drv_spi.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-05-16 shelton first version
  9. * 2022-11-10 shelton support spi dma
  10. * 2023-01-31 shelton add support f421/f425
  11. * 2023-04-08 shelton add support f423
  12. * 2023-10-18 shelton add support f402/f405
  13. */
  14. #include "drv_common.h"
  15. #include "drv_spi.h"
  16. #include "drv_config.h"
  17. #include <string.h>
  18. #ifdef RT_USING_SPI
  19. #if !defined(BSP_USING_SPI1) && !defined(BSP_USING_SPI2) && \
  20. !defined(BSP_USING_SPI3) && !defined(BSP_USING_SPI4)
  21. #error "Please define at least one BSP_USING_SPIx"
  22. #endif
  23. //#define DRV_DEBUG
  24. #define LOG_TAG "drv.pwm"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. };
  41. static struct at32_spi_config spi_config[] = {
  42. #ifdef BSP_USING_SPI1
  43. SPI1_CONFIG,
  44. #endif
  45. #ifdef BSP_USING_SPI2
  46. SPI2_CONFIG,
  47. #endif
  48. #ifdef BSP_USING_SPI3
  49. SPI3_CONFIG,
  50. #endif
  51. #ifdef BSP_USING_SPI4
  52. SPI4_CONFIG,
  53. #endif
  54. };
  55. /* private rt-thread spi ops function */
  56. static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
  57. static rt_ssize_t xfer(struct rt_spi_device* device, struct rt_spi_message* message);
  58. static struct rt_spi_ops at32_spi_ops =
  59. {
  60. configure,
  61. xfer
  62. };
  63. /**
  64. * attach the spi device to spi bus, this function must be used after initialization.
  65. */
  66. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, gpio_type *cs_gpiox, uint16_t cs_gpio_pin)
  67. {
  68. gpio_init_type gpio_init_struct;
  69. RT_ASSERT(bus_name != RT_NULL);
  70. RT_ASSERT(device_name != RT_NULL);
  71. rt_err_t result;
  72. struct rt_spi_device *spi_device;
  73. struct at32_spi_cs *cs_pin;
  74. /* initialize the cs pin & select the slave*/
  75. gpio_default_para_init(&gpio_init_struct);
  76. gpio_init_struct.gpio_pins = cs_gpio_pin;
  77. gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
  78. gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  79. gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  80. gpio_init(cs_gpiox, &gpio_init_struct);
  81. gpio_bits_set(cs_gpiox, cs_gpio_pin);
  82. /* attach the device to spi bus */
  83. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  84. RT_ASSERT(spi_device != RT_NULL);
  85. cs_pin = (struct at32_spi_cs *)rt_malloc(sizeof(struct at32_spi_cs));
  86. RT_ASSERT(cs_pin != RT_NULL);
  87. cs_pin->gpio_x = cs_gpiox;
  88. cs_pin->gpio_pin = cs_gpio_pin;
  89. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  90. if (result != RT_EOK)
  91. {
  92. LOG_D("%s attach to %s faild, %d\n", device_name, bus_name, result);
  93. }
  94. RT_ASSERT(result == RT_EOK);
  95. LOG_D("%s attach to %s done", device_name, bus_name);
  96. return result;
  97. }
  98. static rt_err_t configure(struct rt_spi_device* device,
  99. struct rt_spi_configuration* configuration)
  100. {
  101. struct rt_spi_bus * spi_bus = (struct rt_spi_bus *)device->bus;
  102. struct at32_spi *instance = (struct at32_spi *)spi_bus->parent.user_data;
  103. spi_init_type spi_init_struct;
  104. RT_ASSERT(device != RT_NULL);
  105. RT_ASSERT(configuration != RT_NULL);
  106. at32_msp_spi_init(instance->config->spi_x);
  107. /* data_width */
  108. if(configuration->data_width <= 8)
  109. {
  110. spi_init_struct.frame_bit_num = SPI_FRAME_8BIT;
  111. }
  112. else if(configuration->data_width <= 16)
  113. {
  114. spi_init_struct.frame_bit_num = SPI_FRAME_16BIT;
  115. }
  116. else
  117. {
  118. return -RT_EIO;
  119. }
  120. /* baudrate */
  121. {
  122. uint32_t spi_apb_clock;
  123. uint32_t max_hz;
  124. crm_clocks_freq_type clocks_struct;
  125. max_hz = configuration->max_hz;
  126. crm_clocks_freq_get(&clocks_struct);
  127. LOG_D("sys freq: %d\n", clocks_struct.sclk_freq);
  128. LOG_D("max freq: %d\n", max_hz);
  129. if (instance->config->spi_x == SPI1)
  130. {
