drv_sdio.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2020-10-27 bigmagic first version
  9. */
  10. #include <rtdef.h>
  11. #include "mbox.h"
  12. #include "raspi4.h"
  13. #include "drv_sdio.h"
  14. #include "mmu.h"
  15. static rt_uint32_t mmc_base_clock = 0;
  16. static rt_uint32_t sdCommandTable[] =
  17. {
  18. SD_CMD_INDEX(0),
  19. SD_CMD_RESERVED(1),
  20. SD_CMD_INDEX(2) | SD_RESP_R2,
  21. SD_CMD_INDEX(3) | SD_RESP_R1,
  22. SD_CMD_INDEX(4),
  23. SD_CMD_RESERVED(5), //SD_CMD_INDEX(5) | SD_RESP_R4,
  24. SD_CMD_INDEX(6) | SD_RESP_R1,
  25. SD_CMD_INDEX(7) | SD_RESP_R1b,
  26. SD_CMD_INDEX(8) | SD_RESP_R1,
  27. SD_CMD_INDEX(9) | SD_RESP_R2,
  28. SD_CMD_INDEX(10) | SD_RESP_R2,
  29. SD_CMD_INDEX(11) | SD_RESP_R1,
  30. SD_CMD_INDEX(12) | SD_RESP_R1b | SD_CMD_TYPE_ABORT,
  31. SD_CMD_INDEX(13) | SD_RESP_R1,
  32. SD_CMD_RESERVED(14),
  33. SD_CMD_INDEX(15),
  34. SD_CMD_INDEX(16) | SD_RESP_R1,
  35. SD_CMD_INDEX(17) | SD_RESP_R1 | SD_DATA_READ,
  36. SD_CMD_INDEX(18) | SD_RESP_R1 | SD_DATA_READ | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  37. SD_CMD_INDEX(19) | SD_RESP_R1 | SD_DATA_READ,
  38. SD_CMD_INDEX(20) | SD_RESP_R1b,
  39. SD_CMD_RESERVED(21),
  40. SD_CMD_RESERVED(22),
  41. SD_CMD_INDEX(23) | SD_RESP_R1,
  42. SD_CMD_INDEX(24) | SD_RESP_R1 | SD_DATA_WRITE,
  43. SD_CMD_INDEX(25) | SD_RESP_R1 | SD_DATA_WRITE | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  44. SD_CMD_INDEX(26) | SD_RESP_R1 | SD_DATA_WRITE, // add
  45. SD_CMD_INDEX(27) | SD_RESP_R1 | SD_DATA_WRITE,
  46. SD_CMD_INDEX(28) | SD_RESP_R1b,
  47. SD_CMD_INDEX(29) | SD_RESP_R1b,
  48. SD_CMD_INDEX(30) | SD_RESP_R1 | SD_DATA_READ,
  49. SD_CMD_RESERVED(31),
  50. SD_CMD_INDEX(32) | SD_RESP_R1,
  51. SD_CMD_INDEX(33) | SD_RESP_R1,
  52. SD_CMD_RESERVED(34),
  53. SD_CMD_INDEX(35) | SD_RESP_R1, // add
  54. SD_CMD_INDEX(36) | SD_RESP_R1, // add
  55. SD_CMD_RESERVED(37),
  56. SD_CMD_INDEX(38) | SD_RESP_R1b,
  57. SD_CMD_INDEX(39) | SD_RESP_R4, // add
  58. SD_CMD_INDEX(40) | SD_RESP_R5, // add
  59. SD_CMD_INDEX(41) | SD_RESP_R3, // add, mov from harbote
  60. SD_CMD_RESERVED(42) | SD_RESP_R1,
  61. SD_CMD_RESERVED(43),
  62. SD_CMD_RESERVED(44),
  63. SD_CMD_RESERVED(45),
  64. SD_CMD_RESERVED(46),
  65. SD_CMD_RESERVED(47),
  66. SD_CMD_RESERVED(48),
  67. SD_CMD_RESERVED(49),
  68. SD_CMD_RESERVED(50),
  69. SD_CMD_INDEX(51) | SD_RESP_R1 | SD_DATA_READ,
  70. SD_CMD_RESERVED(52),
  71. SD_CMD_RESERVED(53),
  72. SD_CMD_RESERVED(54),
  73. SD_CMD_INDEX(55) | SD_RESP_R3,
  74. SD_CMD_INDEX(56) | SD_RESP_R1 | SD_CMD_ISDATA,
  75. SD_CMD_RESERVED(57),
  76. SD_CMD_RESERVED(58),
  77. SD_CMD_RESERVED(59),
  78. SD_CMD_RESERVED(60),
  79. SD_CMD_RESERVED(61),
  80. SD_CMD_RESERVED(62),
  81. SD_CMD_RESERVED(63)
  82. };
  83. rt_inline rt_uint32_t read32(rt_ubase_t addr)
  84. {
  85. return (*((volatile unsigned int *)(addr)));
  86. }
  87. rt_inline void write32(rt_ubase_t addr, rt_uint32_t value)
  88. {
