drv_can.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-01-09 chenbin the first version
  9. */
  10. #include "drv_can.h"
  11. #ifdef BSP_USING_CAN
  12. #include "stdint.h"
  13. #include "n32g45x.h"
  14. #include "n32g45x_can.h"
  15. //#define DRV_DEBUG
  16. #define DBG_TAG "drv_can"
  17. #include <drv_log.h>
  18. struct n32g45x_baud_rate_info
  19. {
  20. uint32_t baud_rate;
  21. uint16_t prescaler;
  22. uint8_t tsjw; //CAN synchronisation jump width.
  23. uint8_t tbs1; //CAN time quantum in bit segment 1.
  24. uint8_t tbs2; //CAN time quantum in bit segment 2.
  25. uint8_t notused;
  26. };
  27. #define N32_CAN_BAUD_DEF(xrate, xsjw, xbs1, xbs2, xprescale) \
  28. { \
  29. .baud_rate = xrate, \
  30. .tsjw = xsjw, \
  31. .tbs1 = xbs1, \
  32. .tbs2 = xbs2, \
  33. .prescaler = xprescale \
  34. }
  35. /* N32G45x can device */
  36. struct n32g45x_can
  37. {
  38. char *name;
  39. CAN_Module * can_base;
  40. CAN_InitType can_init;
  41. CAN_FilterInitType can_filter_init;
  42. struct rt_can_device device; /* inherit from can device */
  43. };
  44. /*
  45. * N32G45x CAN1 CAN2 used APB1 (PCLK1 36MHz)
  46. * baud calculation example:
  47. * baud = PCLK1 / ((sjw + tbs1 + tbs2) * brp)
  48. * 1MHz = 36MHz / ((1 + 15 + 2) * 2)
  49. *
  50. * sample calculation example:
  51. * sample = ( sjw + tbs1) / (sjw + tbs1 + tbs2)
  52. * sample = 87.5% at baud <= 500K
  53. * sample = 80% at baud > 500K
  54. * sample = 75% at baud > 800K
  55. */
  56. #if defined (N32G45X)/* APB1 36MHz(max) */
  57. static const struct n32g45x_baud_rate_info can_baud_rate_tab[] =
  58. {
  59. N32_CAN_BAUD_DEF(CAN1MBaud, CAN_RSJW_1tq, CAN_TBS1_15tq, CAN_TBS2_2tq, 2),
  60. N32_CAN_BAUD_DEF(CAN800kBaud, CAN_RSJW_1tq, CAN_TBS1_12tq, CAN_TBS2_2tq, 3),
  61. N32_CAN_BAUD_DEF(CAN500kBaud, CAN_RSJW_1tq, CAN_TBS1_15tq, CAN_TBS2_2tq, 4),
  62. N32_CAN_BAUD_DEF(CAN250kBaud, CAN_RSJW_1tq, CAN_TBS1_15tq, CAN_TBS2_2tq, 8),
  63. N32_CAN_BAUD_DEF(CAN125kBaud, CAN_RSJW_1tq, CAN_TBS1_15tq, CAN_TBS2_2tq, 16),
  64. N32_CAN_BAUD_DEF(CAN100kBaud, CAN_RSJW_1tq, CAN_TBS1_15tq, CAN_TBS2_2tq, 20),
  65. N32_CAN_BAUD_DEF(CAN50kBaud, CAN_RSJW_1tq, CAN_TBS1_15tq, CAN_TBS2_2tq, 40),
  66. N32_CAN_BAUD_DEF(CAN20kBaud, CAN_RSJW_1tq, CAN_TBS1_15tq, CAN_TBS2_2tq, 100),
  67. N32_CAN_BAUD_DEF(CAN10kBaud, CAN_RSJW_1tq, CAN_TBS1_15tq, CAN_TBS2_2tq, 200),
  68. };
  69. #endif
  70. #ifdef BSP_USING_CAN1
  71. static struct n32g45x_can drv_can1 =
  72. {
  73. .name = "can1",
  74. .can_base = CAN1,
  75. };
  76. #endif
  77. #ifdef BSP_USING_CAN2
  78. static struct n32g45x_can drv_can2 =
  79. {
  80. .name = "can2",
  81. .can_base = CAN2,
  82. };
  83. #endif
  84. static uint32_t get_can_baud_index(rt_uint32_t baud)
  85. {
  86. uint32_t len, index;
  87. len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
  88. for (index = 0; index < len; index++)
  89. {
