drv_spi.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. * Copyright (c) 2022, Xiaohua Semiconductor Co., Ltd.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2022-04-28 CDT first version
  10. */
  11. /*******************************************************************************
  12. * Include files
  13. ******************************************************************************/
  14. #include <rtthread.h>
  15. #include <rtdevice.h>
  16. #if defined(RT_USING_SPI)
  17. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || \
  18. defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  19. #include "drv_spi.h"
  20. #include "board_config.h"
  21. /*******************************************************************************
  22. * Local type definitions ('typedef')
  23. ******************************************************************************/
  24. /*******************************************************************************
  25. * Local pre-processor symbols/macros ('#define')
  26. ******************************************************************************/
  27. //#define DRV_DEBUG
  28. #define LOG_TAG "drv.spi"
  29. #include <drv_log.h>
  30. /*******************************************************************************
  31. * Global variable definitions (declared in header file with 'extern')
  32. ******************************************************************************/
  33. extern rt_err_t rt_hw_spi_board_init(CM_SPI_TypeDef *CM_SPIx);
  34. /*******************************************************************************
  35. * Local function prototypes ('static')
  36. ******************************************************************************/
  37. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  38. static void spi1_rx_dma_irq_handle(void);
  39. static void spi1_tx_dma_irq_handle(void);
  40. #endif /* BSP_USING_SPI1 */
  41. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  42. static void spi2_rx_dma_irq_handle(void);
  43. static void spi2_tx_dma_irq_handle(void);
  44. #endif /* BSP_USING_SPI2 */
  45. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  46. static void spi3_rx_dma_irq_handle(void);
  47. static void spi3_tx_dma_irq_handle(void);
  48. #endif /* BSP_USING_SPI3 */
  49. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  50. static void spi4_rx_dma_irq_handle(void);
  51. static void spi4_tx_dma_irq_handle(void);
  52. #endif /* BSP_USING_SPI4 */
  53. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  54. static void spi5_rx_dma_irq_handle(void);
  55. static void spi5_tx_dma_irq_handle(void);
  56. #endif /* BSP_USING_SPI5 */
  57. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  58. static void spi6_rx_dma_irq_handle(void);
  59. static void spi6_tx_dma_irq_handle(void);
  60. #endif /* BSP_USING_SPI6 */
  61. /*******************************************************************************
  62. * Local variable definitions ('static')
  63. ******************************************************************************/
  64. enum
  65. {
  66. #ifdef BSP_USING_SPI1
  67. SPI1_INDEX,
  68. #endif
  69. #ifdef BSP_USING_SPI2
  70. SPI2_INDEX,
  71. #endif
  72. #ifdef BSP_USING_SPI3
  73. SPI3_INDEX,
  74. #endif
  75. #ifdef BSP_USING_SPI4
  76. SPI4_INDEX,
  77. #endif
  78. #ifdef BSP_USING_SPI5
  79. SPI5_INDEX,
  80. #endif
  81. #ifdef BSP_USING_SPI6
  82. SPI6_INDEX,
  83. #endif
  84. };
  85. static struct hc32_spi_config spi_config[] =
  86. {
  87. #ifdef BSP_USING_SPI1
  88. SPI1_BUS_CONFIG,
  89. #endif
  90. #ifdef BSP_USING_SPI2
  91. SPI2_BUS_CONFIG,
  92. #endif
  93. #ifdef BSP_USING_SPI3
  94. SPI3_BUS_CONFIG,
  95. #endif
  96. #ifdef BSP_USING_SPI4
  97. SPI4_BUS_CONFIG,
  98. #endif
  99. #ifdef BSP_USING_SPI5
  100. SPI5_BUS_CONFIG,
  101. #endif