  89. (*((volatile unsigned int *)(addr))) = value;
  90. }
  91. rt_err_t sd_int(struct sdhci_pdata_t *pdat, rt_uint32_t mask)
  92. {
  93. rt_uint32_t r;
  94. rt_uint32_t m = mask | INT_ERROR_MASK;
  95. int cnt = 1000000;
  96. while (!(read32(pdat->virt + EMMC_INTERRUPT) & (m | INT_ERROR_MASK)) && cnt--)
  97. {
  98. DELAY_MICROS(1);
  99. }
  100. r = read32(pdat->virt + EMMC_INTERRUPT);
  101. if (cnt <= 0 || (r & INT_CMD_TIMEOUT) || (r & INT_DATA_TIMEOUT))
  102. {
  103. write32(pdat->virt + EMMC_INTERRUPT, r);
  104. /* qemu maybe can not use sdcard */
  105. rt_kprintf("send cmd/data timeout wait for %x int: %x, status: %x\n", mask, r, read32(pdat->virt + EMMC_STATUS));
  106. return -RT_ETIMEOUT;
  107. }
  108. else if (r & INT_ERROR_MASK)
  109. {
  110. write32(pdat->virt + EMMC_INTERRUPT, r);
  111. rt_kprintf("send cmd/data error %x -> %x\n", r, read32(pdat->virt + EMMC_INTERRUPT));
  112. return -RT_ERROR;
  113. }
  114. write32(pdat->virt + EMMC_INTERRUPT, mask);
  115. return RT_EOK;
  116. }
  117. rt_err_t sd_status(struct sdhci_pdata_t *pdat, unsigned int mask)
  118. {
  119. int cnt = 500000;
  120. while ((read32(pdat->virt + EMMC_STATUS) & mask) && !(read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK) && cnt--)
  121. {
  122. DELAY_MICROS(1);
  123. }
  124. if (cnt <= 0)
  125. {
  126. return -RT_ETIMEOUT;
  127. }
  128. else if (read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK)
  129. {
  130. return -RT_ERROR;
  131. }
  132. return RT_EOK;
  133. }
  134. static rt_err_t raspi_transfer_command(struct sdhci_pdata_t *pdat, struct sdhci_cmd_t *cmd)
  135. {
  136. rt_uint32_t cmdidx;
  137. rt_err_t ret = RT_EOK;
  138. ret = sd_status(pdat, SR_CMD_INHIBIT);
  139. if (ret)
  140. {
  141. rt_kprintf("ERROR: EMMC busy %d\n", ret);
  142. return ret;
  143. }
  144. cmdidx = sdCommandTable[cmd->cmdidx];
  145. if (cmdidx == 0xFFFFFFFF)
  146. {
  147. return -RT_EINVAL;
  148. }
  149. if (cmd->datarw == DATA_READ)
  150. {
  151. cmdidx |= SD_DATA_READ;
  152. }
  153. if (cmd->datarw == DATA_WRITE)
  154. {
  155. cmdidx |= SD_DATA_WRITE;
  156. }
  157. mmcsd_dbg("transfer cmd %x(%d) %x %x\n", cmdidx, cmd->cmdidx, cmd->cmdarg, read32(pdat->virt + EMMC_INTERRUPT));
  158. write32(pdat->virt + EMMC_INTERRUPT, read32(pdat->virt + EMMC_INTERRUPT));
  159. write32(pdat->virt + EMMC_ARG1, cmd->cmdarg);
  160. write32(pdat->virt + EMMC_CMDTM, cmdidx);
  161. if (cmd->cmdidx == SD_APP_OP_COND)
  162. {
  163. DELAY_MICROS(1000);
  164. }
  165. else if ((cmd->cmdidx == SD_SEND_IF_COND) || (cmd->cmdidx == APP_CMD))
  166. {
  167. DELAY_MICROS(100);
  168. }
  169. ret = sd_int(pdat, INT_CMD_DONE);
  170. if (ret)
  171. {
  172. return ret;
  173. }
  174. if (cmd->resptype & RESP_MASK)
  175. {
  176. if (cmd->resptype & RESP_R2)
  177. {
  178. rt_uint32_t resp[4];
  179. resp[0] = read32(pdat->virt + EMMC_RESP0);
  180. resp[1] = read32(pdat->virt + EMMC_RESP1);