  90. if (can_baud_rate_tab[index].baud_rate == baud)
  91. return index;
  92. }
  93. return 0; /* default baud is CAN1MBaud */
  94. }
  95. static uint8_t get_can_mode_rtt2n32(uint8_t rtt_can_mode)
  96. {
  97. uint8_t mode = CAN_Normal_Mode;
  98. switch (rtt_can_mode)
  99. {
  100. case RT_CAN_MODE_NORMAL:
  101. mode = CAN_Normal_Mode;
  102. break;
  103. #if RT_CAN_MODE_LISEN
  104. case RT_CAN_MODE_LISEN:
  105. #endif
  106. #if RT_CAN_MODE_LISTEN
  107. case RT_CAN_MODE_LISTEN:
  108. #endif
  109. mode = CAN_Silent_Mode;
  110. break;
  111. case RT_CAN_MODE_LOOPBACK:
  112. mode = CAN_LoopBack_Mode;
  113. break;
  114. #if RT_CAN_MODE_LOOPBACKANLISEN
  115. case RT_CAN_MODE_LOOPBACKANLISEN:
  116. #endif
  117. #if RT_CAN_MODE_LOOPBACKANLISTEN
  118. case RT_CAN_MODE_LOOPBACKANLISTEN:
  119. #endif
  120. mode = CAN_Silent_LoopBack_Mode;
  121. break;
  122. }
  123. return mode;
  124. }
  125. static rt_err_t _can_filter_config(struct n32g45x_can *drv_can)
  126. {
  127. if(drv_can->can_base == CAN1)
  128. {
  129. CAN1_InitFilter(&(drv_can->can_filter_init));
  130. }
  131. else
  132. if(drv_can->can_base == CAN2)
  133. {
  134. CAN2_InitFilter(&(drv_can->can_filter_init));
  135. }
  136. else
  137. {
  138. LOG_E("can filter config error");
  139. return -RT_EINVAL;
  140. }
  141. return RT_EOK;
  142. }
  143. static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
  144. {
  145. struct n32g45x_can *drv_can;
  146. rt_uint32_t baud_index;
  147. RT_ASSERT(can);
  148. RT_ASSERT(cfg);
  149. drv_can = (struct n32g45x_can *)can->parent.user_data;
  150. RT_ASSERT(drv_can);
  151. /* CAN1 and CAN2 register init */
  152. //CAN_DeInit(drv_can->can_base);
  153. /* Configure CAN1 and CAN2 */
  154. if(drv_can->can_base == CAN1)
  155. {
  156. n32_msp_can_init(CAN1);
  157. }
  158. else
  159. if(drv_can->can_base == CAN2)
  160. {
  161. n32_msp_can_init(CAN2);
  162. }
  163. else
  164. {
  165. LOG_E("can gpio init error");
  166. return -RT_EINVAL;
  167. }
  168. /* Struct init*/
  169. CAN_InitStruct(&(drv_can->can_init));
  170. drv_can->can_init.TTCM = DISABLE;
  171. drv_can->can_init.ABOM = DISABLE;
  172. drv_can->can_init.AWKUM = DISABLE;
  173. drv_can->can_init.NART = DISABLE;
  174. drv_can->can_init.RFLM = DISABLE;
  175. drv_can->can_init.TXFP = ENABLE;
  176. //mode
  177. drv_can->can_init.OperatingMode = get_can_mode_rtt2n32(cfg->mode);
  178. //baud
  179. baud_index = get_can_baud_index(cfg->baud_rate);
  180. drv_can->can_init.RSJW = can_baud_rate_tab[baud_index].tsjw;
  181. drv_can->can_init.TBS1 = can_baud_rate_tab[baud_index].tbs1;
  182. drv_can->can_init.TBS2 = can_baud_rate_tab[baud_index].tbs2;
  183. drv_can->can_init.BaudRatePrescaler = can_baud_rate_tab[baud_index].prescaler;
  184. /* init can */
  185. if( CAN_Init(drv_can->can_base, &(drv_can->can_init) ) != CAN_InitSTS_Success )
