dm9000.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673
  1. #include <rtthread.h>
  2. #include <netif/ethernetif.h>
  3. #include "dm9000.h"
  4. #include <s3c24x0.h>
  5. /*
  6. * Davicom DM9000EP driver
  7. *
  8. * IRQ_LAN connects to EINT7(GPF7)
  9. * nLAN_CS connects to nGCS4
  10. */
  11. /* #define DM9000_DEBUG 1 */
  12. #if DM9000_DEBUG
  13. #define DM9000_TRACE rt_kprintf
  14. #else
  15. #define DM9000_TRACE(...)
  16. #endif
  17. /*
  18. * DM9000 interrupt line is connected to PF7
  19. */
  20. //--------------------------------------------------------
  21. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  22. #define MAX_ADDR_LEN 6
  23. enum DM9000_PHY_mode
  24. {
  25. DM9000_10MHD = 0, DM9000_100MHD = 1,
  26. DM9000_10MFD = 4, DM9000_100MFD = 5,
  27. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  28. };
  29. enum DM9000_TYPE
  30. {
  31. TYPE_DM9000E,
  32. TYPE_DM9000A,
  33. TYPE_DM9000B
  34. };
  35. struct rt_dm9000_eth
  36. {
  37. /* inherit from ethernet device */
  38. struct eth_device parent;
  39. enum DM9000_TYPE type;
  40. enum DM9000_PHY_mode mode;
  41. rt_uint8_t packet_cnt; /* packet I or II */
  42. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  43. /* interface address info. */
  44. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  45. };
  46. static struct rt_dm9000_eth dm9000_device;
  47. static struct rt_semaphore sem_ack, sem_lock;
  48. void rt_dm9000_isr(int irqno);
  49. static void delay_ms(rt_uint32_t ms)
  50. {
  51. rt_uint32_t len;
  52. for (;ms > 0; ms --)
  53. for (len = 0; len < 100; len++ );
  54. }
  55. /* Read a byte from I/O port */
  56. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  57. {
  58. DM9000_IO = reg;
  59. return (rt_uint8_t) DM9000_DATA;
  60. }
  61. /* Write a byte to I/O port */
  62. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  63. {
  64. DM9000_IO = reg;
  65. DM9000_DATA = value;
  66. }
  67. /* Read a word from phyxcer */
  68. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  69. {
  70. rt_uint16_t val;
  71. /* Fill the phyxcer register into REG_0C */
  72. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  73. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  74. delay_ms(100); /* Wait read complete */
  75. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  76. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  77. return val;
  78. }
  79. /* Write a word to phyxcer */
  80. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  81. {
  82. /* Fill the phyxcer register into REG_0C */
  83. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  84. /* Fill the written data into REG_0D & REG_0E */
  85. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  86. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  87. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  88. delay_ms(500); /* Wait write complete */
  89. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  90. }
  91. /* Set PHY operationg mode */
  92. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  93. {
  94. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  95. if (!(media_mode & DM9000_AUTO))
  96. {
  97. switch (media_mode)
  98. {
  99. case DM9000_10MHD:
  100. phy_reg4 = 0x21;
  101. phy_reg0 = 0x0000;
  102. break;
  103. case DM9000_10MFD:
  104. phy_reg4 = 0x41;
  105. phy_reg0 = 0x1100;
  106. break;
  107. case DM9000_100MHD:
  108. phy_reg4 = 0x81;
  109. phy_reg0 = 0x2000;
  110. break;
  111. case DM9000_100MFD:
  112. phy_reg4 = 0x101;
  113. phy_reg0 = 0x3100;
  114. break;
  115. }
  116. phy_write(4, phy_reg4); /* Set PHY media mode */
  117. phy_write(0, phy_reg0); /* Tmp */
  118. }