  102. #ifdef BSP_USING_SPI6
  103. SPI6_BUS_CONFIG,
  104. #endif
  105. };
  106. static struct hc32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  107. /*******************************************************************************
  108. * Function implementation - global ('extern') and local ('static')
  109. ******************************************************************************/
  110. static rt_err_t hc32_spi_init(struct hc32_spi *spi_drv, struct rt_spi_configuration *cfg)
  111. {
  112. RT_ASSERT(spi_drv != RT_NULL);
  113. RT_ASSERT(cfg != RT_NULL);
  114. stc_spi_init_t stcSpiInit;
  115. stc_clock_freq_t stcClkFreq;
  116. CM_SPI_TypeDef *spi_instance = spi_drv->config->Instance;
  117. /* Enable spi clock */
  118. FCG_Fcg1PeriphClockCmd(spi_drv->config->clock, ENABLE);
  119. /* Init spi struct as default value */
  120. SPI_StructInit(&stcSpiInit);
  121. /* Slave or master mode */
  122. if (cfg->mode & RT_SPI_SLAVE)
  123. {
  124. stcSpiInit.u32MasterSlave = SPI_SLAVE;
  125. }
  126. else
  127. {
  128. stcSpiInit.u32MasterSlave = SPI_MASTER;
  129. }
  130. /* SI/SO pin shared */
  131. if (cfg->mode & RT_SPI_3WIRE)
  132. {
  133. return -RT_EINVAL;
  134. }
  135. else
  136. {
  137. stcSpiInit.u32TransMode = SPI_FULL_DUPLEX;
  138. }
  139. /* clock phase & polarity */
  140. if (RT_SPI_MODE_3 == (cfg->mode & RT_SPI_MODE_3))
  141. {
  142. stcSpiInit.u32SpiMode = SPI_MD_3;
  143. }
  144. else if (RT_SPI_MODE_2 == (cfg->mode & RT_SPI_MODE_3))
  145. {
  146. stcSpiInit.u32SpiMode = SPI_MD_2;
  147. }
  148. else if (RT_SPI_MODE_1 == (cfg->mode & RT_SPI_MODE_3))
  149. {
  150. stcSpiInit.u32SpiMode = SPI_MD_1;
  151. }
  152. else
  153. {
  154. stcSpiInit.u32SpiMode = SPI_MD_0;
  155. }
  156. /* No chipselect */
  157. if (cfg->mode & RT_SPI_NO_CS)
  158. {
  159. stcSpiInit.u32WireMode = SPI_4_WIRE;
  160. }
  161. else
  162. {
  163. stcSpiInit.u32WireMode = SPI_3_WIRE;
  164. }
  165. /* LSB or MSB */
  166. if (cfg->mode & RT_SPI_MSB)
  167. {
  168. stcSpiInit.u32FirstBit = SPI_FIRST_MSB;
  169. }
  170. else
  171. {
  172. stcSpiInit.u32FirstBit = SPI_FIRST_LSB;
  173. }
  174. /* config data width 8,16,32 */
  175. if (8 == cfg->data_width)
  176. {
  177. stcSpiInit.u32DataBits = SPI_DATA_SIZE_8BIT;
  178. }
  179. else if (16 == cfg->data_width)
  180. {
  181. stcSpiInit.u32DataBits = SPI_DATA_SIZE_16BIT;
  182. }
  183. else if (32 == cfg->data_width)
  184. {
  185. stcSpiInit.u32DataBits = SPI_DATA_SIZE_32BIT;
  186. }
  187. else
  188. {
  189. return -RT_EIO;
  190. }
  191. /* Get BUS clock */
  192. CLK_GetClockFreq(&stcClkFreq);
  193. if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 2)
  194. {
  195. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV2;
  196. }
  197. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 4)
  198. {
  199. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV4;
  200. }
  201. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 8)
  202. {
  203. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV8;
  204. }
  205. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 16)
  206. {
  207. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV16;
  208. }
  209. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 32)
  210. {
  211. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV32;
  212. }
  213. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 64)
  214. {
  215. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV64;
  216. }
  217. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 128)
  218. {
  219. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV128;
  220. }
  221. else
  222. {
  223. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV256;
  224. }
  225. if ((cfg->mode & RT_SPI_SLAVE) && (stcSpiInit.u32BaudRatePrescaler < SPI_BR_CLK_DIV8))