  181. resp[2] = read32(pdat->virt + EMMC_RESP2);
  182. resp[3] = read32(pdat->virt + EMMC_RESP3);
  183. if (cmd->resptype == RESP_R2)
  184. {
  185. cmd->response[0] = resp[3] << 8 | ((resp[2] >> 24) & 0xff);
  186. cmd->response[1] = resp[2] << 8 | ((resp[1] >> 24) & 0xff);
  187. cmd->response[2] = resp[1] << 8 | ((resp[0] >> 24) & 0xff);
  188. cmd->response[3] = resp[0] << 8 ;
  189. }
  190. else
  191. {
  192. cmd->response[0] = resp[0];
  193. cmd->response[1] = resp[1];
  194. cmd->response[2] = resp[2];
  195. cmd->response[3] = resp[3];
  196. }
  197. }
  198. else
  199. {
  200. cmd->response[0] = read32(pdat->virt + EMMC_RESP0);
  201. }
  202. }
  203. mmcsd_dbg("response: %x: %x %x %x %x (%x, %x)\n", cmd->resptype, cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], read32(pdat->virt + EMMC_STATUS), read32(pdat->virt + EMMC_INTERRUPT));
  204. return ret;
  205. }
  206. static rt_err_t read_bytes(struct sdhci_pdata_t *pdat, rt_uint32_t *buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  207. {
  208. int c = 0;
  209. rt_err_t ret;
  210. int d;
  211. while (c < blkcount)
  212. {
  213. if ((ret = sd_int(pdat, INT_READ_RDY)))
  214. {
  215. rt_kprintf("timeout happens when reading block %d\n", c);
  216. return ret;
  217. }
  218. for (d = 0; d < blksize / 4; d++)
  219. {
  220. if (read32(pdat->virt + EMMC_STATUS) & SR_READ_AVAILABLE)
  221. {
  222. buf[d] = read32(pdat->virt + EMMC_DATA);
  223. }
  224. }
  225. c++;
  226. buf += blksize / 4;
  227. }
  228. return RT_EOK;
  229. }
  230. static rt_err_t write_bytes(struct sdhci_pdata_t *pdat, rt_uint32_t *buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  231. {
  232. int c = 0;
  233. rt_err_t ret;
  234. int d;
  235. while (c < blkcount)
  236. {
  237. if ((ret = sd_int(pdat, INT_WRITE_RDY)))
  238. {
  239. return ret;
  240. }
  241. for (d = 0; d < blksize / 4; d++)
  242. {
  243. write32(pdat->virt + EMMC_DATA, buf[d]);
  244. }
  245. c++;
  246. buf += blksize / 4;
  247. }
  248. if ((ret = sd_int(pdat, INT_DATA_DONE)))
  249. {
  250. return ret;
  251. }
  252. return RT_EOK;
  253. }
  254. static rt_err_t raspi_transfer_data(struct sdhci_pdata_t *pdat, struct sdhci_cmd_t *cmd, struct sdhci_data_t *dat)
  255. {
  256. rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz);
  257. rt_err_t ret = sd_status(pdat, SR_DAT_INHIBIT);
  258. if (ret)
  259. {
  260. rt_kprintf("ERROR: EMMC busy\n");
  261. return ret;
  262. }
  263. if (dat->blkcnt > 1)
  264. {
  265. struct sdhci_cmd_t newcmd;
  266. newcmd.cmdidx = SET_BLOCK_COUNT;
  267. newcmd.cmdarg = dat->blkcnt;
  268. newcmd.resptype = RESP_R1;
  269. ret = raspi_transfer_command(pdat, &newcmd);
  270. if (ret)
  271. {
  272. return ret;
  273. }
  274. }
  275. if (dlen < 512)
  276. {
  277. write32(pdat->virt + EMMC_BLKSIZECNT, dlen | 1 << 16);
  278. }
  279. else
  280. {
  281. write32(pdat->virt + EMMC_BLKSIZECNT, 512 | (dat->blkcnt) << 16);
  282. }