  131. spi_apb_clock = clocks_struct.apb2_freq;
  132. LOG_D("pclk2 freq: %d\n", clocks_struct.apb2_freq);
  133. }
  134. else
  135. {
  136. spi_apb_clock = clocks_struct.apb1_freq;
  137. LOG_D("pclk1 freq: %d\n", clocks_struct.apb1_freq);
  138. }
  139. if(max_hz >= (spi_apb_clock / 2))
  140. {
  141. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_2;
  142. }
  143. else if (max_hz >= (spi_apb_clock / 4))
  144. {
  145. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_4;
  146. }
  147. else if (max_hz >= (spi_apb_clock / 8))
  148. {
  149. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_8;
  150. }
  151. else if (max_hz >= (spi_apb_clock / 16))
  152. {
  153. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_16;
  154. }
  155. else if (max_hz >= (spi_apb_clock / 32))
  156. {
  157. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_32;
  158. }
  159. else if (max_hz >= (spi_apb_clock / 64))
  160. {
  161. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_64;
  162. }
  163. else if (max_hz >= (spi_apb_clock / 128))
  164. {
  165. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_128;
  166. }
  167. else
  168. {
  169. /* min prescaler 256 */
  170. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_256;
  171. }
  172. } /* baudrate */
  173. switch(configuration->mode & RT_SPI_MODE_3)
  174. {
  175. case RT_SPI_MODE_0:
  176. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
  177. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
  178. break;
  179. case RT_SPI_MODE_1:
  180. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
  181. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
  182. break;
  183. case RT_SPI_MODE_2:
  184. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
  185. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
  186. break;
  187. case RT_SPI_MODE_3:
  188. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
  189. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
  190. break;
  191. }
  192. /* msb or lsb */
  193. if(configuration->mode & RT_SPI_MSB)
  194. {
  195. spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_MSB;
  196. }
  197. else
  198. {
  199. spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_LSB;
  200. }
  201. spi_init_struct.transmission_mode = SPI_TRANSMIT_FULL_DUPLEX;
  202. spi_init_struct.master_slave_mode = SPI_MODE_MASTER;
  203. spi_init_struct.cs_mode_selection = SPI_CS_SOFTWARE_MODE;
  204. /* disable spi to change transfer size */
  205. spi_enable(instance->config->spi_x, FALSE);
  206. /* init spi */
  207. spi_init(instance->config->spi_x, &spi_init_struct);
  208. /* enable spi */
  209. spi_enable(instance->config->spi_x, TRUE);
  210. /* disable spi crc */
  211. spi_crc_enable(instance->config->spi_x, FALSE);
  212. return RT_EOK;
  213. };
  214. static void _spi_dma_receive(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
  215. {
  216. dma_channel_type* dma_channel = instance->config->dma_rx->dma_channel;
  217. dma_channel->dtcnt = size;
  218. dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
  219. dma_channel->maddr = (rt_uint32_t)buffer;
  220. /* enable transmit complete interrupt */
  221. dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
  222. /* enable dma receive */
  223. spi_i2s_dma_receiver_enable(instance->config->spi_x, TRUE);
  224. /* mark dma flag */
  225. instance->config->dma_rx->dma_done = RT_FALSE;
  226. /* enable dma channel */
  227. dma_channel_enable(dma_channel, TRUE);
  228. }
  229. static void _spi_dma_transmit(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
  230. {
  231. dma_channel_type *dma_channel = instance->config->dma_tx->dma_channel;
  232. dma_channel->dtcnt = size;
  233. dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
  234. dma_channel->maddr = (rt_uint32_t)buffer;
  235. /* enable spi error interrupt */
  236. spi_i2s_interrupt_enable(instance->config->spi_x, SPI_I2S_ERROR_INT, TRUE);
