mmu.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-01-10 bernard porting to AM1808
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <board.h>
  13. #include "cp15.h"
  14. #include "mmu.h"
  15. #ifdef RT_USING_LWP
  16. #include <lwp_mm.h>
  17. #include "page.h"
  18. #endif
  19. /* level1 page table, each entry for 1MB memory. */
  20. volatile unsigned long MMUTable[4*1024] __attribute__((aligned(16*1024)));
  21. #ifndef RT_USING_LWP
  22. static rt_mutex_t mm_lock = RT_NULL;
  23. void rt_mm_lock(void)
  24. {
  25. if (rt_thread_self())
  26. {
  27. if (!mm_lock)
  28. {
  29. mm_lock = rt_mutex_create("mm_lock", RT_IPC_FLAG_FIFO);
  30. }
  31. if (mm_lock)
  32. {
  33. rt_mutex_take(mm_lock, RT_WAITING_FOREVER);
  34. }
  35. }
  36. }
  37. void rt_mm_unlock(void)
  38. {
  39. if (rt_thread_self())
  40. {
  41. if (mm_lock)
  42. {
  43. rt_mutex_release(mm_lock);
  44. }
  45. }
  46. }
  47. #endif
  48. void rt_hw_cpu_tlb_invalidate(void)
  49. {
  50. asm volatile ("mcr p15, 0, r0, c8, c7, 0\ndsb\nisb" ::: "memory");
  51. }
  52. unsigned long rt_hw_set_domain_register(unsigned long domain_val)
  53. {
  54. unsigned long old_domain;
  55. asm volatile ("mrc p15, 0, %0, c3, c0\n" : "=r" (old_domain));
  56. asm volatile ("mcr p15, 0, %0, c3, c0\n" : :"r" (domain_val) : "memory");
  57. return old_domain;
  58. }
  59. /* dump 2nd level page table */
  60. void rt_hw_cpu_dump_page_table_2nd(rt_uint32_t *ptb)
  61. {
  62. int i;
  63. int fcnt = 0;
  64. for (i = 0; i < 256; i++)
  65. {
  66. rt_uint32_t pte2 = ptb[i];
  67. if ((pte2 & 0x3) == 0)
  68. {
  69. if (fcnt == 0)
  70. rt_kprintf(" ");
  71. rt_kprintf("%04x: ", i);
  72. fcnt++;
  73. if (fcnt == 16)
  74. {
  75. rt_kprintf("fault\n");
  76. fcnt = 0;
  77. }
  78. continue;
  79. }
  80. if (fcnt != 0)
  81. {
  82. rt_kprintf("fault\n");
  83. fcnt = 0;
  84. }
  85. rt_kprintf(" %04x: %x: ", i, pte2);
  86. if ((pte2 & 0x3) == 0x1)
  87. {
  88. rt_kprintf("L,ap:%x,xn:%d,texcb:%02x\n",
  89. ((pte2 >> 7) | (pte2 >> 4))& 0xf,
  90. (pte2 >> 15) & 0x1,
  91. ((pte2 >> 10) | (pte2 >> 2)) & 0x1f);
  92. }
  93. else
  94. {
  95. rt_kprintf("S,ap:%x,xn:%d,texcb:%02x\n",
  96. ((pte2 >> 7) | (pte2 >> 4))& 0xf, pte2 & 0x1,
  97. ((pte2 >> 4) | (pte2 >> 2)) & 0x1f);
  98. }
  99. }
  100. }
  101. void rt_hw_cpu_dump_page_table(rt_uint32_t *ptb)
  102. {
  103. int i;
  104. int fcnt = 0;
  105. rt_kprintf("page table@%p\n", ptb);
  106. for (i = 0; i < 1024*4; i++)
  107. {
  108. rt_uint32_t pte1 = ptb[i];
  109. if ((pte1 & 0x3) == 0)
  110. {
  111. rt_kprintf("%03x: ", i);
  112. fcnt++;
  113. if (fcnt == 16)
  114. {
  115. rt_kprintf("fault\n");
  116. fcnt = 0;
  117. }
  118. continue;
  119. }
  120. if (fcnt != 0)
  121. {
  122. rt_kprintf("fault\n");
  123. fcnt = 0;
  124. }
  125. rt_kprintf("%03x: %08x: ", i, pte1);
  126. if ((pte1 & 0x3) == 0x3)
  127. {
  128. rt_kprintf("LPAE\n");
  129. }
  130. else if ((pte1 & 0x3) == 0x1)
  131. {
  132. rt_kprintf("pte,ns:%d,domain:%d\n",
  133. (pte1 >> 3) & 0x1, (pte1 >> 5) & 0xf);
  134. /*
  135. *rt_hw_cpu_dump_page_table_2nd((void*)((pte1 & 0xfffffc000)
  136. * - 0x80000000 + 0xC0000000));
  137. */
  138. }
  139. else if (pte1 & (1 << 18))
  140. {
  141. rt_kprintf("super section,ns:%d,ap:%x,xn:%d,texcb:%02x\n",