  226. {
  227. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV8;
  228. }
  229. LOG_D("sys freq: %d, SPI freq: %d, BaudRatePrescaler: %d", stcClkFreq.u32HclkFreq, cfg->max_hz, stcSpiInit.u32BaudRatePrescaler);
  230. /* spi port init */
  231. rt_hw_spi_board_init(spi_instance);
  232. if (LL_OK != SPI_Init(spi_instance, &stcSpiInit))
  233. {
  234. return -RT_EIO;
  235. }
  236. /* DMA configuration */
  237. if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  238. {
  239. struct dma_config *spi_dma;
  240. stc_dma_init_t stcDmaInit;
  241. /* Get spi dma_rx */
  242. spi_dma = spi_drv->config->dma_rx;
  243. /* Enable Dma clock */
  244. FCG_Fcg0PeriphClockCmd(spi_dma->clock, ENABLE);
  245. AOS_SetTriggerEventSrc(spi_dma->trigger_select, spi_dma->trigger_event);
  246. /* Config Dma */
  247. DMA_StructInit(&stcDmaInit);
  248. stcDmaInit.u32IntEn = DMA_INT_ENABLE;
  249. stcDmaInit.u32BlockSize = 1UL;
  250. stcDmaInit.u32TransCount = 0;
  251. stcDmaInit.u32DestAddr = 0;
  252. stcDmaInit.u32SrcAddr = (uint32_t)(&spi_instance->DR);
  253. stcDmaInit.u32SrcAddrInc = DMA_SRC_ADDR_FIX;
  254. stcDmaInit.u32DestAddrInc = DMA_DEST_ADDR_INC;
  255. if (8 == cfg->data_width)
  256. {
  257. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_8BIT;
  258. }
  259. else if (16 == cfg->data_width)
  260. {
  261. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_16BIT;
  262. }
  263. else
  264. {
  265. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_32BIT;
  266. }
  267. /* Init Dma */
  268. if (LL_OK != DMA_Init(spi_dma->Instance, spi_dma->channel, &stcDmaInit))
  269. {
  270. return -RT_EIO;
  271. }
  272. NVIC_EnableIRQ(spi_dma->irq_config.irq_num);
  273. /* Enable Dma */
  274. DMA_Cmd(spi_dma->Instance, ENABLE);
  275. }
  276. if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  277. {
  278. struct dma_config *spi_dma;
  279. stc_dma_init_t stcDmaInit;
  280. /* Get spi dma_tx */
  281. spi_dma = spi_drv->config->dma_tx;
  282. FCG_Fcg0PeriphClockCmd(spi_dma->clock, ENABLE);
  283. AOS_SetTriggerEventSrc(spi_dma->trigger_select, spi_dma->trigger_event);
  284. /* Config Dma */
  285. DMA_StructInit(&stcDmaInit);
  286. stcDmaInit.u32IntEn = DMA_INT_ENABLE;
  287. stcDmaInit.u32BlockSize = 1UL;
  288. stcDmaInit.u32TransCount = 0;
  289. stcDmaInit.u32DestAddr = (uint32_t)(&spi_instance->DR);;
  290. stcDmaInit.u32SrcAddr = 0;
  291. stcDmaInit.u32SrcAddrInc = DMA_SRC_ADDR_INC;
  292. stcDmaInit.u32DestAddrInc = DMA_DEST_ADDR_FIX;
  293. if (8 == cfg->data_width)
  294. {
  295. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_8BIT;
  296. }
  297. else if (16 == cfg->data_width)
  298. {
  299. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_16BIT;
  300. }
  301. else
  302. {
  303. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_32BIT;
  304. }
  305. /* Init Dma */
  306. if (LL_OK != DMA_Init(spi_dma->Instance, spi_dma->channel, &stcDmaInit))
  307. {
  308. return -RT_EIO;
  309. }
  310. NVIC_EnableIRQ(spi_dma->irq_config.irq_num);
  311. /* Enable Dma */
  312. DMA_Cmd(spi_dma->Instance, ENABLE);
  313. }
  314. LOG_D("%s init done", spi_drv->config->bus_name);
  315. return RT_EOK;
  316. }
  317. static rt_err_t hc32_spi_configure(struct rt_spi_device *device,
  318. struct rt_spi_configuration *configuration)
  319. {
  320. RT_ASSERT(device != RT_NULL);
  321. RT_ASSERT(configuration != RT_NULL);
  322. struct hc32_spi *spi_drv = rt_container_of(device->bus, struct hc32_spi, spi_bus);
  323. spi_drv->cfg = configuration;
  324. return hc32_spi_init(spi_drv, configuration);
  325. }
  326. static int32_t hc32_spi_dma_trans(struct hc32_spi_config *spi_config, const uint8_t *pvTxBuf, void *pvRxBuf, uint32_t u32Length)
  327. {
  328. if ((spi_config == RT_NULL) || (pvTxBuf == RT_NULL) || (pvRxBuf == RT_NULL))