  186. {
  187. LOG_E("can init error");
  188. return -RT_ERROR;
  189. }
  190. int smaple = (can_baud_rate_tab[baud_index].tsjw + can_baud_rate_tab[baud_index].tbs1)*100 * 100 / (can_baud_rate_tab[baud_index].tsjw + can_baud_rate_tab[baud_index].tbs1 + can_baud_rate_tab[baud_index].tbs2);
  191. LOG_D("can[%08X] init baud:%d sjw:%d tbs1:%d tbs2:%d prescaler:%d sample:%d.%d",
  192. drv_can->can_base, cfg->baud_rate,
  193. can_baud_rate_tab[baud_index].tsjw, can_baud_rate_tab[baud_index].tbs1, can_baud_rate_tab[baud_index].tbs2,
  194. can_baud_rate_tab[baud_index].prescaler , smaple/100, smaple%100);
  195. /* default filter config */
  196. _can_filter_config(drv_can);
  197. return RT_EOK;
  198. }
  199. static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
  200. {
  201. rt_uint32_t argval;
  202. struct n32g45x_can *drv_can;
  203. struct rt_can_filter_config *filter_cfg;
  204. RT_ASSERT(can != RT_NULL);
  205. drv_can = (struct n32g45x_can *)can->parent.user_data;
  206. RT_ASSERT(drv_can != RT_NULL);
  207. switch (cmd)
  208. {
  209. case RT_DEVICE_CTRL_CLR_INT:
  210. argval = (rt_uint32_t) arg;
  211. if (argval == RT_DEVICE_FLAG_INT_RX)
  212. {
  213. if (CAN1 == drv_can->can_base)
  214. {
  215. NVIC_DisableIRQ(USB_LP_CAN1_RX0_IRQn);
  216. NVIC_DisableIRQ(CAN1_RX1_IRQn);
  217. }
  218. if (CAN2 == drv_can->can_base)
  219. {
  220. NVIC_DisableIRQ(CAN2_RX0_IRQn);
  221. NVIC_DisableIRQ(CAN2_RX1_IRQn);
  222. }
  223. CAN_INTConfig(drv_can->can_base, CAN_INT_FMP0, DISABLE); /*!< DATFIFO 0 message pending Interrupt*/
  224. CAN_INTConfig(drv_can->can_base, CAN_INT_FF0, DISABLE); /*!< DATFIFO 0 full Interrupt*/
  225. CAN_INTConfig(drv_can->can_base, CAN_INT_FOV0, DISABLE); /*!< DATFIFO 0 overrun Interrupt*/
  226. CAN_INTConfig(drv_can->can_base, CAN_INT_FMP1, DISABLE); /*!< DATFIFO 1 message pending Interrupt*/
  227. CAN_INTConfig(drv_can->can_base, CAN_INT_FF1, DISABLE); /*!< DATFIFO 1 full Interrupt*/
  228. CAN_INTConfig(drv_can->can_base, CAN_INT_FOV1, DISABLE); /*!< DATFIFO 1 overrun Interrupt*/
  229. }
  230. else if (argval == RT_DEVICE_FLAG_INT_TX)
  231. {
  232. if (CAN1 == drv_can->can_base)
  233. {
  234. NVIC_DisableIRQ(USB_HP_CAN1_TX_IRQn);
  235. }
  236. if (CAN2 == drv_can->can_base)
  237. {
  238. NVIC_DisableIRQ(CAN2_TX_IRQn);
  239. }
  240. CAN_INTConfig(drv_can->can_base, CAN_INT_TME, DISABLE); /*!< Transmit mailbox empty Interrupt*/
  241. }
  242. else if (argval == RT_DEVICE_CAN_INT_ERR)
  243. {
  244. if (CAN1 == drv_can->can_base)
  245. {
  246. NVIC_DisableIRQ(CAN1_SCE_IRQn);
  247. }
  248. if (CAN2 == drv_can->can_base)
  249. {
  250. NVIC_DisableIRQ(CAN2_SCE_IRQn);
  251. }
  252. CAN_INTConfig(drv_can->can_base, CAN_INT_EWG, DISABLE); /*!< Error warning Interrupt*/
  253. CAN_INTConfig(drv_can->can_base, CAN_INT_EPV, DISABLE); /*!< Error passive Interrupt*/
