123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613 |
- /*
- * Copyright (c) 2006-2018, RT-Thread Development Team
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Change Logs:
- * Date Author Notes
- * 2017-04-10 lizhen9880 the first version
- */
- #include "drv_nand.h"
- #include <rtdevice.h>
- #include <string.h>
- #ifdef RT_USING_NFTL
- #include <nftl.h>
- #endif
- #define NAND_DEBUG rt_kprintf
- /* nandflash confg */
- #define PAGES_PER_BLOCK 64
- #define PAGE_DATA_SIZE 2048
- #define PAGE_OOB_SIZE 64
- #define ECC_SIZE 4
- #define SET_NAND_CMD(_c) do{*(volatile rt_uint8_t*)(NAND_ADDRESS|NAND_CMD) = _c;}while(0)
- #define SET_NAND_ADD(_a) do{*(volatile rt_uint8_t*)(NAND_ADDRESS|NAND_ADDR) = _a;}while(0)
- #define SET_NAND_DAT(_d) do{*(volatile rt_uint8_t*)NAND_ADDRESS = _d;}while(0)
- #define GET_NAND_DAT(_d) do{_d = *(volatile rt_uint8_t*)NAND_ADDRESS;}while(0)
- static struct stm32f4_nand _device;
- static rt_bool_t read_status(rt_uint8_t cmd);
- NAND_HandleTypeDef NAND_Handler; //NAND FLASH句柄
- //NAND延时
- void NAND_Delay(volatile rt_uint32_t i)
- {
- while(i>0)i--;
- }
- //等待RB信号为某个电平
- //rb:0,等待RB==0
- // 1,等待RB==1
- //返回值:0,成功
- // 1,超时
- rt_uint8_t NAND_WaitRB(volatile rt_uint8_t rb)
- {
- volatile rt_uint16_t time=0;
- while(time<10000)
- {
- time++;
- if(NAND_RB==rb)
- {
- // NAND_DEBUG("time:%d/%d R/B:%d\n",time,10000,rb);
- return 0;
- }
- }
- // NAND_DEBUG("timeOUT\n");
- return 1;
- }
- //读NAND状态
- //返回值:NAND状态值
- //bit0:0,成功;1,错误(编程/擦除/READ)
- //bit6:0,Busy;1,Ready
- rt_uint8_t NAND_ReadStatus(void)
- {
- volatile rt_uint8_t data=0;
- SET_NAND_CMD(NAND_READSTA);//发送读状态命令
- data++;data++;data++;data++;data++; //加延时,防止-O2优化,导致的错误.
- data=*(volatile rt_uint8_t*)NAND_ADDRESS; //读取状态值
- return data;
- }
- //等待NAND准备好
- //返回值:NSTA_TIMEOUT 等待超时了
- // NSTA_READY 已经准备好
- static rt_uint8_t wait_for_ready(void)
- {
- rt_uint8_t status=0;
- volatile rt_uint32_t time=0;
- while(1) //等待ready
- {
- status=NAND_ReadStatus(); //获取状态值
- if(status&NSTA_READY)break;
- time++;
- if(time>=0X1FFFF)return NSTA_TIMEOUT;//超时
- }
- return NSTA_READY;//准备好
- }
- //复位NAND
- //返回值:0,成功;
- // 其他,失败
- static rt_uint8_t nand_reset(void)
- {
- SET_NAND_CMD(NAND_RESET);//复位NAND
- if(wait_for_ready()==NSTA_READY)return 0;//复位成功
- else return 1; //复位失败
- }
- //读取NAND FLASH的ID
- //返回值:0,成功;
- // 其他,失败
- rt_uint8_t NAND_ModeSet(rt_uint8_t mode)
- {
- SET_NAND_CMD(NAND_FEATURE);
- SET_NAND_ADD(0X01);
- SET_NAND_DAT(mode);
- SET_NAND_DAT(0);
- SET_NAND_DAT(0);
- SET_NAND_DAT(0);
- if(wait_for_ready()==NSTA_READY)return 0;//成功
- else return 1; //失败
- }
- //初始化NAND FLASH
- void NAND_Init(void)
