA
  805. uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  806. static struct dma_config uart7_dma_tx = UART7_DMA_TX_CONFIG;
  807. uart_config[UART7_INDEX].dma_tx = &uart7_dma_tx;
  808. #endif
  809. #endif
  810. #ifdef BSP_USING_UART8
  811. uart_obj[UART8_INDEX].uart_dma_flag = 0;
  812. #ifdef BSP_UART8_RX_USING_DMA
  813. uart_obj[UART8_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  814. static struct dma_config uart8_dma_rx = UART8_DMA_RX_CONFIG;
  815. uart_config[UART8_INDEX].dma_rx = &uart8_dma_rx;
  816. #endif
  817. #ifdef BSP_UART8_TX_USING_DMA
  818. uart_obj[UART8_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  819. static struct dma_config uart8_dma_tx = UART8_DMA_TX_CONFIG;
  820. uart_config[UART8_INDEX].dma_tx = &uart8_dma_tx;
  821. #endif
  822. #endif
  823. }
  824. #ifdef RT_SERIAL_USING_DMA
  825. static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag)
  826. {
  827. struct rt_serial_rx_fifo *rx_fifo;
  828. DMA_HandleTypeDef *DMA_Handle;
  829. struct dma_config *dma_config;
  830. struct stm32_uart *uart;
  831. RT_ASSERT(serial != RT_NULL);
  832. RT_ASSERT(flag == RT_DEVICE_FLAG_DMA_TX || flag == RT_DEVICE_FLAG_DMA_RX);
  833. uart = rt_container_of(serial, struct stm32_uart, serial);
  834. if (RT_DEVICE_FLAG_DMA_RX == flag)
  835. {
  836. DMA_Handle = &uart->dma_rx.handle;
  837. dma_config = uart->config->dma_rx;
  838. }
  839. else /* RT_DEVICE_FLAG_DMA_TX == flag */
  840. {
  841. DMA_Handle = &uart->dma_tx.handle;
  842. dma_config = uart->config->dma_tx;
  843. }
  844. LOG_D("%s dma config start", uart->config->name);
  845. {
  846. rt_uint32_t tmpreg = 0x00U;
  847. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \
  848. || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1)
  849. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  850. SET_BIT(RCC->AHBENR, dma_config->dma_rcc);
  851. tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc);
  852. #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \
  853. || defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB)
  854. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  855. SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
  856. tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
  857. #elif defined(SOC_SERIES_STM32MP1)
  858. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  859. SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
  860. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
  861. #endif
  862. #if (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)) && defined(DMAMUX1)
  863. /* enable DMAMUX clock for L4+ and G4 */
  864. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  865. #elif defined(SOC_SERIES_STM32MP1)
  866. __HAL_RCC_DMAMUX_CLK_ENABLE();
  867. #endif
  868. UNUSED(tmpreg); /* To avoid compiler warnings */
  869. }
  870. if (RT_DEVICE_FLAG_DMA_RX == flag)
  871. {
  872. __HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma_rx.handle);
  873. }
  874. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  875. {
  876. __HAL_LINKDMA(&(uart->handle), hdmatx, uart->dma_tx.handle);
  877. }
  878. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1) || defined(SOC_SERIES_STM32U5)
  879. DMA_Handle->Instance = dma_config->Instance;
  880. #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  881. DMA_Handle->Instance = dma_config->Instance;
  882. DMA_Handle->Init.Channel = dma_config->channel;
  883. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\
  884. || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  885. DMA_Handle->Instance = dma_config->Instance;
  886. DMA_Handle->Init.Request = dma_config->request;
  887. #endif
  888. DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE;
  889. DMA_Handle->Init.MemInc = DMA_MINC_ENABLE;
  890. DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  891. DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  892. if (RT_DEVICE_FLAG_DMA_RX == flag)
  893. {
  894. DMA_Handle->Init.Direction = DMA_PERIPH_TO_MEMORY;
  895. DMA_Handle->Init.Mode = DMA_CIRCULAR;
  896. }
  897. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  898. {
  899. DMA_Handle->Init.Direction = DMA_MEMORY_TO_PERIPH;
  900. DMA_Handle->Init.Mode = DMA_NORMAL;
  901. }
  902. DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM;
  903. #if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  904. DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  905. #endif
  906. if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK)
  907. {
  908. RT_ASSERT(0);
  909. }
  910. if (HAL_DMA_Init(DMA_Handle) != HAL_OK)
  911. {
  912. RT_ASSERT(0);
  913. }
  914. /* enable interrupt */
  915. if (flag == RT_DEVICE_FLAG_DMA_RX)
  916. {
  917. rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  918. /* Start DMA transfer */
  919. if (HAL_UART_Receive_DMA(&(uart->handle), rx_fifo->buffer, serial->config.bufsz) != HAL_OK)
  920. {
  921. /* Transfer error in reception process */
  922. RT_ASSERT(0);
  923. }
  924. CLEAR_BIT(uart->handle.Instance->CR3, USART_CR3_EIE);
  925. __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE);
  926. }
  927. /* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */
  928. HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0);
  929. HAL_NVIC_EnableIRQ(dma_config->dma_irq);
  930. HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
  931. HAL_NVIC_EnableIRQ(uart->config->irq_type);
  932. LOG_D("%s dma %s instance: %x", uart->config->name, flag == RT_DEVICE_FLAG_DMA_RX ? "RX" : "TX", DMA_Handle->Instance);
  933. LOG_D("%s dma config done", uart->config->name);
  934. }
  935. /**
  936. * @brief UART error callbacks
  937. * @param huart: UART handle
  938. * @note This example shows a simple way to report transfer error, and you can
  939. * add your own implementation.