  329. {
  330. return LL_ERR;
  331. }
  332. SPI_Cmd(spi_config->Instance, DISABLE);
  333. if (RT_NULL == pvTxBuf)
  334. {
  335. DMA_SetSrcAddr(spi_config->dma_tx->Instance, spi_config->dma_tx->channel, (uint32_t)pvTxBuf);
  336. DMA_SetTransCount(spi_config->dma_tx->Instance, spi_config->dma_tx->channel, u32Length);
  337. DMA_ChCmd(spi_config->dma_tx->Instance, spi_config->dma_tx->channel, ENABLE);
  338. }
  339. if (RT_NULL == pvRxBuf)
  340. {
  341. DMA_SetDestAddr(spi_config->dma_rx->Instance, spi_config->dma_rx->channel, (uint32_t)pvRxBuf);
  342. DMA_SetTransCount(spi_config->dma_rx->Instance, spi_config->dma_rx->channel, u32Length);
  343. DMA_ChCmd(spi_config->dma_rx->Instance, spi_config->dma_rx->channel, ENABLE);
  344. }
  345. SPI_Cmd(spi_config->Instance, ENABLE);
  346. return LL_OK;
  347. }
  348. static void hc32_spi_enable(CM_SPI_TypeDef *SPIx)
  349. {
  350. /* Check if the SPI is already enabled */
  351. if ((SPIx->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
  352. {
  353. SPI_Cmd(SPIx, ENABLE);
  354. }
  355. }
  356. static rt_ssize_t hc32_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
  357. {
  358. int32_t state;
  359. rt_size_t message_length, already_send_length;
  360. rt_uint16_t send_length;
  361. rt_uint8_t *recv_buf;
  362. const rt_uint8_t *send_buf;
  363. RT_ASSERT(device != RT_NULL);
  364. RT_ASSERT(device->bus != RT_NULL);
  365. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  366. RT_ASSERT(message != RT_NULL);
  367. struct hc32_spi *spi_drv = rt_container_of(device->bus, struct hc32_spi, spi_bus);
  368. CM_SPI_TypeDef *spi_instance = spi_drv->config->Instance;
  369. struct hc32_hw_spi_cs *cs = device->parent.user_data;
  370. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
  371. {
  372. if (device->config.mode & RT_SPI_CS_HIGH)
  373. {
  374. GPIO_SetPins(cs->port, cs->pin);
  375. }
  376. else
  377. {
  378. GPIO_ResetPins(cs->port, cs->pin);
  379. }
  380. }
  381. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d", spi_drv->config->bus_name,
  382. (uint32_t)message->send_buf, (uint32_t)message->recv_buf, message->length);
  383. message_length = message->length;
  384. recv_buf = message->recv_buf;
  385. send_buf = message->send_buf;
  386. while (message_length)
  387. {
  388. if (message_length > 65535)
  389. {
  390. send_length = 65535;
  391. message_length = message_length - 65535;
  392. }
  393. else
  394. {
  395. send_length = message_length;
  396. message_length = 0;
  397. }
  398. /* calculate the start address */
  399. already_send_length = message->length - send_length - message_length;
  400. /* avoid null pointer problems */
  401. if (message->send_buf)
  402. {
  403. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  404. }
  405. if (message->recv_buf)
  406. {
  407. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  408. }
  409. if (message->send_buf && message->recv_buf)
  410. {
  411. if ((spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX) && (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX))
  412. {
  413. state = hc32_spi_dma_trans(spi_drv->config, send_buf, recv_buf, send_length);
  414. }
  415. else
  416. {
  417. hc32_spi_enable(spi_instance);
  418. state = SPI_TransReceive(spi_instance, send_buf, recv_buf, send_length, 1000);
  419. }
  420. }
  421. else if (message->send_buf)
  422. {
  423. if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  424. {
  425. /* Maybe need to switch to send only mode */
  426. state = hc32_spi_dma_trans(spi_drv->config, send_buf, RT_NULL, send_length);
  427. }
  428. else
  429. {
  430. hc32_spi_enable(spi_instance);
  431. state = SPI_Trans(spi_instance, send_buf, send_length, 1000);
  432. }
  433. }
  434. else
  435. {
  436. rt_memset((uint8_t *)recv_buf, 0xFF, send_length);