  142. (pte1 >> 19) & 0x1,
  143. ((pte1 >> 13) | (pte1 >> 10))& 0xf,
  144. (pte1 >> 4) & 0x1,
  145. ((pte1 >> 10) | (pte1 >> 2)) & 0x1f);
  146. }
  147. else
  148. {
  149. rt_kprintf("section,ns:%d,ap:%x,"
  150. "xn:%d,texcb:%02x,domain:%d\n",
  151. (pte1 >> 19) & 0x1,
  152. ((pte1 >> 13) | (pte1 >> 10))& 0xf,
  153. (pte1 >> 4) & 0x1,
  154. (((pte1 & (0x7 << 12)) >> 10) |
  155. ((pte1 & 0x0c) >> 2)) & 0x1f,
  156. (pte1 >> 5) & 0xf);
  157. }
  158. }
  159. }
  160. void rt_hw_mmu_setmtt(rt_uint32_t vaddrStart,
  161. rt_uint32_t vaddrEnd,
  162. rt_uint32_t paddrStart,
  163. rt_uint32_t attr)
  164. {
  165. volatile rt_uint32_t *pTT;
  166. volatile int i, nSec;
  167. pTT = (rt_uint32_t *)MMUTable + (vaddrStart >> 20);
  168. nSec = (vaddrEnd >> 20) - (vaddrStart >> 20);
  169. for(i = 0; i <= nSec; i++)
  170. {
  171. *pTT = attr | (((paddrStart >> 20) + i) << 20);
  172. pTT++;
  173. }
  174. }
  175. void rt_hw_init_mmu_table(struct mem_desc *mdesc, rt_uint32_t size)
  176. {
  177. /* set page table */
  178. for(; size > 0; size--)
  179. {
  180. rt_hw_mmu_setmtt(mdesc->vaddr_start, mdesc->vaddr_end,
  181. mdesc->paddr_start, mdesc->attr);
  182. mdesc++;
  183. }
  184. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, (void*)MMUTable, sizeof MMUTable);
  185. }
  186. void rt_hw_mmu_init(void)
  187. {
  188. rt_cpu_dcache_clean_flush();
  189. rt_cpu_icache_flush();
  190. rt_hw_cpu_dcache_disable();
  191. rt_hw_cpu_icache_disable();
  192. rt_cpu_mmu_disable();
  193. /*rt_hw_cpu_dump_page_table(MMUTable);*/
  194. rt_hw_set_domain_register(0x55555555);
  195. rt_cpu_tlb_set(MMUTable);
  196. rt_cpu_mmu_enable();
  197. rt_hw_cpu_icache_enable();
  198. rt_hw_cpu_dcache_enable();
  199. }
  200. int rt_hw_mmu_map_init(rt_mmu_info *mmu_info, void* v_address, size_t size, size_t *vtable, size_t pv_off)
  201. {
  202. size_t l1_off, va_s, va_e;
  203. if (!mmu_info || !vtable)
  204. {
  205. return -1;
  206. }
  207. va_s = (size_t)v_address;
  208. va_e = (size_t)v_address + size - 1;
  209. if ( va_e < va_s)
  210. {
  211. return -1;
  212. }
  213. va_s >>= ARCH_SECTION_SHIFT;
  214. va_e >>= ARCH_SECTION_SHIFT;
  215. if (va_s == 0)
  216. {
  217. return -1;
  218. }
  219. for (l1_off = va_s; l1_off <= va_e; l1_off++)
  220. {
  221. size_t v = vtable[l1_off];
  222. if (v & ARCH_MMU_USED_MASK)
  223. {
  224. return -1;
  225. }
  226. }
  227. mmu_info->vtable = vtable;
  228. mmu_info->vstart = va_s;
  229. mmu_info->vend = va_e;
  230. mmu_info->pv_off = pv_off;
  231. return 0;
  232. }
  233. int rt_hw_mmu_ioremap_init(rt_mmu_info *mmu_info, void* v_address, size_t size)
  234. {
  235. #ifdef RT_IOREMAP_LATE
  236. size_t loop_va;
  237. size_t l1_off;
  238. size_t *mmu_l1, *mmu_l2;
  239. size_t sections;
  240. /* for kernel ioremap */
  241. if ((size_t)v_address < KERNEL_VADDR_START)
  242. {
  243. return -1;
  244. }
  245. /* must align to section */
  246. if ((size_t)v_address & ARCH_SECTION_MASK)
  247. {
  248. return -1;
  249. }
  250. /* must align to section */
  251. if (size & ARCH_SECTION_MASK)
  252. {
  253. return -1;
  254. }
  255. loop_va = (size_t)v_address;
  256. sections = (size >> ARCH_SECTION_SHIFT);
  257. while (sections--)
  258. {