- {
- FMC_NAND_PCC_TimingTypeDef ComSpaceTiming,AttSpaceTiming;
-
- NAND_Handler.Instance=FMC_NAND_DEVICE;
- NAND_Handler.Init.NandBank=FMC_NAND_BANK3; //NAND挂在BANK3上
- NAND_Handler.Init.Waitfeature=FMC_NAND_PCC_WAIT_FEATURE_DISABLE; //关闭等待特性
- NAND_Handler.Init.MemoryDataWidth=FMC_NAND_PCC_MEM_BUS_WIDTH_8; //8位数据宽度
- NAND_Handler.Init.EccComputation=FMC_NAND_ECC_DISABLE; //不使用ECC
- NAND_Handler.Init.ECCPageSize=FMC_NAND_ECC_PAGE_SIZE_2048BYTE; //ECC页大小为2k
- NAND_Handler.Init.TCLRSetupTime=0; //设置TCLR(tCLR=CLE到RE的延时)=(TCLR+TSET+2)*THCLK,THCLK=1/180M=5.5ns
- NAND_Handler.Init.TARSetupTime=1; //设置TAR(tAR=ALE到RE的延时)=(TAR+TSET+2)*THCLK,THCLK=1/180M=5.5n。
-
- ComSpaceTiming.SetupTime=2; //建立时间
- ComSpaceTiming.WaitSetupTime=3; //等待时间
- ComSpaceTiming.HoldSetupTime=2; //保持时间
- ComSpaceTiming.HiZSetupTime=1; //高阻态时间
-
- AttSpaceTiming.SetupTime=2; //建立时间
- AttSpaceTiming.WaitSetupTime=3; //等待时间
- AttSpaceTiming.HoldSetupTime=2; //保持时间
- AttSpaceTiming.HiZSetupTime=1; //高阻态时间
-
- HAL_NAND_Init(&NAND_Handler,&ComSpaceTiming,&AttSpaceTiming);
- nand_reset(); //复位NAND
- // delay_ms(100);
- wait_for_ready();
- NAND_ModeSet(4); //设置为MODE4,高速模式
- }
- //NAND FALSH底层驱动,引脚配置,时钟使能
- //此函数会被HAL_NAND_Init()调用
- void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand)
- {
- GPIO_InitTypeDef GPIO_Initure;
-
- __HAL_RCC_FMC_CLK_ENABLE(); //使能FMC时钟
- __HAL_RCC_GPIOD_CLK_ENABLE(); //使能GPIOD时钟
- __HAL_RCC_GPIOE_CLK_ENABLE(); //使能GPIOE时钟
- __HAL_RCC_GPIOG_CLK_ENABLE(); //使能GPIOG时钟
-
- //初始化PD6 R/B引脚
- GPIO_Initure.Pin=GPIO_PIN_6;
- GPIO_Initure.Mode=GPIO_MODE_INPUT; //输入
- GPIO_Initure.Pull=GPIO_PULLUP; //上拉
- GPIO_Initure.Speed=GPIO_SPEED_HIGH; //高速
- HAL_GPIO_Init(GPIOD,&GPIO_Initure);
-
- //初始化PG9 NCE3引脚
- GPIO_Initure.Pin=GPIO_PIN_9;
- GPIO_Initure.Mode=GPIO_MODE_AF_PP; //输入
- GPIO_Initure.Pull=GPIO_NOPULL; //上拉
- GPIO_Initure.Speed=GPIO_SPEED_HIGH; //高速
- GPIO_Initure.Alternate=GPIO_AF12_FMC; //复用为FMC
- HAL_GPIO_Init(GPIOG,&GPIO_Initure);
-
- //初始化PD0,1,4,5,11,12,14,15
- GPIO_Initure.Pin=GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5|\
- GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_14|GPIO_PIN_15;
- GPIO_Initure.Pull=GPIO_NOPULL;
- HAL_GPIO_Init(GPIOD,&GPIO_Initure);
- //初始化PE7,8,9,10
- GPIO_Initure.Pin=GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10;
- HAL_GPIO_Init(GPIOE,&GPIO_Initure);
- }
- //读NAND状态
- //返回值:NAND状态值
- //bit0:0,成功;1,错误(编程/擦除/READ)
- //bit6:0,Busy;1,Ready
- static rt_bool_t read_status(rt_uint8_t cmd)
- {
- volatile rt_uint8_t value=0;
- SET_NAND_CMD(NAND_READSTA);//发送读状态命令
- value++;value++;value++;value++;value++; //加延时,防止-O2优化,导致的错误.
