board.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. /*
  2. * Copyright (c) 2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. *
  6. */
  7. #include "board.h"
  8. #include "hpm_uart_drv.h"
  9. #include "hpm_gptmr_drv.h"
  10. #include "hpm_lcdc_drv.h"
  11. #include "hpm_i2c_drv.h"
  12. #include "hpm_gpio_drv.h"
  13. #include "pinmux.h"
  14. #include "hpm_pmp_drv.h"
  15. #include "assert.h"
  16. #include "hpm_clock_drv.h"
  17. #include "hpm_sysctl_drv.h"
  18. #include "hpm_pwm_drv.h"
  19. #include "hpm_trgm_drv.h"
  20. #include "hpm_pllctlv2_drv.h"
  21. #include "hpm_pcfg_drv.h"
  22. static board_timer_cb timer_cb;
  23. ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag;
  24. /**
  25. * @brief FLASH configuration option definitions:
  26. * option[0]:
  27. * [31:16] 0xfcf9 - FLASH configuration option tag
  28. * [15:4] 0 - Reserved
  29. * [3:0] option words (exclude option[0])
  30. * option[1]:
  31. * [31:28] Flash probe type
  32. * 0 - SFDP SDR / 1 - SFDP DDR
  33. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  34. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  35. * 6 - OctaBus DDR (SPI -> OPI DDR)
  36. * 8 - Xccela DDR (SPI -> OPI DDR)
  37. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  38. * [27:24] Command Pads after Power-on Reset
  39. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  40. * [23:20] Command Pads after Configuring FLASH
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  43. * 0 - Not needed
  44. * 1 - QE bit is at bit 6 in Status Register 1
  45. * 2 - QE bit is at bit1 in Status Register 2
  46. * 3 - QE bit is at bit7 in Status Register 2
  47. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  48. * [15:8] Dummy cycles
  49. * 0 - Auto-probed / detected / default value
  50. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  51. * [7:4] Misc.
  52. * 0 - Not used
  53. * 1 - SPI mode
  54. * 2 - Internal loopback
  55. * 3 - External DQS
  56. * [3:0] Frequency option
  57. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  58. *
  59. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  60. * [31:20] Reserved
  61. * [19:16] IO voltage
  62. * 0 - 3V / 1 - 1.8V
  63. * [15:12] Pin group
  64. * 0 - 1st group / 1 - 2nd group
  65. * [11:8] Connection selection
  66. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  67. * [7:0] Drive Strength
  68. * 0 - Default value
  69. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  70. * JESD216)
  71. * [31:16] reserved
  72. * [15:12] Sector Erase Command Option, not required here
  73. * [11:8] Sector Size Option, not required here
  74. * [7:0] Flash Size Option
  75. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  76. */
  77. #if defined(FLASH_XIP) && FLASH_XIP
  78. __attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
  79. #endif
  80. #if defined(FLASH_UF2) && FLASH_UF2
  81. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  82. #endif
  83. void board_init_console(void)
  84. {
  85. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  86. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  87. console_config_t cfg;
  88. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  89. uart rx pin when configuring pin function will cause a wrong data to be received.
  90. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  91. init_uart_pins((UART_Type *) BOARD_CONSOLE_BASE);
  92. /* Configure the UART clock to 24MHz */
  93. clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
  94. clock_add_to_group(BOARD_CONSOLE_CLK_NAME, 0);
  95. cfg.type = BOARD_CONSOLE_TYPE;
  96. cfg.base = (uint32_t)BOARD_CONSOLE_BASE;
  97. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
  98. cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
  99. if (status_success != console_init(&cfg)) {
  100. /* failed to initialize debug console */
  101. while (1) {
  102. }
  103. }
  104. #else
  105. while (1)
  106. ;
  107. #endif
  108. #endif
  109. }
  110. void board_print_clock_freq(void)
  111. {
  112. printf("==============================\n");
  113. printf(" %s clock summary\n", BOARD_NAME);
  114. printf("==============================\n");
  115. printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
  116. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  117. printf("axi:\t\t %dHz\n", clock_get_frequency(clock_axi));
  118. printf("ahb:\t\t %dHz\n", clock_get_frequency(clock_ahb));
  119. printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
  120. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  121. printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
  122. printf("==============================\n");