  119. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  120. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  121. }
  122. /* interrupt service routine */
  123. void rt_dm9000_isr(int irqno)
  124. {
  125. rt_uint16_t int_status;
  126. rt_uint16_t last_io;
  127. rt_uint32_t eint_pend;
  128. last_io = DM9000_IO;
  129. /* Disable all interrupts */
  130. dm9000_io_write(DM9000_IMR, IMR_PAR);
  131. /* Got DM9000 interrupt status */
  132. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  133. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  134. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  135. /* receive overflow */
  136. if (int_status & ISR_ROS)
  137. {
  138. rt_kprintf("overflow\n");
  139. }
  140. if (int_status & ISR_ROOS)
  141. {
  142. rt_kprintf("overflow counter overflow\n");
  143. }
  144. /* Received the coming packet */
  145. if (int_status & ISR_PRS)
  146. {
  147. /* a frame has been received */
  148. eth_device_ready(&(dm9000_device.parent));
  149. }
  150. /* Transmit Interrupt check */
  151. if (int_status & ISR_PTS)
  152. {
  153. /* transmit done */
  154. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  155. if (tx_status & (NSR_TX2END | NSR_TX1END))
  156. {
  157. dm9000_device.packet_cnt --;
  158. if (dm9000_device.packet_cnt > 0)
  159. {
  160. DM9000_TRACE("dm9000 isr: tx second packet\n");
  161. /* transmit packet II */
  162. /* Set TX length to DM9000 */
  163. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  164. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  165. /* Issue TX polling command */
  166. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  167. }
  168. /* One packet sent complete */
  169. rt_sem_release(&sem_ack);
  170. }
  171. }
  172. /* Re-enable interrupt mask */
  173. dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
  174. DM9000_IO = last_io;
  175. }
  176. /* RT-Thread Device Interface */
  177. /* initialize the interface */
  178. static rt_err_t rt_dm9000_init(rt_device_t dev)
  179. {
  180. int i, oft, lnk;
  181. rt_uint32_t value;
  182. /* RESET device */
  183. dm9000_io_write(DM9000_NCR, NCR_RST);
  184. delay_ms(1000); /* delay 1ms */
  185. /* identfy DM9000 */
  186. value = dm9000_io_read(DM9000_VIDL);
  187. value |= dm9000_io_read(DM9000_VIDH) << 8;
  188. value |= dm9000_io_read(DM9000_PIDL) << 16;
  189. value |= dm9000_io_read(DM9000_PIDH) << 24;
  190. if (value == DM9000_ID)
  191. {
  192. rt_kprintf("dm9000 id: 0x%x\n", value);
  193. }
  194. else
  195. {
  196. rt_kprintf("dm9000 id: 0x%x\n", value);
  197. return -RT_ERROR;
  198. }
  199. /* GPIO0 on pre-activate PHY */
  200. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  201. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  202. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  203. /* Set PHY */
  204. phy_mode_set(dm9000_device.mode);
  205. /* Program operating register */
  206. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  207. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  208. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  209. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  210. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  211. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  212. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  213. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  214. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  215. /* set mac address */
  216. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  217. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  218. /* set multicast address */
  219. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  220. dm9000_io_write(oft, 0xff);