  259. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  260. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  261. RT_ASSERT((*mmu_l1 & ARCH_MMU_USED_MASK) == 0);
  262. mmu_l2 = (size_t*)rt_pages_alloc(0);
  263. if (mmu_l2)
  264. {
  265. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  266. /* cache maintain */
  267. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  268. *mmu_l1 = (((size_t)mmu_l2 + mmu_info->pv_off) | 0x1);
  269. /* cache maintain */
  270. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  271. }
  272. else
  273. {
  274. /* error */
  275. return -1;
  276. }
  277. loop_va += ARCH_SECTION_SIZE;
  278. }
  279. #endif
  280. return 0;
  281. }
  282. #ifdef RT_USING_LWP
  283. static size_t find_vaddr(rt_mmu_info *mmu_info, int pages)
  284. {
  285. size_t l1_off, l2_off;
  286. size_t *mmu_l1, *mmu_l2;
  287. size_t find_off = 0;
  288. size_t find_va = 0;
  289. int n = 0;
  290. if (!pages)
  291. {
  292. return 0;
  293. }
  294. if (!mmu_info)
  295. {
  296. return 0;
  297. }
  298. for (l1_off = mmu_info->vstart; l1_off <= mmu_info->vend; l1_off++)
  299. {
  300. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  301. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  302. {
  303. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  304. for (l2_off = 0; l2_off < (ARCH_SECTION_SIZE/ARCH_PAGE_SIZE); l2_off++)
  305. {
  306. if (*(mmu_l2 + l2_off) & ARCH_MMU_USED_MASK)
  307. {
  308. /* in use */
  309. n = 0;
  310. }
  311. else
  312. {
  313. if (!n)
  314. {
  315. find_va = l1_off;
  316. find_off = l2_off;
  317. }
  318. n++;
  319. if (n >= pages)
  320. {
  321. return (find_va << ARCH_SECTION_SHIFT) + (find_off << ARCH_PAGE_SHIFT);
  322. }
  323. }
  324. }
  325. }
  326. else
  327. {
  328. if (!n)
  329. {
  330. find_va = l1_off;
  331. find_off = 0;
  332. }
  333. n += (ARCH_SECTION_SIZE/ARCH_PAGE_SIZE);
  334. if (n >= pages)
  335. {
  336. return (find_va << ARCH_SECTION_SHIFT) + (find_off << ARCH_PAGE_SHIFT);
  337. }
  338. }
  339. }
  340. return 0;
  341. }
  342. static int check_vaddr(rt_mmu_info *mmu_info, void *va, int pages)
  343. {
  344. size_t loop_va = (size_t)va & ~ARCH_PAGE_MASK;
  345. size_t l1_off, l2_off;
  346. size_t *mmu_l1, *mmu_l2;
  347. if (!pages)
  348. {
  349. return -1;
  350. }
  351. if (!mmu_info)
  352. {
  353. return -1;
  354. }
  355. l1_off = ((size_t)va >> ARCH_SECTION_SHIFT);
  356. if (l1_off < mmu_info->vstart || l1_off > mmu_info->vend)
  357. {
  358. return -1;
  359. }
  360. l1_off += ((pages << ARCH_PAGE_SHIFT) >> ARCH_SECTION_SHIFT);
  361. if (l1_off < mmu_info->vstart || l1_off > mmu_info->vend + 1)
  362. {
  363. return -1;
  364. }
  365. while (pages--)
  366. {
  367. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  368. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  369. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  370. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  371. {
  372. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  373. if (*(mmu_l2 + l2_off) & ARCH_MMU_USED_MASK)
  374. {
  375. return -1;
  376. }
  377. }
  378. loop_va += ARCH_PAGE_SIZE;
  379. }
  380. return 0;
  381. }
  382. static void __rt_hw_mmu_unmap(rt_mmu_info *mmu_info, void* v_addr, size_t npages)
  383. {