  123. }
  124. void board_init_uart(UART_Type *ptr)
  125. {
  126. /* configure uart's pin before opening uart's clock */
  127. init_uart_pins(ptr);
  128. board_init_uart_clock(ptr);
  129. }
  130. void board_print_banner(void)
  131. {
  132. const uint8_t banner[] = { "\n\
  133. ----------------------------------------------------------------------\n\
  134. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  135. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  136. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  137. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  138. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  139. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  140. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  141. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  142. ----------------------------------------------------------------------\n"};
  143. #ifdef SDK_VERSION_STRING
  144. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  145. #endif
  146. printf("%s", banner);
  147. }
  148. uint8_t board_get_led_pwm_off_level(void)
  149. {
  150. return BOARD_LED_OFF_LEVEL;
  151. }
  152. uint8_t board_get_led_gpio_off_level(void)
  153. {
  154. return BOARD_LED_OFF_LEVEL;
  155. }
  156. void board_ungate_mchtmr_at_lp_mode(void)
  157. {
  158. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  159. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  160. }
  161. void board_init(void)
  162. {
  163. board_init_clock();
  164. board_init_console();
  165. board_init_pmp();
  166. #if BOARD_SHOW_CLOCK
  167. board_print_clock_freq();
  168. #endif
  169. #if BOARD_SHOW_BANNER
  170. board_print_banner();
  171. #endif
  172. }
  173. void board_delay_us(uint32_t us)
  174. {
  175. static uint32_t gptmr_freq;
  176. gptmr_channel_config_t config;
  177. if (init_delay_flag == false) {
  178. init_delay_flag = true;
  179. clock_add_to_group(BOARD_DELAY_TIMER_CLK_NAME, 0);
  180. gptmr_freq = clock_get_frequency(BOARD_DELAY_TIMER_CLK_NAME);
  181. gptmr_channel_get_default_config(BOARD_DELAY_TIMER, &config);
  182. gptmr_channel_config(BOARD_DELAY_TIMER, BOARD_DELAY_TIMER_CH, &config, false);
  183. }
  184. gptmr_channel_config_update_reload(BOARD_DELAY_TIMER, BOARD_DELAY_TIMER_CH, gptmr_freq / 1000000 * us);
  185. gptmr_start_counter(BOARD_DELAY_TIMER, BOARD_DELAY_TIMER_CH);
  186. while (!gptmr_check_status(BOARD_DELAY_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_DELAY_TIMER_CH))) {
  187. __asm("nop");
  188. }
  189. gptmr_stop_counter(BOARD_DELAY_TIMER, BOARD_DELAY_TIMER_CH);
  190. gptmr_clear_status(BOARD_DELAY_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_DELAY_TIMER_CH));
  191. }
  192. void board_delay_ms(uint32_t ms)
  193. {
  194. board_delay_us(1000 * ms);
  195. }
  196. void board_timer_isr(void)
  197. {
  198. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  199. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  200. timer_cb();
  201. }
  202. }
  203. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  204. void board_timer_create(uint32_t ms, board_timer_cb cb)
  205. {
  206. uint32_t gptmr_freq;
  207. gptmr_channel_config_t config;
  208. timer_cb = cb;
  209. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  210. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  211. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  212. config.reload = gptmr_freq / 1000 * ms;
  213. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  214. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  215. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  216. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  217. }
  218. void board_i2c_bus_clear(I2C_Type *ptr)
  219. {
  220. init_i2c_pins_as_gpio(ptr);
  221. }
  222. void board_init_i2c(I2C_Type *ptr)
  223. {
  224. }
  225. uint32_t board_init_spi_clock(SPI_Type *ptr)
  226. {
  227. if (ptr == HPM_SPI1) {
  228. /* SPI1 clock configure */
  229. clock_add_to_group(clock_spi1, 0);
  230. clock_set_source_divider(clock_spi1, clk_src_pll0_clk0, 5U); /* 80MHz */
  231. return clock_get_frequency(clock_spi1);
  232. } else if (ptr == HPM_SPI2) {
  233. /* SPI3 clock configure */
  234. clock_add_to_group(clock_spi2, 0);
  235. clock_set_source_divider(clock_spi2, clk_src_pll0_clk0, 5U); /* 80MHz */
  236. return clock_get_frequency(clock_spi2);
  237. } else if (ptr == HPM_SPI3) {
  238. /* SPI3 clock configure */
  239. clock_add_to_group(clock_spi3, 0);
  240. clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); /* 80MHz */
  241. return clock_get_frequency(clock_spi3);
  242. }
  243. return 0;
  244. }