- value=*(volatile rt_uint8_t*)NAND_ADDRESS; //读取状态值
- switch (cmd)
- {
- case NAND_WRITE0:
- case NAND_ERASE1:
- if (value & 0x01) /* Erase/Program failure(1) or pass(0) */
- return (RT_FALSE);
- else
- return (RT_TRUE);
- case NAND_AREA_TRUE1: /* bit 5 and 6, Read busy(0) or ready(1) */
- return (RT_TRUE);
- default:
- break;
- }
- return (RT_FALSE);
- }
- static rt_err_t nand_MT29F4G08_readid(struct rt_mtd_nand_device *device)
- {
- rt_uint32_t id;
- SET_NAND_CMD(NAND_READID); //发送读取ID命令
- SET_NAND_ADD(0X00);
- GET_NAND_DAT(_device.id[0]);//ID一共有5个字节
- GET_NAND_DAT(_device.id[1]);
- GET_NAND_DAT(_device.id[2]);
- GET_NAND_DAT(_device.id[3]);
- GET_NAND_DAT(_device.id[4]);
- //镁光的NAND FLASH的ID一共5个字节,但是为了方便我们只取4个字节组成一个32位的ID值
- //根据NAND FLASH的数据手册,只要是镁光的NAND FLASH,那么一个字节ID的第一个字节都是0X2C
- //所以我们就可以抛弃这个0X2C,只取后面四字节的ID值。
- id=((rt_uint32_t)_device.id[1])<<24|((rt_uint32_t)_device.id[2])<<16|((rt_uint32_t)_device.id[3])<<8|_device.id[4];
-
- rt_kprintf("\nNAND ID: 0x%08X\n", id);
- return RT_EOK;
-
- }
- static rt_err_t nand_datacorrect(uint32_t generatedEcc, uint32_t readEcc, uint8_t *data)
- {
- #define ECC_MASK28 0x0FFFFFFF /* 28 valid ECC parity bits. */
- #define ECC_MASK 0x05555555 /* 14 ECC parity bits. */
- rt_uint32_t count, bitNum, byteAddr;
- rt_uint32_t mask;
- rt_uint32_t syndrome;
- rt_uint32_t eccP; /* 14 even ECC parity bits. */
- rt_uint32_t eccPn; /* 14 odd ECC parity bits. */
- syndrome = (generatedEcc ^ readEcc) & ECC_MASK28;
- if (syndrome == 0)
- return (RT_MTD_EOK); /* No errors in data. */
- eccPn = syndrome & ECC_MASK; /* Get 14 odd parity bits. */
- eccP = (syndrome >> 1) & ECC_MASK; /* Get 14 even parity bits. */
- if ((eccPn ^ eccP) == ECC_MASK) /* 1-bit correctable error ? */
- {
- bitNum = (eccP & 0x01) |
- ((eccP >> 1) & 0x02) |
- ((eccP >> 2) & 0x04);
- NAND_DEBUG("ECC bit %d\n",bitNum);
- byteAddr = ((eccP >> 6) & 0x001) |
- ((eccP >> 7) & 0x002) |
- ((eccP >> 8) & 0x004) |
- ((eccP >> 9) & 0x008) |
- ((eccP >> 10) & 0x010) |
- ((eccP >> 11) & 0x020) |
- ((eccP >> 12) & 0x040) |
- ((eccP >> 13) & 0x080) |
- ((eccP >> 14) & 0x100) |
- ((eccP >> 15) & 0x200) |
- ((eccP >> 16) & 0x400) ;
- data[ byteAddr ] ^= 1 << bitNum;
- return RT_MTD_EOK;
- }
- /* Count number of one's in the syndrome. */
- count = 0;
- mask = 0x00800000;
- while (mask)
- {
- if (syndrome & mask)
- count++;
- mask >>= 1;
- }
- if (count == 1) /* Error in the ECC itself. */
- return RT_MTD_EECC;
- return -RT_MTD_EECC; /* Unable to correct data. */
- #undef ECC_MASK
- #undef ECC_MASK24
- }
- static rt_err_t nand_MT29F4G08_readpage(struct rt_mtd_nand_device *device,
- rt_off_t page,
- rt_uint8_t *data,
- rt_uint32_t data_len,
- rt_uint8_t *spare,
- rt_uint32_t spare_len)
- {
- rt_uint32_t index;
- rt_uint32_t gecc, recc;
- rt_uint8_t tmp[4];
- rt_err_t result;
- rt_uint32_t i;
- page = page + device->block_start * device->pages_per_block;
- if (page/device->pages_per_block > device->block_end)
- {
- return -RT_MTD_EIO;
- }
- result = RT_MTD_EOK;
- rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
- if (data && data_len)
- {
- SET_NAND_CMD(NAND_AREA_A); //发送地址
- SET_NAND_ADD((rt_uint8_t)(0&0xFF));
- SET_NAND_ADD((rt_uint8_t)(0>>8));
- SET_NAND_ADD((rt_uint8_t)(page & 0xFF));
- SET_NAND_ADD((rt_uint8_t)(page >> 8));
- SET_NAND_ADD((rt_uint8_t)(page >> 16));
- SET_NAND_CMD(NAND_AREA_TRUE1);
- //下面两行代码是等待R/B引脚变为低电平,其实主要起延时作用的,等待NAND操作R/B引脚。因为我们是通过
- //将STM32的NWAIT引脚(NAND的R/B引脚)配置为普通IO,代码中通过读取NWAIT引脚的电平来判断NAND是否准备
- //就绪的。这个也就是模拟的方法,所以在速度很快的时候有可能NAND还没来得及操作R/B引脚来表示NAND的忙
- //闲状态,就读取了R/B引脚,这个时候肯定会出错的,事实上确实是会出错!