  237. /* enable transmit complete interrupt */
  238. dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
  239. /* enable dma transmit */
  240. spi_i2s_dma_transmitter_enable(instance->config->spi_x, TRUE);
  241. /* mark dma flag */
  242. instance->config->dma_tx->dma_done = RT_FALSE;
  243. /* enable dma channel */
  244. dma_channel_enable(dma_channel, TRUE);
  245. }
  246. static void _spi_polling_receive_transmit(struct at32_spi *instance, rt_uint8_t *recv_buf, rt_uint8_t *send_buf, \
  247. rt_uint32_t size, rt_uint8_t data_mode)
  248. {
  249. /* data frame length 8 bit */
  250. if(data_mode <= 8)
  251. {
  252. const rt_uint8_t *send_ptr = send_buf;
  253. rt_uint8_t * recv_ptr = recv_buf;
  254. LOG_D("spi poll transfer start: %d\n", size);
  255. while(size--)
  256. {
  257. rt_uint8_t data = 0xFF;
  258. if(send_ptr != RT_NULL)
  259. {
  260. data = *send_ptr++;
  261. }
  262. /* wait until the transmit buffer is empty */
  263. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
  264. /* send the byte */
  265. spi_i2s_data_transmit(instance->config->spi_x, data);
  266. /* wait until a data is received */
  267. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
  268. /* get the received data */
  269. data = spi_i2s_data_receive(instance->config->spi_x);
  270. if(recv_ptr != RT_NULL)
  271. {
  272. *recv_ptr++ = data;
  273. }
  274. }
  275. LOG_D("spi poll transfer finsh\n");
  276. }
  277. /* data frame length 16 bit */
  278. else if(data_mode <= 16)
  279. {
  280. const rt_uint16_t * send_ptr = (rt_uint16_t *)send_buf;
  281. rt_uint16_t * recv_ptr = (rt_uint16_t *)recv_buf;
  282. while(size--)
  283. {
  284. rt_uint16_t data = 0xFF;
  285. if(send_ptr != RT_NULL)
  286. {
  287. data = *send_ptr++;
  288. }
  289. /* wait until the transmit buffer is empty */
  290. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
  291. /* send the byte */
  292. spi_i2s_data_transmit(instance->config->spi_x, data);
  293. /* wait until a data is received */
  294. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
  295. /* get the received data */
  296. data = spi_i2s_data_receive(instance->config->spi_x);
  297. if(recv_ptr != RT_NULL)
  298. {
  299. *recv_ptr++ = data;
  300. }
  301. }
  302. }
  303. }
  304. static rt_ssize_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
  305. {
  306. struct rt_spi_bus * at32_spi_bus = (struct rt_spi_bus *)device->bus;
  307. struct at32_spi *instance = (struct at32_spi *)at32_spi_bus->parent.user_data;
  308. struct rt_spi_configuration *config = &device->config;
  309. struct at32_spi_cs * at32_spi_cs = device->parent.user_data;
  310. rt_size_t message_length = 0, already_send_length = 0;
  311. rt_uint16_t send_length = 0;
  312. rt_uint8_t *recv_buf;
  313. const rt_uint8_t *send_buf;
  314. RT_ASSERT(device != NULL);
  315. RT_ASSERT(message != NULL);
  316. /* take cs */
  317. if(message->cs_take)
  318. {
  319. gpio_bits_reset(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
  320. LOG_D("spi take cs\n");
  321. }
  322. message_length = message->length;
  323. recv_buf = message->recv_buf;
  324. send_buf = message->send_buf;
  325. while (message_length)
  326. {
  327. /* the HAL library use uint16 to save the data length */
  328. if (message_length > 65535)
  329. {
  330. send_length = 65535;
  331. message_length = message_length - 65535;
  332. }
  333. else
  334. {
  335. send_length = message_length;
  336. message_length = 0;
  337. }
  338. /* calculate the start address */
  339. already_send_length = message->length - send_length - message_length;
  340. /* avoid null pointer problems */
  341. if (message->send_buf)
  342. {
  343. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  344. }
  345. if (message->recv_buf)
  346. {
  347. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  348. }
  349. /* start once data exchange in dma mode */