  283. if (dat->flag & DATA_DIR_READ)
  284. {
  285. cmd->datarw = DATA_READ;
  286. ret = raspi_transfer_command(pdat, cmd);
  287. if (ret)
  288. {
  289. return ret;
  290. }
  291. mmcsd_dbg("read_block %d, %d\n", dat->blkcnt, dat->blksz);
  292. ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  293. }
  294. else if (dat->flag & DATA_DIR_WRITE)
  295. {
  296. cmd->datarw = DATA_WRITE;
  297. ret = raspi_transfer_command(pdat, cmd);
  298. if (ret)
  299. {
  300. return ret;
  301. }
  302. mmcsd_dbg("write_block %d, %d", dat->blkcnt, dat->blksz);
  303. ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  304. }
  305. return ret;
  306. }
  307. static rt_err_t sdhci_transfer(struct sdhci_t *sdhci, struct sdhci_cmd_t *cmd, struct sdhci_data_t *dat)
  308. {
  309. struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)sdhci->priv;
  310. if (!dat)
  311. {
  312. return raspi_transfer_command(pdat, cmd);
  313. }
  314. return raspi_transfer_data(pdat, cmd, dat);
  315. }
  316. static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
  317. {
  318. struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
  319. struct sdhci_cmd_t cmd;
  320. struct sdhci_cmd_t stop;
  321. struct sdhci_data_t dat;
  322. rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t));
  323. rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t));
  324. rt_memset(&dat, 0, sizeof(struct sdhci_data_t));
  325. cmd.cmdidx = req->cmd->cmd_code;
  326. cmd.cmdarg = req->cmd->arg;
  327. cmd.resptype = resp_type(req->cmd);
  328. if (req->data)
  329. {
  330. dat.buf = (rt_uint8_t *)req->data->buf;
  331. dat.flag = req->data->flags;
  332. dat.blksz = req->data->blksize;
  333. dat.blkcnt = req->data->blks;
  334. req->cmd->err = sdhci_transfer(sdhci, &cmd, &dat);
  335. }
  336. else
  337. {
  338. req->cmd->err = sdhci_transfer(sdhci, &cmd, RT_NULL);
  339. }
  340. req->cmd->resp[3] = cmd.response[3];
  341. req->cmd->resp[2] = cmd.response[2];
  342. req->cmd->resp[1] = cmd.response[1];
  343. req->cmd->resp[0] = cmd.response[0];
  344. if (req->stop)
  345. {
  346. stop.cmdidx = req->stop->cmd_code;
  347. stop.cmdarg = req->stop->arg;
  348. cmd.resptype = resp_type(req->stop);
  349. req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL);
  350. }
  351. mmcsd_req_complete(host);
  352. }
  353. rt_int32_t mmc_card_status(struct rt_mmcsd_host *host)
  354. {
  355. return 0;
  356. }
  357. static rt_err_t sdhci_detect(struct sdhci_t *sdhci)
  358. {
  359. return RT_EOK;
  360. }
  361. static rt_err_t sdhci_setwidth(struct sdhci_t *sdhci, rt_uint32_t width)
  362. {
  363. rt_uint32_t temp = 0;
  364. struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)sdhci->priv;
  365. if (width == MMCSD_BUS_WIDTH_4)
  366. {
  367. temp = read32((pdat->virt + EMMC_CONTROL0));
  368. temp |= C0_HCTL_HS_EN;
  369. temp |= C0_HCTL_DWITDH; // always use 4 data lines:
  370. write32((pdat->virt + EMMC_CONTROL0), temp);