  437. if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  438. {
  439. state = hc32_spi_dma_trans(spi_drv->config, recv_buf, recv_buf, send_length);
  440. }
  441. else
  442. {
  443. hc32_spi_enable(spi_instance);
  444. state = SPI_Receive(spi_instance, recv_buf, send_length, 1000);
  445. }
  446. }
  447. if (state != LL_OK)
  448. {
  449. LOG_I("spi transfer error : %d", state);
  450. message->length = 0;
  451. }
  452. /* Wait for the spi transfer complete */
  453. while (RESET != SPI_GetStatus(spi_instance, SPI_FLAG_IDLE));
  454. }
  455. /* clear error flag */
  456. SPI_ClearStatus(spi_instance, SPI_FLAG_CLR_ALL | SPI_FLAG_RX_BUF_FULL);
  457. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
  458. {
  459. if (device->config.mode & RT_SPI_CS_HIGH)
  460. {
  461. GPIO_ResetPins(cs->port, cs->pin);
  462. }
  463. else
  464. {
  465. GPIO_SetPins(cs->port, cs->pin);
  466. }
  467. }
  468. return message->length;
  469. }
  470. static const struct rt_spi_ops hc32_spi_ops =
  471. {
  472. .configure = hc32_spi_configure,
  473. .xfer = hc32_spi_xfer,
  474. };
  475. /**
  476. * Attach the spi device to SPI bus, this function must be used after initialization.
  477. */
  478. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, uint8_t cs_gpio_port, uint16_t cs_gpio_pin)
  479. {
  480. RT_ASSERT(bus_name != RT_NULL);
  481. RT_ASSERT(device_name != RT_NULL);
  482. rt_err_t result;
  483. struct rt_spi_device *spi_device;
  484. struct hc32_hw_spi_cs *cs_pin;
  485. stc_gpio_init_t stcGpioInit;
  486. GPIO_StructInit(&stcGpioInit);
  487. stcGpioInit.u16PinState = PIN_STAT_SET;
  488. stcGpioInit.u16PinDir = PIN_DIR_OUT;
  489. stcGpioInit.u16PullUp = PIN_PU_ON;
  490. GPIO_Init(cs_gpio_port, cs_gpio_pin, &stcGpioInit);
  491. /* attach the device to spi bus*/
  492. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  493. RT_ASSERT(spi_device != RT_NULL);
  494. cs_pin = (struct hc32_hw_spi_cs *)rt_malloc(sizeof(struct hc32_hw_spi_cs));
  495. RT_ASSERT(cs_pin != RT_NULL);
  496. cs_pin->port = cs_gpio_port;
  497. cs_pin->pin = cs_gpio_pin;
  498. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  499. if (result != RT_EOK)
  500. {
  501. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  502. }
  503. return result;
  504. }
  505. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI4_TX_USING_DMA) || \
  506. defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI6_TX_USING_DMA)
  507. /**
  508. * @brief Clear DMA transfer complete flag.
  509. * @param dma specific dam witch spi used.
  510. * @retval None
  511. */
  512. static void hc32_dma_irq_handle(struct dma_config *dma)
  513. {
  514. DMA_ClearTransCompleteStatus(dma->Instance, (1U << dma->channel));
  515. }
  516. #endif
  517. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  518. /**
  519. * @brief This function handles DMA Rx complete interrupt request.
  520. * @param None
  521. * @retval None
  522. */
  523. static void spi1_rx_dma_irq_handle(void)
  524. {
  525. /* enter interrupt */
  526. rt_interrupt_enter();
  527. hc32_dma_irq_handle(spi_config[SPI1_INDEX].dma_rx);
  528. /* leave interrupt */
  529. rt_interrupt_leave();
  530. }
  531. #endif
  532. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  533. /**
  534. * @brief This function handles DMA Tx complete interrupt request.
  535. * @param None
  536. * @retval None
  537. */
  538. static void spi1_tx_dma_irq_handle(void)
  539. {
  540. /* enter interrupt */
  541. rt_interrupt_enter();
  542. hc32_dma_irq_handle(spi_config[SPI1_INDEX].dma_tx);
  543. /* leave interrupt */
  544. rt_interrupt_leave();
  545. }
  546. #endif
  547. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  548. /**
  549. * @brief This function handles DMA Rx complete interrupt request.