  350. if (message->send_buf && message->recv_buf)
  351. {
  352. if ((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX) && \
  353. (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX))
  354. {
  355. _spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
  356. _spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
  357. /* wait transfer complete */
  358. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  359. while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
  360. /* clear rx overrun flag */
  361. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  362. spi_enable(instance->config->spi_x, FALSE);
  363. spi_enable(instance->config->spi_x, TRUE);
  364. }
  365. else
  366. {
  367. _spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)send_buf, send_length, config->data_width);
  368. }
  369. }
  370. else if (message->send_buf)
  371. {
  372. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  373. {
  374. _spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
  375. /* wait transfer complete */
  376. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  377. while(instance->config->dma_tx->dma_done == RT_FALSE);
  378. /* clear rx overrun flag */
  379. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  380. spi_enable(instance->config->spi_x, FALSE);
  381. spi_enable(instance->config->spi_x, TRUE);
  382. }
  383. else
  384. {
  385. _spi_polling_receive_transmit(instance, RT_NULL, (uint8_t *)send_buf, send_length, config->data_width);
  386. }
  387. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  388. {
  389. /* release the cs by disable spi when using 3 wires spi */
  390. spi_enable(instance->config->spi_x, FALSE);
  391. }
  392. }
  393. else
  394. {
  395. memset((void *)recv_buf, 0xff, send_length);
  396. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  397. {
  398. _spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
  399. _spi_dma_transmit(instance, (uint8_t *)recv_buf, send_length);
  400. /* wait transfer complete */
  401. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  402. while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
  403. /* clear rx overrun flag */
  404. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  405. spi_enable(instance->config->spi_x, FALSE);
  406. spi_enable(instance->config->spi_x, TRUE);
  407. }
  408. else
  409. {
  410. /* clear the old error flag */
  411. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  412. _spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)recv_buf, send_length, config->data_width);
  413. }
  414. }
  415. }
  416. /* release cs */
  417. if(message->cs_release)
  418. {
  419. gpio_bits_set(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
  420. LOG_D("spi release cs\n");
  421. }
  422. return message->length;
  423. }
  424. static void _dma_base_channel_check(struct at32_spi *instance)
  425. {
  426. dma_channel_type *rx_channel = instance->config->dma_rx->dma_channel;
  427. dma_channel_type *tx_channel = instance->config->dma_tx->dma_channel;
  428. if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  429. {
  430. instance->config->dma_rx->dma_done = RT_TRUE;
  431. instance->config->dma_rx->dma_x = (dma_type *)((rt_uint32_t)rx_channel & ~0xFF);
  432. instance->config->dma_rx->channel_index = ((((rt_uint32_t)rx_channel & 0xFF) - 8) / 0x14) + 1;
  433. }
  434. if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  435. {
  436. instance->config->dma_tx->dma_done = RT_TRUE;
  437. instance->config->dma_tx->dma_x = (dma_type *)((rt_uint32_t)tx_channel & ~0xFF);
  438. instance->config->dma_tx->channel_index = ((((rt_uint32_t)tx_channel & 0xFF) - 8) / 0x14) + 1;
  439. }
  440. }
  441. static void at32_spi_dma_init(struct at32_spi *instance)
  442. {
  443. dma_init_type dma_init_struct;
  444. /* search dma base and channel index */
  445. _dma_base_channel_check(instance);
  446. /* config dma channel */