- NAND_WaitRB(0); //等待RB=0
- //下面2行代码是真正判断NAND是否准备好的
- NAND_WaitRB(1); //等待RB=1
- FMC_NAND_ECC_Enable(NAND_Handler.Instance,FMC_NAND_BANK3);
-
- for (i = 0; i < data_len; i ++)
- {
- GET_NAND_DAT(data[i]);
- }
- gecc = FMC_NAND_GetECC(NAND_Handler.Instance,(uint32_t*)&gecc,FMC_NAND_BANK3,10);
- if (data_len == PAGE_DATA_SIZE)
- {
- for (index = 0; index < ECC_SIZE; index ++)
- {
- GET_NAND_DAT(tmp[index]);
- }
-
- if (spare && spare_len)
- {
- for (i = ECC_SIZE; i < spare_len; i ++)
- {
- GET_NAND_DAT(spare[i]);
- }
- rt_memcpy(spare, tmp , ECC_SIZE);
- }
- recc = (tmp[3] << 24) | (tmp[2] << 16) | (tmp[1] << 8) | tmp[0];
- if (recc != 0xFFFFFFFF && gecc != 0)
- result = nand_datacorrect(gecc, recc, data);
- if (result != RT_MTD_EOK)
- NAND_DEBUG("page: %d, gecc %X, recc %X>",page, gecc, recc);
- goto _exit;
- }
- }
- if (spare && spare_len)
- {
- SET_NAND_CMD(NAND_AREA_A); //发送地址
- SET_NAND_ADD((rt_uint8_t)(PAGE_DATA_SIZE&0xFF));
- SET_NAND_ADD((rt_uint8_t)(PAGE_DATA_SIZE>>8));
- SET_NAND_ADD((rt_uint8_t)(page & 0xFF));
- SET_NAND_ADD((rt_uint8_t)(page >> 8));
- SET_NAND_ADD((rt_uint8_t)(page >> 16));
- SET_NAND_CMD(NAND_AREA_TRUE1);
-
- //下面两行代码是等待R/B引脚变为低电平,其实主要起延时作用的,等待NAND操作R/B引脚。因为我们是通过
- //将STM32的NWAIT引脚(NAND的R/B引脚)配置为普通IO,代码中通过读取NWAIT引脚的电平来判断NAND是否准备
- //就绪的。这个也就是模拟的方法,所以在速度很快的时候有可能NAND还没来得及操作R/B引脚来表示NAND的忙
- //闲状态,就读取了R/B引脚,这个时候肯定会出错的,事实上确实是会出错!