  254. CAN_INTConfig(drv_can->can_base, CAN_INT_BOF, DISABLE); /*!< Bus-off Interrupt*/
  255. CAN_INTConfig(drv_can->can_base, CAN_INT_LEC, DISABLE); /*!< Last error code Interrupt*/
  256. CAN_INTConfig(drv_can->can_base, CAN_INT_ERR, DISABLE); /*!< Error Interrupt*/
  257. }
  258. break;
  259. case RT_DEVICE_CTRL_SET_INT:
  260. argval = (rt_uint32_t) arg;
  261. if (argval == RT_DEVICE_FLAG_INT_RX)
  262. {
  263. CAN_INTConfig(drv_can->can_base, CAN_INT_FMP0, ENABLE); /*!< DATFIFO 0 message pending Interrupt*/
  264. CAN_INTConfig(drv_can->can_base, CAN_INT_FF0, ENABLE); /*!< DATFIFO 0 full Interrupt*/
  265. CAN_INTConfig(drv_can->can_base, CAN_INT_FOV0, ENABLE); /*!< DATFIFO 0 overrun Interrupt*/
  266. CAN_INTConfig(drv_can->can_base, CAN_INT_FMP1, ENABLE); /*!< DATFIFO 1 message pending Interrupt*/
  267. CAN_INTConfig(drv_can->can_base, CAN_INT_FF1, ENABLE); /*!< DATFIFO 1 full Interrupt*/
  268. CAN_INTConfig(drv_can->can_base, CAN_INT_FOV1, ENABLE); /*!< DATFIFO 1 overrun Interrupt*/
  269. if (CAN1 == drv_can->can_base)
  270. {
  271. NVIC_SetPriority(USB_LP_CAN1_RX0_IRQn, 1);
  272. NVIC_EnableIRQ(USB_LP_CAN1_RX0_IRQn);
  273. NVIC_SetPriority(CAN1_RX1_IRQn, 1);
  274. NVIC_EnableIRQ(CAN1_RX1_IRQn);
  275. }
  276. if (CAN2 == drv_can->can_base)
  277. {
  278. NVIC_SetPriority(CAN2_RX0_IRQn, 1);
  279. NVIC_EnableIRQ(CAN2_RX0_IRQn);
  280. NVIC_SetPriority(CAN2_RX1_IRQn, 1);
  281. NVIC_EnableIRQ(CAN2_RX1_IRQn);
  282. }
  283. }
  284. else if (argval == RT_DEVICE_FLAG_INT_TX)
  285. {
  286. CAN_INTConfig(drv_can->can_base, CAN_INT_TME, ENABLE); /*!< Transmit mailbox empty Interrupt*/
  287. if (CAN1 == drv_can->can_base)
  288. {
  289. NVIC_SetPriority(USB_HP_CAN1_TX_IRQn, 1);
  290. NVIC_EnableIRQ(USB_HP_CAN1_TX_IRQn);
  291. }
  292. if (CAN2 == drv_can->can_base)
  293. {
  294. NVIC_SetPriority(CAN2_TX_IRQn, 1);
  295. NVIC_EnableIRQ(CAN2_TX_IRQn);
  296. }
  297. }
  298. else if (argval == RT_DEVICE_CAN_INT_ERR)
  299. {
  300. CAN_INTConfig(drv_can->can_base, CAN_INT_EWG, ENABLE); /*!< Error warning Interrupt*/
  301. CAN_INTConfig(drv_can->can_base, CAN_INT_EPV, ENABLE); /*!< Error passive Interrupt*/
  302. CAN_INTConfig(drv_can->can_base, CAN_INT_BOF, ENABLE); /*!< Bus-off Interrupt*/
  303. CAN_INTConfig(drv_can->can_base, CAN_INT_LEC, ENABLE); /*!< Last error code Interrupt*/
  304. CAN_INTConfig(drv_can->can_base, CAN_INT_ERR, ENABLE); /*!< Error Interrupt*/
  305. if (CAN1 == drv_can->can_base)
  306. {
  307. NVIC_SetPriority(CAN1_SCE_IRQn, 1);
  308. NVIC_EnableIRQ(CAN1_SCE_IRQn);
  309. }
  310. if (CAN2 == drv_can->can_base)
  311. {
  312. NVIC_SetPriority(CAN2_SCE_IRQn, 1);
  313. NVIC_EnableIRQ(CAN2_SCE_IRQn);
  314. }
  315. }
  316. break;
  317. case RT_CAN_CMD_SET_FILTER:
  318. {
  319. rt_uint32_t id_h = 0;
  320. rt_uint32_t id_l = 0;
  321. rt_uint32_t mask_h = 0;
  322. rt_uint32_t mask_l = 0;