  447. dma_default_para_init(&dma_init_struct);
  448. dma_init_struct.peripheral_inc_enable = FALSE;
  449. dma_init_struct.memory_inc_enable = TRUE;
  450. dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
  451. dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
  452. dma_init_struct.priority = DMA_PRIORITY_MEDIUM;
  453. dma_init_struct.loop_mode_enable = FALSE;
  454. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  455. {
  456. crm_periph_clock_enable(instance->config->dma_rx->dma_clock, TRUE);
  457. dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
  458. dma_reset(instance->config->dma_rx->dma_channel);
  459. dma_init(instance->config->dma_rx->dma_channel, &dma_init_struct);
  460. #if defined (SOC_SERIES_AT32F425)
  461. dma_flexible_config(instance->config->dma_rx->dma_x, instance->config->dma_rx->flex_channel, \
  462. (dma_flexible_request_type)instance->config->dma_rx->request_id);
  463. #endif
  464. #if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437) || \
  465. defined (SOC_SERIES_AT32F423) || defined (SOC_SERIES_AT32F402) || \
  466. defined (SOC_SERIES_AT32F405)
  467. dmamux_enable(instance->config->dma_rx->dma_x, TRUE);
  468. dmamux_init(instance->config->dma_rx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_rx->request_id);
  469. #endif
  470. /* dma irq should set in dma rx mode */
  471. nvic_irq_enable(instance->config->dma_rx->dma_irqn, 0, 1);
  472. }
  473. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  474. {
  475. crm_periph_clock_enable(instance->config->dma_tx->dma_clock, TRUE);
  476. dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
  477. dma_reset(instance->config->dma_tx->dma_channel);
  478. dma_init(instance->config->dma_tx->dma_channel, &dma_init_struct);
  479. #if defined (SOC_SERIES_AT32F425)
  480. dma_flexible_config(instance->config->dma_tx->dma_x, instance->config->dma_tx->flex_channel, \
  481. (dma_flexible_request_type)instance->config->dma_tx->request_id);
  482. #endif
  483. #if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437) || \
  484. defined (SOC_SERIES_AT32F423) || defined (SOC_SERIES_AT32F402) || \
  485. defined (SOC_SERIES_AT32F405)
  486. dmamux_enable(instance->config->dma_tx->dma_x, TRUE);
  487. dmamux_init(instance->config->dma_tx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_tx->request_id);
  488. #endif
  489. /* dma irq should set in dma tx mode */
  490. nvic_irq_enable(instance->config->dma_tx->dma_irqn, 0, 1);
  491. }
  492. if((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX) || \
  493. (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX))
  494. {
  495. nvic_irq_enable(instance->config->irqn, 0, 0);
  496. }
  497. }
  498. void dma_isr(struct dma_config *dma_instance)
  499. {
  500. volatile rt_uint32_t reg_sts = 0, index = 0;
  501. reg_sts = dma_instance->dma_x->sts;
  502. index = dma_instance->channel_index;
  503. if ((reg_sts & (DMA_FDT_FLAG << (4 * (index - 1)))) != RESET)
  504. {
  505. /* clear dma flag */
  506. dma_instance->dma_x->clr |= (rt_uint32_t)((DMA_FDT_FLAG << (4 * (index - 1))) | \
  507. (DMA_HDT_FLAG << (4 * (index - 1))));
  508. /* disable interrupt */
  509. dma_interrupt_enable(dma_instance->dma_channel, DMA_FDT_INT, FALSE);
  510. /* disable dma channel */
  511. dma_channel_enable(dma_instance->dma_channel, FALSE);
  512. /* mark done flag */
  513. dma_instance->dma_done = RT_TRUE;
  514. }
  515. }
  516. void spi_isr(spi_type *spi_x)
  517. {
  518. if(spi_i2s_flag_get(spi_x, SPI_I2S_ROERR_FLAG) != RESET)
  519. {
  520. /* clear rx overrun error flag */
  521. spi_i2s_flag_clear(spi_x, SPI_I2S_ROERR_FLAG);
  522. }
  523. if(spi_i2s_flag_get(spi_x, SPI_MMERR_FLAG) != RESET)
  524. {
  525. /* clear master mode error flag */
  526. spi_i2s_flag_clear(spi_x, SPI_MMERR_FLAG);
  527. }
  528. }
  529. #ifdef BSP_USING_SPI1
  530. void SPI1_IRQHandler(void)
  531. {
  532. /* enter interrupt */