  550. * @param None
  551. * @retval None
  552. */
  553. static void spi2_rx_dma_irq_handle(void)
  554. {
  555. /* enter interrupt */
  556. rt_interrupt_enter();
  557. hc32_dma_irq_handle(spi_config[SPI2_INDEX].dma_rx);
  558. /* leave interrupt */
  559. rt_interrupt_leave();
  560. }
  561. #endif
  562. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  563. /**
  564. * @brief This function handles DMA Tx complete interrupt request.
  565. * @param None
  566. * @retval None
  567. */
  568. static void spi2_tx_dma_irq_handle(void)
  569. {
  570. /* enter interrupt */
  571. rt_interrupt_enter();
  572. hc32_dma_irq_handle(spi_config[SPI2_INDEX].dma_tx);
  573. /* leave interrupt */
  574. rt_interrupt_leave();
  575. }
  576. #endif
  577. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  578. /**
  579. * @brief This function handles DMA Rx complete interrupt request.
  580. * @param None
  581. * @retval None
  582. */
  583. static void spi3_rx_dma_irq_handle(void)
  584. {
  585. /* enter interrupt */
  586. rt_interrupt_enter();
  587. hc32_dma_irq_handle(spi_config[SPI3_INDEX].dma_rx);
  588. /* leave interrupt */
  589. rt_interrupt_leave();
  590. }
  591. #endif
  592. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  593. /**
  594. * @brief This function handles DMA Tx complete interrupt request.
  595. * @param None
  596. * @retval None
  597. */
  598. static void spi3_tx_dma_irq_handle(void)
  599. {
  600. /* enter interrupt */
  601. rt_interrupt_enter();
  602. hc32_dma_irq_handle(spi_config[SPI3_INDEX].dma_tx);
  603. /* leave interrupt */
  604. rt_interrupt_leave();
  605. }
  606. #endif
  607. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  608. /**
  609. * @brief This function handles DMA Rx complete interrupt request.
  610. * @param None
  611. * @retval None
  612. */
  613. static void spi4_rx_dma_irq_handle(void)
  614. {
  615. /* enter interrupt */
  616. rt_interrupt_enter();
  617. hc32_dma_irq_handle(spi_config[SPI4_INDEX].dma_rx);
  618. /* leave interrupt */
  619. rt_interrupt_leave();
  620. }
  621. #endif
  622. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  623. /**
  624. * @brief This function handles DMA Tx complete interrupt request.
  625. * @param None
  626. * @retval None
  627. */
  628. static void spi4_tx_dma_irq_handle(void)
  629. {
  630. /* enter interrupt */
  631. rt_interrupt_enter();
  632. hc32_dma_irq_handle(spi_config[SPI4_INDEX].dma_tx);
  633. /* leave interrupt */
  634. rt_interrupt_leave();
  635. }
  636. #endif
  637. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  638. /**
  639. * @brief This function handles DMA Rx complete interrupt request.
  640. * @param None
  641. * @retval None
  642. */
  643. static void spi5_rx_dma_irq_handle(void)
  644. {
  645. /* enter interrupt */
  646. rt_interrupt_enter();
  647. hc32_dma_irq_handle(spi_config[SPI5_INDEX].dma_rx);
  648. /* leave interrupt */
  649. rt_interrupt_leave();
  650. }
  651. #endif
  652. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  653. /**
  654. * @brief This function handles DMA Tx complete interrupt request.
  655. * @param None
  656. * @retval None
  657. */
  658. static void spi5_tx_dma_irq_handle(void)
  659. {
  660. /* enter interrupt */
  661. rt_interrupt_enter();
  662. hc32_dma_irq_handle(spi_config[SPI5_INDEX].dma_tx);
  663. /* leave interrupt */
  664. rt_interrupt_leave();
  665. }
  666. #endif
  667. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  668. /**
  669. * @brief This function handles DMA Rx complete interrupt request.
  670. * @param None
  671. * @retval None
  672. */
  673. static void spi6_rx_dma_irq_handle(void)
  674. {
  675. /* enter interrupt */
  676. rt_interrupt_enter();
  677. hc32_dma_irq_handle(spi_config[SPI6_INDEX].dma_rx);
  678. /* leave interrupt */
  679. rt_interrupt_leave();
  680. }
  681. #endif
  682. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  683. /**
  684. * @brief This function handles DMA Tx complete interrupt request.