  323. rt_uint32_t mask_l_tail = 0; //CAN_FxR2 bit [2:0]
  324. if (RT_NULL == arg)
  325. {
  326. /* default filter config */
  327. _can_filter_config(drv_can);
  328. }
  329. else
  330. {
  331. filter_cfg = (struct rt_can_filter_config *)arg;
  332. /* get default filter */
  333. for (int i = 0; i < filter_cfg->count; i++)
  334. {
  335. if (filter_cfg->items[i].hdr_bank == -1)
  336. {
  337. drv_can->can_filter_init.Filter_Num = i;
  338. }
  339. else
  340. {
  341. drv_can->can_filter_init.Filter_Num = filter_cfg->items[i].hdr_bank;
  342. }
  343. if (filter_cfg->items[i].mode == 0x00)
  344. {
  345. drv_can->can_filter_init.Filter_Mode = CAN_Filter_IdMaskMode;
  346. }
  347. else if (filter_cfg->items[i].mode == 0x01)
  348. {
  349. drv_can->can_filter_init.Filter_Mode = CAN_Filter_IdListMode;
  350. }
  351. if (filter_cfg->items[i].ide == RT_CAN_STDID)
  352. {
  353. id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF;
  354. id_l = ((filter_cfg->items[i].id << 18) |
  355. (filter_cfg->items[i].ide << 2) |
  356. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  357. mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF;
  358. mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF;
  359. }
  360. else if (filter_cfg->items[i].ide == RT_CAN_EXTID)
  361. {
  362. id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF;
  363. id_l = ((filter_cfg->items[i].id << 3) |
  364. (filter_cfg->items[i].ide << 2) |
  365. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  366. mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF;
  367. mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF;
  368. }
  369. drv_can->can_filter_init.Filter_Scale = CAN_Filter_32bitScale;
  370. drv_can->can_filter_init.Filter_HighId = id_h;
  371. drv_can->can_filter_init.Filter_LowId = id_l;
  372. drv_can->can_filter_init.FilterMask_HighId = mask_h;
  373. drv_can->can_filter_init.FilterMask_LowId = mask_l;
  374. drv_can->can_filter_init.Filter_FIFOAssignment = CAN_FIFO0;
  375. drv_can->can_filter_init.Filter_Act = ENABLE;
  376. /* Filter conf */
  377. _can_filter_config(drv_can);
  378. }
  379. }
  380. break;
  381. }
  382. case RT_CAN_CMD_SET_MODE:
  383. argval = (rt_uint32_t) arg;
  384. if (argval != RT_CAN_MODE_NORMAL &&
  385. argval != RT_CAN_MODE_LISEN &&
  386. argval != RT_CAN_MODE_LOOPBACK &&
  387. argval != RT_CAN_MODE_LOOPBACKANLISEN)
  388. {
  389. return -RT_ERROR;
  390. }
  391. if (argval != drv_can->device.config.mode)
  392. {
  393. drv_can->device.config.mode = argval;
  394. return _can_config(&drv_can->device, &drv_can->device.config);
  395. }
  396. break;
  397. case RT_CAN_CMD_SET_BAUD:
  398. argval = (rt_uint32_t) arg;
  399. if (argval != CAN1MBaud &&
  400. argval != CAN800kBaud &&
  401. argval != CAN500kBaud &&
  402. argval != CAN250kBaud &&
  403. argval != CAN125kBaud &&