  221. /* Activate DM9000 */
  222. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  223. dm9000_io_write(DM9000_IMR, IMR_PAR);
  224. if (dm9000_device.mode == DM9000_AUTO)
  225. {
  226. i = 0;
  227. while (!(phy_read(1) & 0x20))
  228. {
  229. /* autonegation complete bit */
  230. rt_thread_delay( RT_TICK_PER_SECOND/10 );
  231. i++;
  232. if (i > 30 ) /* wait 3s */
  233. {
  234. rt_kprintf("could not establish link\n");
  235. return 0;
  236. }
  237. }
  238. }
  239. /* send a notify */
  240. eth_device_linkchange(&dm9000_device.parent, RT_TRUE);
  241. /* see what we've got */
  242. lnk = phy_read(17) >> 12;
  243. rt_kprintf("operating at ");
  244. switch (lnk)
  245. {
  246. case 1:
  247. rt_kprintf("10M half duplex ");
  248. break;
  249. case 2:
  250. rt_kprintf("10M full duplex ");
  251. break;
  252. case 4:
  253. rt_kprintf("100M half duplex ");
  254. break;
  255. case 8:
  256. rt_kprintf("100M full duplex ");
  257. break;
  258. default:
  259. rt_kprintf("unknown: %d ", lnk);
  260. break;
  261. }
  262. rt_kprintf("mode\n");
  263. /* Enable TX/RX interrupt mask */
  264. dm9000_io_write(DM9000_IMR,IMR_PAR | IMR_PTM | IMR_PRM);
  265. return RT_EOK;
  266. }
  267. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  268. {
  269. return RT_EOK;
  270. }
  271. static rt_err_t rt_dm9000_close(rt_device_t dev)
  272. {
  273. /* RESET devie */
  274. phy_write(0, 0x8000); /* PHY RESET */
  275. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  276. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  277. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  278. return RT_EOK;
  279. }
  280. static rt_ssize_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  281. {
  282. rt_set_errno(-RT_ENOSYS);
  283. return 0;
  284. }
  285. static rt_ssize_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  286. {
  287. rt_set_errno(-RT_ENOSYS);
  288. return 0;
  289. }
  290. static rt_err_t rt_dm9000_control(rt_device_t dev, int cmd, void *args)
  291. {
  292. switch (cmd)
  293. {
  294. case NIOCTL_GADDR:
  295. /* get mac address */
  296. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  297. else return -RT_ERROR;
  298. break;
  299. default :
  300. break;
  301. }
  302. return RT_EOK;
  303. }
  304. /* ethernet device interface */
  305. /* transmit packet. */
  306. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  307. {
  308. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  309. /* lock DM9000 device */
  310. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  311. /* disable dm9000a interrupt */
  312. dm9000_io_write(DM9000_IMR, IMR_PAR);
  313. /* Move data to DM9000 TX RAM */
  314. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  315. {
  316. /* q traverses through linked list of pbuf's
  317. * This list MUST consist of a single packet ONLY */
  318. struct pbuf *q;
  319. rt_uint16_t pbuf_index = 0;
  320. rt_uint8_t word[2], word_index = 0;
  321. q = p;
  322. /* Write data into dm9000a, two bytes at a time
  323. * Handling pbuf's with odd number of bytes correctly
  324. * No attempt to optimize for speed has been made */
  325. while (q)
  326. {
  327. if (pbuf_index < q->len)
  328. {
  329. word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
  330. if (word_index == 2)
  331. {
  332. DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
  333. word_index = 0;
  334. }
  335. }
  336. else
  337. {
  338. q = q->next;
  339. pbuf_index = 0;
  340. }
  341. }
  342. /* One byte could still be unsent */
  343. if (word_index == 1)
  344. {
  345. DM9000_outw(DM9000_DATA_BASE, word[0]);
  346. }
  347. }
  348. if (dm9000_device.packet_cnt == 0)
  349. {
  350. DM9000_TRACE("dm9000 tx: first packet\n");