  384. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  385. size_t l1_off, l2_off;
  386. size_t *mmu_l1, *mmu_l2;
  387. if (!mmu_info)
  388. {
  389. return;
  390. }
  391. while (npages--)
  392. {
  393. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  394. if (l1_off < mmu_info->vstart || l1_off > mmu_info->vend)
  395. {
  396. return;
  397. }
  398. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  399. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  400. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  401. {
  402. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  403. }
  404. else
  405. {
  406. return;
  407. }
  408. if (*(mmu_l2 + l2_off) & ARCH_MMU_USED_MASK)
  409. {
  410. *(mmu_l2 + l2_off) = 0;
  411. /* cache maintain */
  412. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  413. if (rt_pages_free(mmu_l2, 0))
  414. {
  415. *mmu_l1 = 0;
  416. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  417. }
  418. }
  419. loop_va += ARCH_PAGE_SIZE;
  420. }
  421. }
  422. static int __rt_hw_mmu_map(rt_mmu_info *mmu_info, void* v_addr, void* p_addr, size_t npages, size_t attr)
  423. {
  424. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  425. size_t loop_pa = (size_t)p_addr & ~ARCH_PAGE_MASK;
  426. size_t l1_off, l2_off;
  427. size_t *mmu_l1, *mmu_l2;
  428. if (!mmu_info)
  429. {
  430. return -1;
  431. }
  432. while (npages--)
  433. {
  434. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  435. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  436. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  437. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  438. {
  439. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  440. rt_page_ref_inc(mmu_l2, 0);
  441. }
  442. else
  443. {
  444. mmu_l2 = (size_t*)rt_pages_alloc(0);
  445. if (mmu_l2)
  446. {
  447. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  448. /* cache maintain */
  449. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  450. *mmu_l1 = (((size_t)mmu_l2 + mmu_info->pv_off) | 0x1);
  451. /* cache maintain */
  452. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  453. }
  454. else
  455. {
  456. /* error, unmap and quit */
  457. __rt_hw_mmu_unmap(mmu_info, v_addr, npages);
  458. return -1;
  459. }
  460. }
  461. *(mmu_l2 + l2_off) = (loop_pa | attr);
  462. /* cache maintain */
  463. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  464. loop_va += ARCH_PAGE_SIZE;
  465. loop_pa += ARCH_PAGE_SIZE;
  466. }
  467. return 0;
  468. }
  469. void *_rt_hw_mmu_map(rt_mmu_info *mmu_info, void *v_addr, void* p_addr, size_t size, size_t attr)
  470. {
  471. size_t pa_s, pa_e;
  472. size_t vaddr;
  473. int pages;
  474. int ret;
  475. if (!size)
  476. {
  477. return 0;
  478. }
  479. pa_s = (size_t)p_addr;
  480. pa_e = (size_t)p_addr + size - 1;
  481. pa_s >>= ARCH_PAGE_SHIFT;
  482. pa_e >>= ARCH_PAGE_SHIFT;
  483. pages = pa_e - pa_s + 1;
  484. if (v_addr)
  485. {
  486. vaddr = (size_t)v_addr;
  487. pa_s = (size_t)p_addr;
  488. if ((vaddr & ARCH_PAGE_MASK) != (pa_s & ARCH_PAGE_MASK))
  489. {
  490. return 0;
  491. }
  492. vaddr &= ~ARCH_PAGE_MASK;
  493. if (check_vaddr(mmu_info, (void*)vaddr, pages) != 0)
  494. {
  495. return 0;
  496. }
  497. }
  498. else
  499. {
  500. vaddr = find_vaddr(mmu_info, pages);