  404. argval != CAN100kBaud &&
  405. argval != CAN50kBaud &&
  406. argval != CAN20kBaud &&
  407. argval != CAN10kBaud)
  408. {
  409. return -RT_ERROR;
  410. }
  411. if (argval != drv_can->device.config.baud_rate)
  412. {
  413. drv_can->device.config.baud_rate = argval;
  414. return _can_config(&drv_can->device, &drv_can->device.config);
  415. }
  416. break;
  417. case RT_CAN_CMD_SET_PRIV:
  418. argval = (rt_uint32_t) arg;
  419. if (argval != RT_CAN_MODE_PRIV &&
  420. argval != RT_CAN_MODE_NOPRIV)
  421. {
  422. return -RT_ERROR;
  423. }
  424. if (argval != drv_can->device.config.privmode)
  425. {
  426. drv_can->device.config.privmode = argval;
  427. return _can_config(&drv_can->device, &drv_can->device.config);
  428. }
  429. break;
  430. case RT_CAN_CMD_GET_STATUS:
  431. {
  432. rt_uint32_t errval;
  433. errval = drv_can->can_base->ESTS;
  434. drv_can->device.status.rcverrcnt = errval >> 24; //REC
  435. drv_can->device.status.snderrcnt = (errval >> 16 & 0xFF); //TEC
  436. drv_can->device.status.lasterrtype = errval & 0x70; //LEC
  437. drv_can->device.status.errcode = errval & 0x07;
  438. rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
  439. }
  440. break;
  441. }
  442. return RT_EOK;
  443. }
  444. /* CAN Mailbox Transmit Request */
  445. #define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */
  446. static int _can_sendmsg_rtmsg(CAN_Module* can_base, struct rt_can_msg *pmsg, uint32_t mailbox_index)
  447. {
  448. CanTxMessage CAN_TxMessage = {0};
  449. CanTxMessage* TxMessage = &CAN_TxMessage;
  450. /* Check the parameters */
  451. assert_param(IS_CAN_ALL_PERIPH(can_base));
  452. if (RT_CAN_STDID == pmsg->ide)
  453. {
  454. TxMessage->IDE = CAN_Standard_Id;
  455. RT_ASSERT(IS_CAN_STDID(pmsg->id));
  456. TxMessage->StdId = pmsg->id;
  457. }
  458. else
  459. {
  460. TxMessage->IDE = CAN_Extended_Id;
  461. RT_ASSERT(IS_CAN_EXTID(pmsg->id));
  462. TxMessage->ExtId = pmsg->id;
  463. }
  464. if (RT_CAN_DTR == pmsg->rtr)
  465. {
  466. TxMessage->RTR = CAN_RTRQ_DATA;
  467. }
  468. else
  469. {
  470. TxMessage->RTR = CAN_RTRQ_REMOTE;
  471. }
  472. if (mailbox_index != CAN_TxSTS_NoMailBox)
  473. {
  474. /* Set up the Id */
  475. can_base->sTxMailBox[mailbox_index].TMI &= TMIDxR_TXRQ;
  476. if (TxMessage->IDE == CAN_Standard_Id)
  477. {
  478. assert_param(IS_CAN_STDID(TxMessage->StdId));
  479. can_base->sTxMailBox[mailbox_index].TMI |= ((TxMessage->StdId << 21) | TxMessage->RTR);
  480. }
  481. else
  482. {
  483. assert_param(IS_CAN_EXTID(TxMessage->ExtId));
  484. can_base->sTxMailBox[mailbox_index].TMI |= ((TxMessage->ExtId << 3) | TxMessage->IDE | TxMessage->RTR);
  485. }
  486. /* Set up the DLC */
  487. TxMessage->DLC = pmsg->len & 0x0FU;
  488. can_base->sTxMailBox[mailbox_index].TMDT &= (uint32_t)0xFFFFFFF0;
  489. can_base->sTxMailBox[mailbox_index].TMDT |= TxMessage->DLC;