  351. dm9000_device.packet_cnt ++;
  352. /* Set TX length to DM9000 */
  353. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  354. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  355. /* Issue TX polling command */
  356. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  357. }
  358. else
  359. {
  360. DM9000_TRACE("dm9000 tx: second packet\n");
  361. dm9000_device.packet_cnt ++;
  362. dm9000_device.queue_packet_len = p->tot_len;
  363. }
  364. /* enable dm9000a interrupt */
  365. dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
  366. /* unlock DM9000 device */
  367. rt_sem_release(&sem_lock);
  368. /* wait ack */
  369. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  370. DM9000_TRACE("dm9000 tx done\n");
  371. return RT_EOK;
  372. }
  373. /* reception packet. */
  374. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  375. {
  376. struct pbuf* p;
  377. rt_uint32_t rxbyte;
  378. rt_uint16_t rx_status, rx_len;
  379. rt_uint16_t* data;
  380. /* init p pointer */
  381. p = RT_NULL;
  382. /* lock DM9000 device */
  383. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  384. __error_retry:
  385. /* Check packet ready or not */
  386. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  387. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  388. if (rxbyte)
  389. {
  390. if (rxbyte > 1)
  391. {
  392. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  393. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  394. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  395. }
  396. /* A packet ready now & Get status/length */
  397. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  398. rx_status = DM9000_inw(DM9000_DATA_BASE);
  399. rx_len = DM9000_inw(DM9000_DATA_BASE);
  400. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  401. /* allocate buffer */
  402. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  403. if (p != RT_NULL)
  404. {
  405. struct pbuf* q;
  406. rt_int32_t len;
  407. for (q = p; q != RT_NULL; q= q->next)
  408. {
  409. data = (rt_uint16_t*)q->payload;
  410. len = q->len;
  411. while (len > 0)
  412. {
  413. *data = DM9000_inw(DM9000_DATA_BASE);
  414. data ++;
  415. len -= 2;
  416. }
  417. }
  418. }
  419. else
  420. {
  421. rt_uint16_t dummy;
  422. rt_kprintf("dm9000 rx: no pbuf\n");
  423. /* no pbuf, discard data from DM9000 */
  424. data = &dummy;
  425. while (rx_len)
  426. {
  427. *data = DM9000_inw(DM9000_DATA_BASE);
  428. rx_len -= 2;
  429. }
  430. }
  431. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  432. || (rx_len > DM9000_PKT_MAX))
  433. {
  434. rt_kprintf("rx error: status %04x, rx_len: %d\n", rx_status, rx_len);
  435. if (rx_status & 0x100)
  436. {
  437. rt_kprintf("rx fifo error\n");
  438. }
  439. if (rx_status & 0x200)
  440. {
  441. rt_kprintf("rx crc error\n");
  442. }
  443. if (rx_status & 0x8000)
  444. {
  445. rt_kprintf("rx length error\n");
  446. }
  447. if (rx_len > DM9000_PKT_MAX)
  448. {
  449. rt_kprintf("rx length too big\n");
  450. /* RESET device */
  451. dm9000_io_write(DM9000_NCR, NCR_RST);
  452. rt_thread_delay(1); /* delay 5ms */
  453. }
  454. /* it issues an error, release pbuf */
  455. if (p != RT_NULL) pbuf_free(p);
  456. p = RT_NULL;
  457. goto __error_retry;
  458. }
  459. }
  460. else
  461. {
  462. /* clear packet received latch status */
  463. dm9000_io_write(DM9000_ISR, ISR_PTS);
  464. /* restore receive interrupt */
  465. dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
  466. }
  467. /* unlock DM9000 device */
  468. rt_sem_release(&sem_lock);
  469. return p;
  470. }
  471. #define B4_Tacs 0x0
  472. #define B4_Tcos 0x0
  473. #define B4_Tacc 0x7