- NAND_WaitRB(0); //等待RB=0
- //下面2行代码是真正判断NAND是否准备好的
- NAND_WaitRB(1); //等待RB=1
- for (i = 0; i < spare_len; i ++)
- {
- GET_NAND_DAT(spare[i]);
- }
- }
- _exit:
- rt_mutex_release(&_device.lock);
- return (result);
- }
- static rt_err_t nand_MT29F4G08_writepage(struct rt_mtd_nand_device *device,
- rt_off_t page,
- const rt_uint8_t *data,
- rt_uint32_t data_len,
- const rt_uint8_t *spare,
- rt_uint32_t spare_len)
- {
- rt_err_t result;
- rt_uint32_t gecc;
- rt_uint32_t i;
-
- page = page + device->block_start * device->pages_per_block;
- if (page/device->pages_per_block > device->block_end)
- {
- return -RT_MTD_EIO;
- }
- result = RT_MTD_EOK;
- rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
- if (data && data_len)
- {
- SET_NAND_CMD(NAND_WRITE0); //发送地址
- SET_NAND_ADD((rt_uint8_t)(0&0xFF));
- SET_NAND_ADD((rt_uint8_t)(0>>8));
- SET_NAND_ADD((rt_uint8_t)(page & 0xFF));
- SET_NAND_ADD((rt_uint8_t)(page >> 8));
- SET_NAND_ADD((rt_uint8_t)(page >> 16));
-
- FMC_NAND_ECC_Enable(NAND_Handler.Instance,FMC_NAND_BANK3);
-
- for (i = 0; i < data_len; i ++)
- {
- SET_NAND_DAT(data[i]);
- }
- gecc = FMC_NAND_GetECC(NAND_Handler.Instance,(uint32_t*)&gecc,FMC_NAND_BANK3,10);
-
- FMC_NAND_ECC_Disable(NAND_Handler.Instance,FMC_NAND_BANK3);
- if (data_len == PAGE_DATA_SIZE)
- {
- SET_NAND_DAT((uint8_t)gecc);
- SET_NAND_DAT((uint8_t)(gecc >> 8));
- SET_NAND_DAT((uint8_t)(gecc >> 16));
- SET_NAND_DAT((uint8_t)(gecc >> 24));
- if (spare && spare_len)
- {
- for (i = ECC_SIZE; i < spare_len; i ++)
- {
- SET_NAND_DAT(spare[i]);
- }
- }
-
- }
- SET_NAND_CMD(NAND_WRITE_TURE1);
- if(wait_for_ready()!=NSTA_READY)
- {
- nand_reset();
- result = -RT_MTD_EIO;//失败
- }
- goto _exit;
- }
- if (spare && spare_len)
- {
- SET_NAND_CMD(NAND_WRITE0); //发送地址
- SET_NAND_ADD((rt_uint8_t)(PAGE_DATA_SIZE&0xFF));
- SET_NAND_ADD((rt_uint8_t)(PAGE_DATA_SIZE>>8));
- SET_NAND_ADD((rt_uint8_t)(page & 0xFF));
- SET_NAND_ADD((rt_uint8_t)(page >> 8));
- SET_NAND_ADD((rt_uint8_t)(page >> 16));
-
- if (spare && spare_len)
- for (i = ECC_SIZE; i < spare_len; i ++)
- {
- SET_NAND_DAT(spare[i]);
- }
- SET_NAND_CMD(NAND_WRITE_TURE1);
- if(wait_for_ready()!=NSTA_READY)
- {
- nand_reset();
- result = -RT_MTD_EIO;//失败
- }
- }
- _exit:
- rt_mutex_release(&_device.lock);
- return (result);
- }
- static rt_err_t nand_MT29F4G08_eraseblock(struct rt_mtd_nand_device *device,
- rt_uint32_t block)
- {
- unsigned int blockPage;
- rt_err_t result;
- /* add the start blocks */
- block = block + device->block_start;
- blockPage = (block << 6);
- result = RT_MTD_EOK;
-
- rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
- SET_NAND_CMD(NAND_ERASE0); //发送地址
- SET_NAND_ADD((rt_uint8_t)blockPage);
- SET_NAND_ADD((rt_uint8_t)(blockPage>>8));
- SET_NAND_ADD((rt_uint8_t)(blockPage>>16));
- SET_NAND_CMD(NAND_ERASE1);
- if(wait_for_ready()!=NSTA_READY)
- {
- nand_reset();
- result = -RT_MTD_EIO;//失败
- }
- rt_mutex_release(&_device.lock);
- return result;
- }