  940. * @retval None
  941. */
  942. void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
  943. {
  944. RT_ASSERT(huart != NULL);
  945. struct stm32_uart *uart = (struct stm32_uart *)huart;
  946. LOG_D("%s: %s %d\n", __FUNCTION__, uart->config->name, huart->ErrorCode);
  947. UNUSED(uart);
  948. }
  949. /**
  950. * @brief Rx Transfer completed callback
  951. * @param huart: UART handle
  952. * @note This example shows a simple way to report end of DMA Rx transfer, and
  953. * you can add your own implementation.
  954. * @retval None
  955. */
  956. void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
  957. {
  958. struct stm32_uart *uart;
  959. RT_ASSERT(huart != NULL);
  960. uart = (struct stm32_uart *)huart;
  961. dma_recv_isr(&uart->serial, UART_RX_DMA_IT_TC_FLAG);
  962. }
  963. /**
  964. * @brief Rx Half transfer completed callback
  965. * @param huart: UART handle
  966. * @note This example shows a simple way to report end of DMA Rx Half transfer,
  967. * and you can add your own implementation.
  968. * @retval None
  969. */
  970. void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
  971. {
  972. struct stm32_uart *uart;
  973. RT_ASSERT(huart != NULL);
  974. uart = (struct stm32_uart *)huart;
  975. dma_recv_isr(&uart->serial, UART_RX_DMA_IT_HT_FLAG);
  976. }
  977. static void _dma_tx_complete(struct rt_serial_device *serial)
  978. {
  979. struct stm32_uart *uart;
  980. rt_size_t trans_total_index;
  981. rt_base_t level;
  982. RT_ASSERT(serial != RT_NULL);
  983. uart = rt_container_of(serial, struct stm32_uart, serial);
  984. level = rt_hw_interrupt_disable();
  985. trans_total_index = __HAL_DMA_GET_COUNTER(&(uart->dma_tx.handle));
  986. rt_hw_interrupt_enable(level);
  987. if (trans_total_index == 0)
  988. {
  989. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
  990. }
  991. }
  992. /**
  993. * @brief HAL_UART_TxCpltCallback
  994. * @param huart: UART handle
  995. * @note This callback can be called by two functions, first in UART_EndTransmit_IT when
  996. * UART Tx complete and second in UART_DMATransmitCplt function in DMA Circular mode.
  997. * @retval None
  998. */
  999. void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
  1000. {
  1001. struct stm32_uart *uart;
  1002. RT_ASSERT(huart != NULL);
  1003. uart = (struct stm32_uart *)huart;
  1004. _dma_tx_complete(&uart->serial);
  1005. }
  1006. #endif /* RT_SERIAL_USING_DMA */
  1007. static const struct rt_uart_ops stm32_uart_ops =
  1008. {
  1009. .configure = stm32_configure,
  1010. .control = stm32_control,
  1011. .putc = stm32_putc,
  1012. .getc = stm32_getc,
  1013. .dma_transmit = stm32_dma_transmit
  1014. };
  1015. int rt_hw_usart_init(void)
  1016. {
  1017. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  1018. rt_err_t result = 0;
  1019. stm32_uart_get_dma_config();
  1020. for (rt_size_t i = 0; i < sizeof(uart_obj) / sizeof(struct stm32_uart); i++)
  1021. {
  1022. /* init UART object */
  1023. uart_obj[i].config = &uart_config[i];
  1024. uart_obj[i].serial.ops = &stm32_uart_ops;
  1025. uart_obj[i].serial.config = config;
  1026. /* register UART device */
  1027. result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
  1028. RT_DEVICE_FLAG_RDWR
  1029. | RT_DEVICE_FLAG_INT_RX
  1030. | RT_DEVICE_FLAG_INT_TX
  1031. | uart_obj[i].uart_dma_flag
  1032. , NULL);
  1033. RT_ASSERT(result == RT_EOK);
  1034. }
  1035. return result;
  1036. }
  1037. #endif /* RT_USING_SERIAL */