  490. /* Set up the data field */
  491. can_base->sTxMailBox[mailbox_index].TMDH =
  492. (((uint32_t)pmsg->data[7] << 24) |
  493. ((uint32_t)pmsg->data[6] << 16) |
  494. ((uint32_t)pmsg->data[5] << 8) |
  495. ((uint32_t)pmsg->data[4]) );
  496. can_base->sTxMailBox[mailbox_index].TMDL =
  497. (((uint32_t)pmsg->data[3] << 24) |
  498. ((uint32_t)pmsg->data[2] << 16) |
  499. ((uint32_t)pmsg->data[1] << 8) |
  500. ((uint32_t)pmsg->data[0]) );
  501. /* Request transmission */
  502. can_base->sTxMailBox[mailbox_index].TMI |= TMIDxR_TXRQ;
  503. return RT_EOK;
  504. }
  505. return -RT_ERROR;
  506. }
  507. static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  508. {
  509. struct n32g45x_can *drv_can;
  510. RT_ASSERT(can != RT_NULL);
  511. RT_ASSERT(buf != RT_NULL);
  512. drv_can = (struct n32g45x_can *)can->parent.user_data;
  513. RT_ASSERT(drv_can != RT_NULL);
  514. /* Select one empty transmit mailbox */
  515. switch(box_num)
  516. {
  517. case 0:
  518. if ((drv_can->can_base->TSTS & CAN_TSTS_TMEM0) != CAN_TSTS_TMEM0)
  519. {
  520. /* Return function status */
  521. return -RT_ERROR;
  522. }
  523. break;
  524. case 1:
  525. if ((drv_can->can_base->TSTS & CAN_TSTS_TMEM1) != CAN_TSTS_TMEM1)
  526. {
  527. /* Return function status */
  528. return -RT_ERROR;
  529. }
  530. break;
  531. case 2:
  532. if ((drv_can->can_base->TSTS & CAN_TSTS_TMEM2) != CAN_TSTS_TMEM2)
  533. {
  534. /* Return function status */
  535. return -RT_ERROR;
  536. }
  537. break;
  538. default:
  539. RT_ASSERT(0);
  540. break;
  541. }
  542. //start send msg
  543. return _can_sendmsg_rtmsg(drv_can->can_base , ((struct rt_can_msg *) buf) ,box_num);
  544. }
  545. static int _can_recvmsg_rtmsg(CAN_Module* can_base, struct rt_can_msg *pmsg, uint32_t FIFONum)
  546. {
  547. CanRxMessage CAN_RxMessage = {0};
  548. CanRxMessage* RxMessage = &CAN_RxMessage;
  549. /* Check the parameters */
  550. assert_param(IS_CAN_ALL_PERIPH(can_base));
  551. assert_param(IS_CAN_FIFO(FIFONum));
  552. /* Check the Rx FIFO */
  553. if (FIFONum == CAN_FIFO0) /* Rx element is assigned to Rx FIFO 0 */
  554. {
  555. /* Check that the Rx FIFO 0 is not empty */
  556. if ((can_base->RFF0 & CAN_RFF0_FFMP0) == 0U)
  557. {
  558. return -RT_ERROR;
  559. }
  560. }
  561. else /* Rx element is assigned to Rx FIFO 1 */
  562. {
  563. /* Check that the Rx FIFO 1 is not empty */
  564. if ((can_base->RFF1 & CAN_RFF1_FFMP1) == 0U)
  565. {
  566. return -RT_ERROR;
  567. }
  568. }
  569. /* Get the Id */
  570. RxMessage->IDE = (uint8_t)0x04 & can_base->sFIFOMailBox[FIFONum].RMI;
  571. if (RxMessage->IDE == CAN_Standard_Id)
  572. {
  573. RxMessage->StdId = (uint32_t)0x000007FF & (can_base->sFIFOMailBox[FIFONum].RMI >> 21);
  574. }
  575. else
  576. {
  577. RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (can_base->sFIFOMailBox[FIFONum].RMI >> 3);