  533. rt_interrupt_enter();
  534. spi_isr(spi_config[SPI1_INDEX].spi_x);
  535. /* leave interrupt */
  536. rt_interrupt_leave();
  537. }
  538. #if defined(BSP_SPI1_RX_USING_DMA)
  539. void SPI1_RX_DMA_IRQHandler(void)
  540. {
  541. /* enter interrupt */
  542. rt_interrupt_enter();
  543. dma_isr(spi_config[SPI1_INDEX].dma_rx);
  544. /* leave interrupt */
  545. rt_interrupt_leave();
  546. }
  547. #endif /* defined(BSP_SPI1_RX_USING_DMA) */
  548. #if defined(BSP_SPI1_TX_USING_DMA)
  549. void SPI1_TX_DMA_IRQHandler(void)
  550. {
  551. /* enter interrupt */
  552. rt_interrupt_enter();
  553. dma_isr(spi_config[SPI1_INDEX].dma_tx);
  554. /* leave interrupt */
  555. rt_interrupt_leave();
  556. }
  557. #endif /* defined(BSP_SPI1_TX_USING_DMA) */
  558. #endif
  559. #ifdef BSP_USING_SPI2
  560. void SPI2_IRQHandler(void)
  561. {
  562. /* enter interrupt */
  563. rt_interrupt_enter();
  564. spi_isr(spi_config[SPI2_INDEX].spi_x);
  565. /* leave interrupt */
  566. rt_interrupt_leave();
  567. }
  568. #if defined(BSP_SPI2_RX_USING_DMA)
  569. void SPI2_RX_DMA_IRQHandler(void)
  570. {
  571. /* enter interrupt */
  572. rt_interrupt_enter();
  573. dma_isr(spi_config[SPI2_INDEX].dma_rx);
  574. /* leave interrupt */
  575. rt_interrupt_leave();
  576. }
  577. #endif /* defined(BSP_SPI2_RX_USING_DMA) */
  578. #if defined(BSP_SPI2_TX_USING_DMA)
  579. void SPI2_TX_DMA_IRQHandler(void)
  580. {
  581. /* enter interrupt */
  582. rt_interrupt_enter();
  583. dma_isr(spi_config[SPI2_INDEX].dma_tx);
  584. /* leave interrupt */
  585. rt_interrupt_leave();
  586. }
  587. #endif /* defined(BSP_SPI2_TX_USING_DMA) */
  588. #endif
  589. #ifdef BSP_USING_SPI3
  590. void SPI3_IRQHandler(void)
  591. {
  592. /* enter interrupt */
  593. rt_interrupt_enter();
  594. spi_isr(spi_config[SPI3_INDEX].spi_x);
  595. /* leave interrupt */
  596. rt_interrupt_leave();
  597. }
  598. #if defined(BSP_SPI3_RX_USING_DMA)
  599. void SPI3_RX_DMA_IRQHandler(void)
  600. {
  601. /* enter interrupt */
  602. rt_interrupt_enter();
  603. dma_isr(spi_config[SPI3_INDEX].dma_rx);
  604. /* leave interrupt */
  605. rt_interrupt_leave();
  606. }
  607. #endif /* defined(BSP_SPI3_RX_USING_DMA) */
  608. #if defined(BSP_SPI3_TX_USING_DMA)
  609. void SPI3_TX_DMA_IRQHandler(void)
  610. {
  611. /* enter interrupt */
  612. rt_interrupt_enter();
  613. dma_isr(spi_config[SPI3_INDEX].dma_tx);
  614. /* leave interrupt */
  615. rt_interrupt_leave();
  616. }
  617. #endif /* defined(BSP_SPI3_TX_USING_DMA) */
  618. #endif
  619. #ifdef BSP_USING_SPI4
  620. void SPI4_IRQHandler(void)
  621. {
  622. /* enter interrupt */
  623. rt_interrupt_enter();
  624. spi_isr(spi_config[SPI4_INDEX].spi_x);
  625. /* leave interrupt */
  626. rt_interrupt_leave();
  627. }
  628. #if defined(BSP_SPI4_RX_USING_DMA)
  629. void SPI4_RX_DMA_IRQHandler(void)
  630. {
  631. /* enter interrupt */
  632. rt_interrupt_enter();
  633. dma_isr(spi_config[SPI4_INDEX].dma_rx);
  634. /* leave interrupt */
  635. rt_interrupt_leave();
  636. }
  637. #endif /* defined(BSP_SPI4_RX_USING_DMA) */
  638. #if defined(BSP_SPI4_TX_USING_DMA)
  639. void SPI4_TX_DMA_IRQHandler(void)
  640. {
  641. /* enter interrupt */
  642. rt_interrupt_enter();
  643. dma_isr(spi_config[SPI4_INDEX].dma_tx);
  644. /* leave interrupt */
  645. rt_interrupt_leave();
  646. }
  647. #endif /* defined(BSP_SPI14_TX_USING_DMA) */
  648. #endif
  649. #if defined (SOC_SERIES_AT32F421)
  650. void SPI1_TX_RX_DMA_IRQHandler(void)
  651. {
  652. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  653. SPI1_TX_DMA_IRQHandler();
  654. #endif
  655. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  656. SPI1_RX_DMA_IRQHandler();
  657. #endif
  658. }
  659. void SPI2_TX_RX_DMA_IRQHandler(void)
  660. {
  661. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  662. SPI2_TX_DMA_IRQHandler();
  663. #endif