  245. uint32_t board_init_lin_clock(LIN_Type *ptr)
  246. {
  247. if (ptr == HPM_LIN0) {
  248. clock_add_to_group(clock_lin0, 0);
  249. clock_set_source_divider(clock_lin0, clk_src_pll0_clk0, 20U); /* 20MHz */
  250. return clock_get_frequency(clock_lin0);
  251. }
  252. return 0;
  253. }
  254. void board_init_gpio_pins(void)
  255. {
  256. init_gpio_pins();
  257. }
  258. void board_init_spi_pins(SPI_Type *ptr)
  259. {
  260. init_spi_pins(ptr);
  261. }
  262. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  263. {
  264. init_spi_pins_with_gpio_as_cs(ptr);
  265. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  266. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  267. }
  268. void board_write_spi_cs(uint32_t pin, uint8_t state)
  269. {
  270. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  271. }
  272. void board_init_led_pins(void)
  273. {
  274. init_led_pins_as_gpio();
  275. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  276. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  277. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  278. }
  279. void board_led_toggle(void)
  280. {
  281. #ifdef BOARD_LED_TOGGLE_RGB
  282. static uint8_t i;
  283. switch (i) {
  284. case 1:
  285. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  286. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
  287. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  288. break;
  289. case 2:
  290. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  291. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  292. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
  293. break;
  294. case 0:
  295. default:
  296. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
  297. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  298. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  299. break;
  300. }
  301. i++;
  302. i = i % 3;
  303. #else
  304. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  305. #endif
  306. }
  307. void board_led_write(uint8_t state)
  308. {
  309. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  310. }
  311. void board_init_usb_pins(void)
  312. {
  313. /* set pull-up for USBx ID pin */
  314. init_usb_pins();
  315. /* configure USBx ID pin as input function */
  316. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  317. }
  318. uint8_t board_get_usb_id_status(void)
  319. {
  320. return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  321. }
  322. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  323. {
  324. }
  325. void board_init_pmp(void)
  326. {
  327. uint32_t start_addr;
  328. uint32_t end_addr;
  329. uint32_t length;
  330. pmp_entry_t pmp_entry[16];
  331. uint8_t index = 0;
  332. /* Init noncachable memory */
  333. extern uint32_t __noncacheable_start__[];
  334. extern uint32_t __noncacheable_end__[];
  335. start_addr = (uint32_t)__noncacheable_start__;
  336. end_addr = (uint32_t)__noncacheable_end__;
  337. length = end_addr - start_addr;
  338. if (length > 0) {
  339. /* Ensure the address and the length are power of 2 aligned */
  340. assert((length & (length - 1U)) == 0U);
  341. assert((start_addr & (length - 1U)) == 0U);
  342. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  343. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  344. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  345. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  346. index++;
  347. }
  348. /* Init share memory */
  349. extern uint32_t __share_mem_start__[];
  350. extern uint32_t __share_mem_end__[];
  351. start_addr = (uint32_t)__share_mem_start__;
  352. end_addr = (uint32_t)__share_mem_end__;
  353. length = end_addr - start_addr;
  354. if (length > 0) {
  355. /* Ensure the address and the length are power of 2 aligned */
  356. assert((length & (length - 1U)) == 0U);
  357. assert((start_addr & (length - 1U)) == 0U);
  358. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  359. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  360. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  361. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  362. index++;
  363. }
  364. pmp_config(&pmp_entry[0], index);
  365. }
  366. void board_init_clock(void)
  367. {
  368. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  369. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  370. /* Configure the External OSC ramp-up time: ~9ms */
  371. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
  372. /* Select clock setting preset1 */
  373. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  374. }
  375. /* Add most Clocks to group 0 */