  501. }
  502. if (vaddr) {
  503. rt_enter_critical();
  504. ret = __rt_hw_mmu_map(mmu_info, (void*)vaddr, p_addr, pages, attr);
  505. if (ret == 0)
  506. {
  507. rt_hw_cpu_tlb_invalidate();
  508. rt_exit_critical();
  509. return (void*)(vaddr + ((size_t)p_addr & ARCH_PAGE_MASK));
  510. }
  511. rt_exit_critical();
  512. }
  513. return 0;
  514. }
  515. static int __rt_hw_mmu_map_auto(rt_mmu_info *mmu_info, void* v_addr, size_t npages, size_t attr)
  516. {
  517. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  518. size_t loop_pa;
  519. size_t l1_off, l2_off;
  520. size_t *mmu_l1, *mmu_l2;
  521. if (!mmu_info)
  522. {
  523. return -1;
  524. }
  525. while (npages--)
  526. {
  527. loop_pa = (size_t)rt_pages_alloc(0);
  528. if (!loop_pa)
  529. goto err;
  530. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  531. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  532. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  533. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  534. {
  535. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  536. rt_page_ref_inc(mmu_l2, 0);
  537. }
  538. else
  539. {
  540. //mmu_l2 = (size_t*)rt_malloc_align(ARCH_PAGE_TBL_SIZE * 2, ARCH_PAGE_TBL_SIZE);
  541. mmu_l2 = (size_t*)rt_pages_alloc(0);
  542. if (mmu_l2)
  543. {
  544. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  545. /* cache maintain */
  546. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  547. *mmu_l1 = (((size_t)mmu_l2 + mmu_info->pv_off) | 0x1);
  548. /* cache maintain */
  549. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  550. }
  551. else
  552. goto err;
  553. }
  554. loop_pa += mmu_info->pv_off;
  555. *(mmu_l2 + l2_off) = (loop_pa | attr);
  556. /* cache maintain */
  557. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  558. loop_va += ARCH_PAGE_SIZE;
  559. }
  560. return 0;
  561. err:
  562. {
  563. /* error, unmap and quit */
  564. int i;
  565. void *va, *pa;
  566. va = (void*)((size_t)v_addr & ~ARCH_PAGE_MASK);
  567. for (i = 0; i < npages; i++)
  568. {
  569. pa = rt_hw_mmu_v2p(mmu_info, va);
  570. pa = (void*)((char*)pa - mmu_info->pv_off);
  571. rt_pages_free(pa, 0);
  572. va = (void*)((char*)va + ARCH_PAGE_SIZE);
  573. }
  574. __rt_hw_mmu_unmap(mmu_info, v_addr, npages);
  575. return -1;
  576. }
  577. }
  578. void *_rt_hw_mmu_map_auto(rt_mmu_info *mmu_info, void *v_addr, size_t size, size_t attr)
  579. {
  580. size_t vaddr;
  581. size_t offset;
  582. int pages;
  583. int ret;
  584. if (!size)
  585. {
  586. return 0;
  587. }
  588. offset = (size_t)v_addr & ARCH_PAGE_MASK;
  589. size += (offset + ARCH_PAGE_SIZE - 1);
  590. pages = (size >> ARCH_PAGE_SHIFT);
  591. if (v_addr)
  592. {
  593. vaddr = (size_t)v_addr;
  594. vaddr &= ~ARCH_PAGE_MASK;
  595. if (check_vaddr(mmu_info, (void*)vaddr, pages) != 0)
  596. {
  597. return 0;
  598. }
  599. }
  600. else
  601. {
  602. vaddr = find_vaddr(mmu_info, pages);
  603. }
  604. if (vaddr)
  605. {
  606. rt_enter_critical();
  607. ret = __rt_hw_mmu_map_auto(mmu_info, (void*)vaddr, pages, attr);
  608. if (ret == 0)
  609. {
  610. rt_hw_cpu_tlb_invalidate();
  611. rt_exit_critical();
  612. return (void*)((char*)vaddr + offset);
  613. }
  614. rt_exit_critical();
  615. }