  664. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  665. SPI2_RX_DMA_IRQHandler();
  666. #endif
  667. }
  668. #endif
  669. #if defined (SOC_SERIES_AT32F425)
  670. void SPI1_TX_RX_DMA_IRQHandler(void)
  671. {
  672. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  673. SPI1_TX_DMA_IRQHandler();
  674. #endif
  675. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  676. SPI1_RX_DMA_IRQHandler();
  677. #endif
  678. }
  679. void SPI3_2_TX_RX_DMA_IRQHandler(void)
  680. {
  681. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  682. SPI2_TX_DMA_IRQHandler();
  683. #endif
  684. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  685. SPI2_RX_DMA_IRQHandler();
  686. #endif
  687. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  688. SPI3_TX_DMA_IRQHandler();
  689. #endif
  690. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  691. SPI3_RX_DMA_IRQHandler();
  692. #endif
  693. }
  694. #endif
  695. static struct at32_spi spis[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  696. static void at32_spi_get_dma_config(void)
  697. {
  698. #ifdef BSP_USING_SPI1
  699. spi_config[SPI1_INDEX].spi_dma_flag = 0;
  700. #ifdef BSP_SPI1_RX_USING_DMA
  701. spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  702. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  703. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  704. #endif
  705. #ifdef BSP_SPI1_TX_USING_DMA
  706. spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  707. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  708. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  709. #endif
  710. #endif
  711. #ifdef BSP_USING_SPI2
  712. spi_config[SPI2_INDEX].spi_dma_flag = 0;
  713. #ifdef BSP_SPI2_RX_USING_DMA
  714. spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  715. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  716. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  717. #endif
  718. #ifdef BSP_SPI2_TX_USING_DMA
  719. spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  720. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  721. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  722. #endif
  723. #endif
  724. #ifdef BSP_USING_SPI3
  725. spi_config[SPI3_INDEX].spi_dma_flag = 0;
  726. #ifdef BSP_SPI3_RX_USING_DMA
  727. spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  728. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  729. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  730. #endif
  731. #ifdef BSP_SPI3_TX_USING_DMA
  732. spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  733. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  734. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  735. #endif
  736. #endif
  737. #ifdef BSP_USING_SPI4
  738. spi_config[SPI4_INDEX].spi_dma_flag = 0;
  739. #ifdef BSP_SPI4_RX_USING_DMA
  740. spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  741. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  742. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  743. #endif
  744. #ifdef BSP_SPI4_TX_USING_DMA
  745. spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  746. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  747. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  748. #endif
  749. #endif
  750. }
  751. int rt_hw_spi_init(void)
  752. {
  753. int i;
  754. rt_err_t result;
  755. rt_size_t obj_num = sizeof(spi_config) / sizeof(spi_config[0]);
  756. at32_spi_get_dma_config();
  757. for (i = 0; i < obj_num; i++)
  758. {
  759. spis[i].config = &spi_config[i];
  760. spis[i].spi_bus.parent.user_data = (void *)&spis[i];
  761. if(spis[i].config->spi_dma_flag & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
  762. {
  763. at32_spi_dma_init(&spis[i]);
  764. }
  765. result = rt_spi_bus_register(&(spis[i].spi_bus), spis[i].config->spi_name, &at32_spi_ops);
  766. }
  767. return result;
  768. }
  769. INIT_BOARD_EXPORT(rt_hw_spi_init);
  770. #endif