  371. }
  372. return RT_EOK;
  373. }
  374. static uint32_t sd_get_clock_divider(rt_uint32_t sdHostVer, rt_uint32_t base_clock, rt_uint32_t target_rate)
  375. {
  376. rt_uint32_t targetted_divisor = 0;
  377. rt_uint32_t freq_select = 0;
  378. rt_uint32_t upper_bits = 0;
  379. rt_uint32_t ret = 0;
  380. int divisor = -1;
  381. if (target_rate > base_clock)
  382. {
  383. targetted_divisor = 1;
  384. }
  385. else
  386. {
  387. targetted_divisor = base_clock / target_rate;
  388. rt_uint32_t mod = base_clock % target_rate;
  389. if (mod)
  390. {
  391. targetted_divisor--;
  392. }
  393. }
  394. // Decide on the clock mode to use
  395. // Currently only 10-bit divided clock mode is supported
  396. // HCI version 3 or greater supports 10-bit divided clock mode
  397. // This requires a power-of-two divider
  398. // Find the first bit set
  399. for (int first_bit = 31; first_bit >= 0; first_bit--)
  400. {
  401. rt_uint32_t bit_test = (1 << first_bit);
  402. if (targetted_divisor & bit_test)
  403. {
  404. divisor = first_bit;
  405. targetted_divisor &= ~bit_test;
  406. if (targetted_divisor)
  407. {
  408. // The divisor is not a power-of-two, increase it
  409. divisor++;
  410. }
  411. break;
  412. }
  413. }
  414. if (divisor == -1)
  415. {
  416. divisor = 31;
  417. }
  418. if (divisor >= 32)
  419. {
  420. divisor = 31;
  421. }
  422. if (divisor != 0)
  423. {
  424. divisor = (1 << (divisor - 1));
  425. }
  426. if (divisor >= 0x400)
  427. {
  428. divisor = 0x3ff;
  429. }
  430. freq_select = divisor & 0xff;
  431. upper_bits = (divisor >> 8) & 0x3;
  432. ret = (freq_select << 8) | (upper_bits << 6) | (0 << 5);
  433. return ret;
  434. }
  435. static rt_err_t sdhci_setclock(struct sdhci_t *sdhci, rt_uint32_t clock)
  436. {
  437. rt_uint32_t temp = 0;
  438. rt_uint32_t sdHostVer = 0;
  439. int count = 100000;
  440. struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)(sdhci->priv);
  441. while ((read32(pdat->virt + EMMC_STATUS) & (SR_CMD_INHIBIT | SR_DAT_INHIBIT)) && (--count))
  442. {
  443. DELAY_MICROS(1);
  444. }
  445. if (count <= 0)
  446. {
  447. rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n", read32(pdat->virt + EMMC_STATUS));
  448. return RT_ERROR;
  449. }
  450. // Switch clock off.
  451. temp = read32((pdat->virt + EMMC_CONTROL1));
  452. temp &= ~C1_CLK_EN;
  453. write32((pdat->virt + EMMC_CONTROL1), temp);
  454. DELAY_MICROS(10);
  455. // Request the new clock setting and enable the clock
  456. temp = read32(pdat->virt + EMMC_SLOTISR_VER);
  457. sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT;
  458. int cdiv = sd_get_clock_divider(sdHostVer, mmc_base_clock, clock);
  459. temp = read32((pdat->virt + EMMC_CONTROL1));
  460. temp |= 1;
  461. temp |= cdiv;
  462. temp |= (7 << 16);
  463. temp = (temp & 0xffff003f) | cdiv;
  464. write32((pdat->virt + EMMC_CONTROL1), temp);
  465. DELAY_MICROS(10);
  466. // Enable the clock.