  616. return 0;
  617. }
  618. void _rt_hw_mmu_unmap(rt_mmu_info *mmu_info, void* v_addr, size_t size)
  619. {
  620. size_t va_s, va_e;
  621. int pages;
  622. va_s = (size_t)v_addr;
  623. va_e = (size_t)v_addr + size - 1;
  624. va_s >>= ARCH_PAGE_SHIFT;
  625. va_e >>= ARCH_PAGE_SHIFT;
  626. pages = va_e - va_s + 1;
  627. rt_enter_critical();
  628. __rt_hw_mmu_unmap(mmu_info, v_addr, pages);
  629. rt_hw_cpu_tlb_invalidate();
  630. rt_exit_critical();
  631. }
  632. void *rt_hw_mmu_map(rt_mmu_info *mmu_info, void *v_addr, void* p_addr, size_t size, size_t attr)
  633. {
  634. void *ret;
  635. rt_mm_lock();
  636. ret = _rt_hw_mmu_map(mmu_info, v_addr, p_addr, size, attr);
  637. rt_mm_unlock();
  638. return ret;
  639. }
  640. void *rt_hw_mmu_map_auto(rt_mmu_info *mmu_info, void *v_addr, size_t size, size_t attr)
  641. {
  642. void *ret;
  643. rt_mm_lock();
  644. ret = _rt_hw_mmu_map_auto(mmu_info, v_addr, size, attr);
  645. rt_mm_unlock();
  646. return ret;
  647. }
  648. void rt_hw_mmu_unmap(rt_mmu_info *mmu_info, void* v_addr, size_t size)
  649. {
  650. rt_mm_lock();
  651. _rt_hw_mmu_unmap(mmu_info, v_addr, size);
  652. rt_mm_unlock();
  653. }
  654. void *_rt_hw_mmu_v2p(rt_mmu_info *mmu_info, void* v_addr)
  655. {
  656. size_t l1_off, l2_off;
  657. size_t *mmu_l1, *mmu_l2;
  658. size_t tmp;
  659. size_t pa;
  660. l1_off = (size_t)v_addr >> ARCH_SECTION_SHIFT;
  661. if (!mmu_info)
  662. {
  663. return (void*)0;
  664. }
  665. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  666. tmp = *mmu_l1;
  667. switch (tmp & ARCH_MMU_USED_MASK)
  668. {
  669. case 0: /* not used */
  670. break;
  671. case 1: /* page table */
  672. mmu_l2 = (size_t *)((tmp & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  673. l2_off = (((size_t)v_addr & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  674. pa = *(mmu_l2 + l2_off);
  675. if (pa & ARCH_MMU_USED_MASK)
  676. {
  677. if ((pa & ARCH_MMU_USED_MASK) == 1)
  678. {
  679. /* large page, not support */
  680. break;
  681. }
  682. pa &= ~(ARCH_PAGE_MASK);
  683. pa += ((size_t)v_addr & ARCH_PAGE_MASK);
  684. return (void*)pa;
  685. }
  686. break;
  687. case 2:
  688. case 3:
  689. /* section */
  690. if (tmp & ARCH_TYPE_SUPERSECTION)
  691. {
  692. /* super section, not support */
  693. break;
  694. }
  695. pa = (tmp & ~ARCH_SECTION_MASK);
  696. pa += ((size_t)v_addr & ARCH_SECTION_MASK);
  697. return (void*)pa;
  698. }
  699. return (void*)0;
  700. }
  701. void *rt_hw_mmu_v2p(rt_mmu_info *mmu_info, void* v_addr)
  702. {
  703. void *ret;
  704. rt_mm_lock();
  705. ret = _rt_hw_mmu_v2p(mmu_info, v_addr);
  706. rt_mm_unlock();
  707. return ret;
  708. }
  709. void init_mm_setup(unsigned int *mtbl, unsigned int size, unsigned int pv_off)
  710. {
  711. unsigned int va;
  712. for (va = 0; va < 0x1000; va++)
  713. {
  714. unsigned int vaddr = (va << 20);
  715. if (vaddr >= KERNEL_VADDR_START && vaddr - KERNEL_VADDR_START < size)
  716. {
  717. mtbl[va] = ((va << 20) + pv_off) | NORMAL_MEM;
  718. }
  719. else if (vaddr >= (KERNEL_VADDR_START + pv_off) && vaddr - (KERNEL_VADDR_START + pv_off) < size)
  720. {
  721. mtbl[va] = (va << 20) | NORMAL_MEM;
  722. }
  723. else
  724. {
  725. mtbl[va] = 0;
  726. }
  727. }
  728. }
  729. #endif