- static rt_err_t nand_MT29F4G08_pagecopy(struct rt_mtd_nand_device *device,
- rt_off_t src_page,
- rt_off_t dst_page)
- {
- rt_err_t result = RT_MTD_EOK;
- rt_uint32_t source_block=0,dest_block=0;
- src_page = src_page + device->block_start * device->pages_per_block;
- dst_page = dst_page + device->block_start * device->pages_per_block;
- //判断源页和目的页是否在同一个plane中
- source_block=src_page/device->pages_per_block;
- dest_block=dst_page/device->pages_per_block;
- if((source_block%2)!=(dest_block%2))return RT_MTD_ESRC; //不在同一个plane内
-
- SET_NAND_CMD(NAND_MOVEDATA_CMD0);//发送命令0X00
- SET_NAND_ADD((rt_uint8_t)(0&0xFF)); //发送源页地址
- SET_NAND_ADD((rt_uint8_t)(0>>8));
- SET_NAND_ADD((rt_uint8_t)(src_page & 0xFF));
- SET_NAND_ADD((rt_uint8_t)(src_page >> 8));
- SET_NAND_ADD((rt_uint8_t)(src_page >> 16));
- SET_NAND_CMD(NAND_MOVEDATA_CMD1);//发送命令0X35
- //下面两行代码是等待R/B引脚变为低电平,其实主要起延时作用的,等待NAND操作R/B引脚。因为我们是通过
- //将STM32的NWAIT引脚(NAND的R/B引脚)配置为普通IO,代码中通过读取NWAIT引脚的电平来判断NAND是否准备
- //就绪的。这个也就是模拟的方法,所以在速度很快的时候有可能NAND还没来得及操作R/B引脚来表示NAND的忙
- //闲状态,结果我们就读取了R/B引脚,这个时候肯定会出错的,事实上确实是会出错!大家也可以将下面两行
- //代码换成延时函数,只不过这里我们为了效率所以没有用延时函数。
- result=NAND_WaitRB(0); //等待RB=0
- if(result)return -RT_MTD_EIO; //超时退出
- //下面2行代码是真正判断NAND是否准备好的
- result=NAND_WaitRB(1); //等待RB=1
- if(result)return -RT_MTD_EIO; //超时退出
-
- SET_NAND_CMD(NAND_MOVEDATA_CMD2);//发送命令0X85
- SET_NAND_ADD((rt_uint8_t)(0&0xFF)); //发送目的页地址
- SET_NAND_ADD((rt_uint8_t)(0>>8));
- SET_NAND_ADD((rt_uint8_t)(dst_page & 0xFF));
- SET_NAND_ADD((rt_uint8_t)(dst_page >> 8));
- SET_NAND_ADD((rt_uint8_t)(dst_page >> 16));
- SET_NAND_CMD(NAND_MOVEDATA_CMD3);//发送命令0X10
-
- if(wait_for_ready()!=NSTA_READY)
- {
- nand_reset();
- return -RT_MTD_EIO;//失败
- }
- return RT_MTD_EOK;
- }
- static rt_err_t nand_MT29F4G08_checkblock(struct rt_mtd_nand_device* device, rt_uint32_t block)
- {
- return (RT_MTD_EOK);
- }
- static rt_err_t nand_MT29F4G08_markbad(struct rt_mtd_nand_device* device, rt_uint32_t block)
- {
- return (RT_MTD_EOK);
- }
- static const struct rt_mtd_nand_driver_ops ops =
- {
- nand_MT29F4G08_readid,
- nand_MT29F4G08_readpage,
- nand_MT29F4G08_writepage,
- nand_MT29F4G08_pagecopy,
- nand_MT29F4G08_eraseblock,
- nand_MT29F4G08_checkblock,
- nand_MT29F4G08_markbad,
- };
- static struct rt_mtd_nand_device _partition[1];
- int nand_MT29F4G08_hw_init(void)
- {
- NAND_Init();
- rt_mutex_init(&_device.lock, "nand", RT_IPC_FLAG_FIFO);
- /* register nand0 */
- _partition[0].page_size = PAGE_DATA_SIZE;
- _partition[0].pages_per_block = PAGES_PER_BLOCK;
- _partition[0].plane_num = 2;
- _partition[0].oob_size = PAGE_OOB_SIZE;
- _partition[0].oob_free = PAGE_OOB_SIZE - ((PAGE_DATA_SIZE) * 3 / 256);
- _partition[0].block_start = 0;
- _partition[0].block_end = 4095;
- _partition[0].block_total = _partition[0].block_end - _partition[0].block_start;
- _partition[0].ops = &ops;
- rt_mtd_nand_register_device("nand0", &_partition[0]);
- nand_MT29F4G08_readid(&_partition[0]);
- return RT_EOK;
- }
- INIT_BOARD_EXPORT(nand_MT29F4G08_hw_init);
|