  474. #define B4_Tcoh 0x0
  475. #define B4_Tah 0x0
  476. #define B4_Tacp 0x0
  477. #define B4_PMC 0x0
  478. void INTEINT4_7_handler(int irqno, void *param)
  479. {
  480. rt_uint32_t eint_pend;
  481. eint_pend = EINTPEND;
  482. /* EINT7 : DM9000AEP */
  483. if( eint_pend & (1<<7) )
  484. {
  485. rt_dm9000_isr(0);
  486. }
  487. /* clear EINT pending bit */
  488. EINTPEND = eint_pend;
  489. }
  490. int rt_hw_dm9000_init()
  491. {
  492. /* Set GPF7 as EINT7 */
  493. GPFCON = GPFCON & (~(3 << 14)) | (2 << 14);
  494. GPFUP = GPFUP | (1 << 7);
  495. /* EINT7 High level interrupt */
  496. EXTINT0 = (EXTINT0 & (~(0x7 << 28))) | (0x1 << 28);
  497. /* Enable EINT7 */
  498. EINTMASK = EINTMASK & (~(1<<7));
  499. /* Set GPA15 as nGCS4 */
  500. GPACON |= 1 << 15;
  501. /* DM9000 width 16, wait enable */
  502. BWSCON = BWSCON & (~(0x7<<16)) | (0x5<<16);
  503. BANKCON4 = (1<<13) | (1<<11) | (0x6<<8) | (1<<6) | (1<<4) | (0<<2) | (0);
  504. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  505. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  506. dm9000_device.type = TYPE_DM9000A;
  507. dm9000_device.mode = DM9000_AUTO;
  508. dm9000_device.packet_cnt = 0;
  509. dm9000_device.queue_packet_len = 0;
  510. /*
  511. * SRAM Tx/Rx pointer automatically return to start address,
  512. * Packet Transmitted, Packet Received
  513. */
  514. dm9000_device.dev_addr[0] = 0x00;
  515. dm9000_device.dev_addr[1] = 0x60;
  516. dm9000_device.dev_addr[2] = 0x6E;
  517. dm9000_device.dev_addr[3] = 0x11;
  518. dm9000_device.dev_addr[4] = 0x02;
  519. dm9000_device.dev_addr[5] = 0x0F;
  520. dm9000_device.parent.parent.init = rt_dm9000_init;
  521. dm9000_device.parent.parent.open = rt_dm9000_open;
  522. dm9000_device.parent.parent.close = rt_dm9000_close;
  523. dm9000_device.parent.parent.read = rt_dm9000_read;
  524. dm9000_device.parent.parent.write = rt_dm9000_write;
  525. dm9000_device.parent.parent.control = rt_dm9000_control;
  526. dm9000_device.parent.parent.user_data = RT_NULL;
  527. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  528. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  529. eth_device_init(&(dm9000_device.parent), "e0");
  530. /* instal interrupt */
  531. rt_hw_interrupt_install(INTEINT4_7, INTEINT4_7_handler, RT_NULL, "EINT4_7");
  532. rt_hw_interrupt_umask(INTEINT4_7);
  533. return RT_EOK;
  534. }
  535. INIT_DEVICE_EXPORT(rt_hw_dm9000_init);
  536. void dm9000a(void)
  537. {
  538. rt_kprintf("\n");
  539. rt_kprintf("NCR (%02X): %02x\n", DM9000_NCR, dm9000_io_read(DM9000_NCR));
  540. rt_kprintf("NSR (%02X): %02x\n", DM9000_NSR, dm9000_io_read(DM9000_NSR));
  541. rt_kprintf("TCR (%02X): %02x\n", DM9000_TCR, dm9000_io_read(DM9000_TCR));
  542. rt_kprintf("TSRI (%02X): %02x\n", DM9000_TSR1, dm9000_io_read(DM9000_TSR1));
  543. rt_kprintf("TSRII (%02X): %02x\n", DM9000_TSR2, dm9000_io_read(DM9000_TSR2));
  544. rt_kprintf("RCR (%02X): %02x\n", DM9000_RCR, dm9000_io_read(DM9000_RCR));
  545. rt_kprintf("RSR (%02X): %02x\n", DM9000_RSR, dm9000_io_read(DM9000_RSR));
  546. rt_kprintf("ORCR (%02X): %02x\n", DM9000_ROCR, dm9000_io_read(DM9000_ROCR));
  547. rt_kprintf("CRR (%02X): %02x\n", DM9000_CHIPR, dm9000_io_read(DM9000_CHIPR));
  548. rt_kprintf("CSCR (%02X): %02x\n", DM9000_CSCR, dm9000_io_read(DM9000_CSCR));
  549. rt_kprintf("RCSSR (%02X): %02x\n", DM9000_RCSSR, dm9000_io_read(DM9000_RCSSR));
  550. rt_kprintf("ISR (%02X): %02x\n", DM9000_ISR, dm9000_io_read(DM9000_ISR));
  551. rt_kprintf("IMR (%02X): %02x\n", DM9000_IMR, dm9000_io_read(DM9000_IMR));
  552. rt_kprintf("\n");
  553. }
  554. #ifdef RT_USING_FINSH
  555. #include <finsh.h>
  556. FINSH_FUNCTION_EXPORT(dm9000a, dm9000a register dump);
  557. #endif