  467. temp = read32(pdat->virt + EMMC_CONTROL1);
  468. temp |= C1_CLK_EN;
  469. write32((pdat->virt + EMMC_CONTROL1), temp);
  470. DELAY_MICROS(10);
  471. // wait for clock to be stable.
  472. count = 10000;
  473. while (!(read32(pdat->virt + EMMC_CONTROL1) & C1_CLK_STABLE) && count--)
  474. {
  475. DELAY_MICROS(10);
  476. }
  477. if (count <= 0)
  478. {
  479. rt_kprintf("EMMC: ERROR: failed to get stable clock %d.\n", clock);
  480. return RT_ERROR;
  481. }
  482. mmcsd_dbg("set stable clock %d.\n", clock);
  483. return RT_EOK;
  484. }
  485. static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
  486. {
  487. struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
  488. sdhci_setclock(sdhci, io_cfg->clock);
  489. sdhci_setwidth(sdhci, io_cfg->bus_width);
  490. }
  491. static const struct rt_mmcsd_host_ops ops =
  492. {
  493. mmc_request_send,
  494. mmc_set_iocfg,
  495. RT_NULL,
  496. RT_NULL,
  497. };
  498. static rt_err_t reset_emmc(struct sdhci_pdata_t *pdat)
  499. {
  500. rt_uint32_t control1;
  501. int cnt = 10000;
  502. /* reset the controller */
  503. control1 = read32((pdat->virt + EMMC_CONTROL1));
  504. control1 |= (1 << 24);
  505. /* disable clock */
  506. control1 &= ~(1 << 2);
  507. control1 &= ~(1 << 0);
  508. /* temp |= C1_CLK_INTLEN | C1_TOUNIT_MAX; */
  509. write32((pdat->virt + EMMC_CONTROL1), control1);
  510. do
  511. {
  512. DELAY_MICROS(10);
  513. --cnt;
  514. if (cnt == 0)
  515. {
  516. break;
  517. }
  518. }
  519. while ((read32(pdat->virt + EMMC_CONTROL1) & (0x7 << 24)) != 0);
  520. // Enable SD Bus Power VDD1 at 3.3V
  521. rt_uint32_t control0 = read32(pdat->virt + EMMC_CONTROL0);
  522. control0 |= 0x0F << 8;
  523. write32(pdat->virt + EMMC_CONTROL0, control0);
  524. rt_thread_delay(100);
  525. /* check for a valid card */
  526. mmcsd_dbg("EMMC: checking for an inserted card\n");
  527. cnt = 10000;
  528. do
  529. {
  530. DELAY_MICROS(10);
  531. --cnt;
  532. if (cnt == 0)
  533. {
  534. break;
  535. }
  536. }
  537. while ((read32(pdat->virt + EMMC_STATUS) & (0x1 << 16)) == 0);
  538. rt_uint32_t status_reg = read32(pdat->virt + EMMC_STATUS);
  539. if ((status_reg & (1 << 16)) == 0)
  540. {
  541. rt_kprintf("EMMC: no card inserted\n");
  542. return -1;
  543. }
  544. else
  545. {
  546. mmcsd_dbg("EMMC: status: %08x\n", status_reg);
  547. }
  548. /* clear control2 */
  549. write32(pdat->virt + EMMC_CONTROL2, 0);
  550. /* get the base clock rate */
  551. mmc_base_clock = bcm271x_mbox_clock_get_rate(EMMC_CLK_ID);
  552. if (mmc_base_clock == 0)
  553. {
  554. rt_kprintf("EMMC: assuming clock rate to be 100MHz\n");
  555. mmc_base_clock = 100000000;
  556. }
  557. mmcsd_dbg("EMMC: setting clock rate is %d\n", mmc_base_clock);
  558. return RT_EOK;
  559. }