  376. /* not open uart clock in this API, uart should configure pin function before opening clock */
  377. clock_add_to_group(clock_cpu0, 0);
  378. clock_add_to_group(clock_ahbp, 0);
  379. clock_add_to_group(clock_axic, 0);
  380. clock_add_to_group(clock_axis, 0);
  381. clock_add_to_group(clock_mchtmr0, 0);
  382. clock_add_to_group(clock_xpi0, 0);
  383. clock_add_to_group(clock_gptmr0, 0);
  384. clock_add_to_group(clock_gptmr1, 0);
  385. clock_add_to_group(clock_gptmr2, 0);
  386. clock_add_to_group(clock_gptmr3, 0);
  387. clock_add_to_group(clock_i2c0, 0);
  388. clock_add_to_group(clock_i2c1, 0);
  389. clock_add_to_group(clock_i2c2, 0);
  390. clock_add_to_group(clock_i2c3, 0);
  391. clock_add_to_group(clock_lin0, 0);
  392. clock_add_to_group(clock_lin1, 0);
  393. clock_add_to_group(clock_lin2, 0);
  394. clock_add_to_group(clock_lin3, 0);
  395. clock_add_to_group(clock_spi0, 0);
  396. clock_add_to_group(clock_spi1, 0);
  397. clock_add_to_group(clock_spi2, 0);
  398. clock_add_to_group(clock_spi3, 0);
  399. clock_add_to_group(clock_can0, 0);
  400. clock_add_to_group(clock_can1, 0);
  401. clock_add_to_group(clock_can2, 0);
  402. clock_add_to_group(clock_can3, 0);
  403. clock_add_to_group(clock_ptpc, 0);
  404. clock_add_to_group(clock_ref0, 0);
  405. clock_add_to_group(clock_ref1, 0);
  406. clock_add_to_group(clock_watchdog0, 0);
  407. clock_add_to_group(clock_sdp, 0);
  408. clock_add_to_group(clock_xdma, 0);
  409. clock_add_to_group(clock_ram0, 0);
  410. clock_add_to_group(clock_usb0, 0);
  411. clock_add_to_group(clock_kman, 0);
  412. clock_add_to_group(clock_gpio, 0);
  413. clock_add_to_group(clock_mbx0, 0);
  414. clock_add_to_group(clock_hdma, 0);
  415. clock_add_to_group(clock_rng, 0);
  416. clock_add_to_group(clock_mot0, 0);
  417. clock_add_to_group(clock_mot1, 0);
  418. clock_add_to_group(clock_mot2, 0);
  419. clock_add_to_group(clock_mot3, 0);
  420. clock_add_to_group(clock_acmp, 0);
  421. clock_add_to_group(clock_msyn, 0);
  422. clock_add_to_group(clock_lmm0, 0);
  423. clock_add_to_group(clock_lmm1, 0);
  424. clock_add_to_group(clock_adc0, 0);
  425. clock_add_to_group(clock_adc1, 0);
  426. clock_add_to_group(clock_adc2, 0);
  427. clock_add_to_group(clock_dac0, 0);
  428. clock_add_to_group(clock_dac1, 0);
  429. clock_add_to_group(clock_tsns, 0);
  430. clock_add_to_group(clock_crc0, 0);
  431. clock_add_to_group(clock_sdm0, 0);
  432. /* Connect Group0 to CPU0 */
  433. clock_connect_group_to_cpu(0, 0);
  434. /* Add the CPU1 clock to Group1 */
  435. clock_add_to_group(clock_mchtmr1, 1);
  436. /* Connect Group1 to CPU1 */
  437. clock_connect_group_to_cpu(1, 1);
  438. /* Bump up DCDC voltage to 1275mv */
  439. pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
  440. /* Configure CPU to 600MHz, AXI/AHB to 200MHz */
  441. sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clk_src_pll1_clk0, 1, 3, 3);
  442. /* Connect CAN2/CAN3 to pll0clk0*/
  443. clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 1);
  444. clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 1);
  445. /* Configure PLL1_CLK0 Post Divider to 1 */
  446. pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 0);
  447. pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 600000000);
  448. clock_update_core_clock();
  449. /* Configure AHB to 200MHz */
  450. clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2);
  451. /* Configure mchtmr to 24MHz */
  452. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  453. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  454. }
  455. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  456. {
  457. uint32_t freq = 0;
  458. if (ptr == HPM_GPTMR0) {
  459. clock_add_to_group(clock_gptmr0, 0);
  460. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  461. freq = clock_get_frequency(clock_gptmr0);
  462. }
  463. else if (ptr == HPM_GPTMR1) {
  464. clock_add_to_group(clock_gptmr1, 0);
  465. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  466. freq = clock_get_frequency(clock_gptmr1);
  467. }
  468. else if (ptr == HPM_GPTMR2) {
  469. clock_add_to_group(clock_gptmr2, 0);
  470. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  471. freq = clock_get_frequency(clock_gptmr2);
  472. }
  473. else if (ptr == HPM_GPTMR3) {
  474. clock_add_to_group(clock_gptmr3, 0);
  475. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  476. freq = clock_get_frequency(clock_gptmr3);
  477. }
  478. else {
  479. /* Invalid instance */
  480. }
  481. }
  482. uint32_t board_init_adc12_clock(ADC16_Type *ptr)
  483. {
  484. uint32_t freq = 0;
  485. switch ((uint32_t)ptr) {
  486. case HPM_ADC0_BASE:
  487. /* Configure the ADC clock to 200MHz */