  685. * @param None
  686. * @retval None
  687. */
  688. static void spi6_tx_dma_irq_handle(void)
  689. {
  690. /* enter interrupt */
  691. rt_interrupt_enter();
  692. hc32_dma_irq_handle(spi_config[SPI6_INDEX].dma_tx);
  693. /* leave interrupt */
  694. rt_interrupt_leave();
  695. }
  696. #endif
  697. /**
  698. * @brief This function gets dma witch spi used infomation include unit,
  699. * channel, interrupt etc.
  700. * @param None
  701. * @retval None
  702. */
  703. static void hc32_get_dma_info(void)
  704. {
  705. #ifdef BSP_SPI1_RX_USING_DMA
  706. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  707. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  708. spi1_dma_rx.irq_callback = spi1_rx_dma_irq_handle;
  709. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  710. #endif
  711. #ifdef BSP_SPI1_TX_USING_DMA
  712. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  713. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  714. spi1_dma_tx.irq_callback = spi1_tx_dma_irq_handle;
  715. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  716. #endif
  717. #ifdef BSP_SPI2_RX_USING_DMA
  718. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  719. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  720. spi2_dma_rx.irq_callback = spi2_rx_dma_irq_handle;
  721. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  722. #endif
  723. #ifdef BSP_SPI2_TX_USING_DMA
  724. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  725. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  726. spi2_dma_tx.irq_callback = spi2_tx_dma_irq_handle;
  727. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  728. #endif
  729. #ifdef BSP_SPI3_RX_USING_DMA
  730. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  731. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  732. spi3_dma_rx.irq_callback = spi3_rx_dma_irq_handle;
  733. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  734. #endif
  735. #ifdef BSP_SPI3_TX_USING_DMA
  736. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  737. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  738. spi3_dma_tx.irq_callback = spi3_tx_dma_irq_handle;
  739. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  740. #endif
  741. #ifdef BSP_SPI4_RX_USING_DMA
  742. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  743. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  744. spi4_dma_rx.irq_callback = spi4_rx_dma_irq_handle;
  745. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  746. #endif
  747. #ifdef BSP_SPI4_TX_USING_DMA
  748. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  749. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  750. spi4_dma_tx.irq_callback = spi4_tx_dma_irq_handle;
  751. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  752. #endif
  753. #ifdef BSP_SPI5_RX_USING_DMA
  754. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  755. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  756. spi5_dma_rx.irq_callback = spi5_rx_dma_irq_handle;
  757. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  758. #endif
  759. #ifdef BSP_SPI5_TX_USING_DMA
  760. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  761. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  762. spi5_dma_tx.irq_callback = spi5_tx_dma_irq_handle;
  763. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  764. #endif
  765. #ifdef BSP_SPI6_RX_USING_DMA
  766. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  767. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  768. spi6_dma_rx.irq_callback = spi6_rx_dma_irq_handle;
  769. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  770. #endif
  771. #ifdef BSP_SPI6_TX_USING_DMA
  772. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  773. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  774. spi6_dma_tx.irq_callback = spi6_tx_dma_irq_handle;
  775. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  776. #endif
  777. }
  778. static int hc32_hw_spi_bus_init(void)
  779. {
  780. rt_err_t result;
  781. for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  782. {
  783. spi_bus_obj[i].config = &spi_config[i];
  784. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  785. if (spi_bus_obj[i].spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  786. {
  787. /* Configure the DMA handler */
  788. hc32_install_irq_handler(&spi_config[i].dma_rx->irq_config, spi_config[i].dma_rx->irq_callback, RT_FALSE);
  789. }
  790. if (spi_bus_obj[i].spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  791. {
  792. /* Configure the DMA handler */
  793. hc32_install_irq_handler(&spi_config[i].dma_tx->irq_config, spi_config[i].dma_tx->irq_callback, RT_FALSE);
  794. }
  795. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &hc32_spi_ops);
  796. LOG_D("%s bus init done", spi_config[i].bus_name);
  797. }
  798. return result;
  799. }
  800. int hc32_hw_spi_init(void)
  801. {
  802. hc32_get_dma_info();
  803. return hc32_hw_spi_bus_init();
  804. }
  805. INIT_BOARD_EXPORT(hc32_hw_spi_init);
  806. #endif
  807. #endif /* BSP_USING_SPI */