  560. #ifdef RT_MMCSD_DBG
  561. void dump_registers(struct sdhci_pdata_t *pdat)
  562. {
  563. int i = EMMC_ARG2;
  564. rt_kprintf("EMMC registers:");
  565. for (; i <= EMMC_CONTROL2; i += 4)
  566. {
  567. rt_kprintf("\t%x:%x\n", i, read32(pdat->virt + i));
  568. }
  569. rt_kprintf("\t%x:%x\n", 0x50, read32(pdat->virt + 0x50));
  570. rt_kprintf("\t%x:%x\n", 0x70, read32(pdat->virt + 0x70));
  571. rt_kprintf("\t%x:%x\n", 0x74, read32(pdat->virt + 0x74));
  572. rt_kprintf("\t%x:%x\n", 0x80, read32(pdat->virt + 0x80));
  573. rt_kprintf("\t%x:%x\n", 0x84, read32(pdat->virt + 0x84));
  574. rt_kprintf("\t%x:%x\n", 0x88, read32(pdat->virt + 0x88));
  575. rt_kprintf("\t%x:%x\n", 0x8c, read32(pdat->virt + 0x8c));
  576. rt_kprintf("\t%x:%x\n", 0x90, read32(pdat->virt + 0x90));
  577. rt_kprintf("\t%x:%x\n", 0xf0, read32(pdat->virt + 0xf0));
  578. rt_kprintf("\t%x:%x\n", 0xfc, read32(pdat->virt + 0xfc));
  579. }
  580. #endif
  581. int raspi_sdmmc_init(void)
  582. {
  583. size_t virt;
  584. struct rt_mmcsd_host *host = RT_NULL;
  585. struct sdhci_pdata_t *pdat = RT_NULL;
  586. struct sdhci_t *sdhci = RT_NULL;
  587. #ifdef BSP_USING_SDIO0
  588. host = mmcsd_alloc_host();
  589. if (!host)
  590. {
  591. rt_kprintf("alloc host failed");
  592. goto err;
  593. }
  594. sdhci = rt_malloc(sizeof(struct sdhci_t));
  595. if (!sdhci)
  596. {
  597. rt_kprintf("alloc sdhci failed");
  598. goto err;
  599. }
  600. rt_memset(sdhci, 0, sizeof(struct sdhci_t));
  601. virt = MMC2_BASE_ADDR;
  602. pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t));
  603. RT_ASSERT(pdat != RT_NULL);
  604. pdat->virt = virt;
  605. reset_emmc(pdat);
  606. sdhci->name = "sd0";
  607. sdhci->voltages = VDD_33_34;
  608. sdhci->width = MMCSD_BUSWIDTH_4;
  609. sdhci->clock = 1000 * 1000 * 1000;
  610. sdhci->removeable = RT_TRUE;
  611. sdhci->detect = sdhci_detect;
  612. sdhci->setwidth = sdhci_setwidth;
  613. sdhci->setclock = sdhci_setclock;
  614. sdhci->transfer = sdhci_transfer;
  615. sdhci->priv = pdat;
  616. host->ops = &ops;
  617. host->freq_min = 400000;
  618. host->freq_max = 50000000;
  619. host->valid_ocr = VDD_32_33 | VDD_33_34;
  620. host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ | MMCSD_BUSWIDTH_4;
  621. host->max_seg_size = 2048;
  622. host->max_dma_segs = 10;
  623. host->max_blk_size = 512;
  624. host->max_blk_count = 1;
  625. host->private_data = sdhci;
  626. write32((pdat->virt + EMMC_IRPT_EN), 0xffffffff);
  627. write32((pdat->virt + EMMC_IRPT_MASK), 0xffffffff);
  628. #ifdef RT_MMCSD_DBG
  629. dump_registers(pdat);
  630. #endif
  631. mmcsd_change(host);
  632. #endif
  633. return RT_EOK;
  634. err:
  635. if (host) rt_free(host);
  636. if (sdhci) rt_free(sdhci);
  637. return -RT_EIO;
  638. }
  639. INIT_DEVICE_EXPORT(raspi_sdmmc_init);