  488. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  489. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  490. freq = clock_get_frequency(clock_adc0);
  491. break;
  492. case HPM_ADC1_BASE:
  493. /* Configure the ADC clock to 200MHz */
  494. clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
  495. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  496. freq = clock_get_frequency(clock_adc1);
  497. break;
  498. case HPM_ADC2_BASE:
  499. /* Configure the ADC clock to 200MHz */
  500. clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
  501. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  502. freq = clock_get_frequency(clock_adc2);
  503. break;
  504. default:
  505. /* Invalid ADC instance */
  506. break;
  507. }
  508. return freq;
  509. }
  510. uint32_t board_init_adc16_clock(ADC16_Type *ptr)
  511. {
  512. return 0;
  513. }
  514. uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
  515. {
  516. uint32_t freq = 0;
  517. if (ptr == HPM_DAC0) {
  518. if (clk_src_ahb == true) {
  519. /* Configure the DAC clock to 133MHz */
  520. clock_set_dac_source(clock_dac0, clk_dac_src_ahb0);
  521. } else {
  522. /* Configure the DAC clock to 166MHz */
  523. clock_set_dac_source(clock_dac0, clk_dac_src_ana3);
  524. clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
  525. }
  526. freq = clock_get_frequency(clock_dac0);
  527. }
  528. return freq;
  529. }
  530. void board_init_can(MCAN_Type *ptr)
  531. {
  532. init_can_pins(ptr);
  533. }
  534. uint32_t board_init_can_clock(MCAN_Type *ptr)
  535. {
  536. uint32_t freq = 0;
  537. if (ptr == HPM_MCAN0) {
  538. /* Set the CAN0 peripheral clock to 8MHz */
  539. clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
  540. freq = clock_get_frequency(clock_can0);
  541. } else if (ptr == HPM_MCAN1) {
  542. /* Set the CAN1 peripheral clock to 8MHz */
  543. clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
  544. freq = clock_get_frequency(clock_can1);
  545. } else if (ptr == HPM_MCAN2) {
  546. /* Set the CAN2 peripheral clock to 8MHz */
  547. clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 5);
  548. freq = clock_get_frequency(clock_can2);
  549. } else if (ptr == HPM_MCAN3) {
  550. /* Set the CAN2 peripheral clock to 8MHz */
  551. clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 5);
  552. freq = clock_get_frequency(clock_can3);
  553. } else {
  554. /* Invalid CAN instance */
  555. }
  556. return freq;
  557. }
  558. void board_init_adc16_pins(void)
  559. {
  560. init_adc_pins();
  561. }
  562. void board_init_rgb_pwm_pins(void)
  563. {
  564. init_led_pins_as_pwm();
  565. }
  566. void board_disable_output_rgb_led(uint8_t color)
  567. {
  568. switch (color) {
  569. case BOARD_RGB_RED:
  570. pwm_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  571. break;
  572. case BOARD_RGB_GREEN:
  573. pwm_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  574. break;
  575. case BOARD_RGB_BLUE:
  576. pwm_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  577. break;
  578. default:
  579. while (1) {
  580. ;
  581. }
  582. }
  583. }
  584. void board_enable_output_rgb_led(uint8_t color)
  585. {
  586. switch (color) {
  587. case BOARD_RGB_RED:
  588. pwm_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  589. break;
  590. case BOARD_RGB_GREEN:
  591. pwm_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  592. break;
  593. case BOARD_RGB_BLUE:
  594. pwm_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  595. break;
  596. default:
  597. while (1) {
  598. ;
  599. }
  600. }
  601. }
  602. void board_init_dac_pins(DAC_Type *ptr)
  603. {
  604. init_dac_pins(ptr);
  605. }
  606. uint32_t board_init_uart_clock(UART_Type *ptr)
  607. {
  608. uint32_t freq = 0U;
  609. if (ptr == HPM_UART0) {
  610. clock_set_source_divider(clock_uart0, clk_src_pll1_clk0, 6);
  611. clock_add_to_group(clock_uart0, 0);
  612. freq = clock_get_frequency(clock_uart0);
  613. } else if (ptr == HPM_UART1) {
  614. clock_set_source_divider(clock_uart1, clk_src_pll1_clk0, 6);
  615. clock_add_to_group(clock_uart1, 0);
  616. freq = clock_get_frequency(clock_uart1);
  617. } else if (ptr == HPM_UART2) {
  618. clock_set_source_divider(clock_uart2, clk_src_pll1_clk0, 6);
  619. clock_add_to_group(clock_uart2, 0);
  620. freq = clock_get_frequency(clock_uart2);
  621. } else if (ptr == HPM_UART6) {
  622. clock_set_source_divider(clock_uart6, clk_src_pll1_clk0, 6);
  623. clock_add_to_group(clock_uart6, 0);
  624. freq = clock_get_frequency(clock_uart6);
  625. } else {
  626. /* Not supported */
  627. }
  628. return freq;
  629. }