  578. }
  579. RxMessage->RTR = (uint8_t)0x02 & can_base->sFIFOMailBox[FIFONum].RMI;
  580. /* Get the DLC */
  581. RxMessage->DLC = (uint8_t)0x0F & can_base->sFIFOMailBox[FIFONum].RMDT;
  582. /* Get the FMI */
  583. RxMessage->FMI = (uint8_t)0xFF & (can_base->sFIFOMailBox[FIFONum].RMDT >> 8);
  584. /* Get the data field */
  585. pmsg->data[0] = (uint8_t)0xFF & can_base->sFIFOMailBox[FIFONum].RMDL;
  586. pmsg->data[1] = (uint8_t)0xFF & (can_base->sFIFOMailBox[FIFONum].RMDL >> 8);
  587. pmsg->data[2] = (uint8_t)0xFF & (can_base->sFIFOMailBox[FIFONum].RMDL >> 16);
  588. pmsg->data[3] = (uint8_t)0xFF & (can_base->sFIFOMailBox[FIFONum].RMDL >> 24);
  589. pmsg->data[4] = (uint8_t)0xFF & can_base->sFIFOMailBox[FIFONum].RMDH;
  590. pmsg->data[5] = (uint8_t)0xFF & (can_base->sFIFOMailBox[FIFONum].RMDH >> 8);
  591. pmsg->data[6] = (uint8_t)0xFF & (can_base->sFIFOMailBox[FIFONum].RMDH >> 16);
  592. pmsg->data[7] = (uint8_t)0xFF & (can_base->sFIFOMailBox[FIFONum].RMDH >> 24);
  593. /* get len */
  594. pmsg->len = RxMessage->DLC;
  595. /* get id */
  596. if (RxMessage->IDE == CAN_Standard_Id)
  597. {
  598. pmsg->ide = RT_CAN_STDID;
  599. pmsg->id = RxMessage->StdId;
  600. }
  601. else
  602. {
  603. pmsg->ide = RT_CAN_EXTID;
  604. pmsg->id = RxMessage->ExtId;
  605. }
  606. /* get type */
  607. if (CAN_RTRQ_Data == RxMessage->RTR)
  608. {
  609. pmsg->rtr = RT_CAN_DTR;
  610. }
  611. else
  612. {
  613. pmsg->rtr = RT_CAN_RTR;
  614. }
  615. /* get hdr_index */
  616. if (can_base == CAN1)
  617. {
  618. pmsg->hdr_index = (RxMessage->FMI + 1) >> 1;
  619. }
  620. else if (can_base == CAN2)
  621. {
  622. pmsg->hdr_index = (RxMessage->FMI >> 1) + 14;
  623. }
  624. /* Release the DATFIFO */
  625. /* Release FIFO0 */
  626. if (FIFONum == CAN_FIFO0)
  627. {
  628. can_base->RFF0 |= CAN_RFF0_RFFOM0;
  629. }
  630. /* Release FIFO1 */
  631. else /* FIFONum == CAN_FIFO1 */
  632. {
  633. can_base->RFF1 |= CAN_RFF1_RFFOM1;
  634. }
  635. return RT_EOK;
  636. }
  637. static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  638. {
  639. struct n32g45x_can *drv_can;
  640. RT_ASSERT(can != RT_NULL);
  641. RT_ASSERT(buf != RT_NULL);
  642. drv_can = (struct n32g45x_can *)can->parent.user_data;
  643. RT_ASSERT(drv_can != RT_NULL);
  644. /* get data */
  645. return _can_recvmsg_rtmsg(drv_can->can_base,((struct rt_can_msg *) buf),fifo);
  646. }
  647. static const struct rt_can_ops _can_ops =
  648. {
  649. _can_config,
  650. _can_control,
  651. _can_sendmsg,
  652. _can_recvmsg,
  653. };
  654. static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
  655. {
  656. struct n32g45x_can *drv_can;
  657. RT_ASSERT(can != RT_NULL);
  658. drv_can = (struct n32g45x_can *)can->parent.user_data;
  659. RT_ASSERT(drv_can != RT_NULL);
  660. CAN_Module * can_base = drv_can->can_base;
  661. switch (fifo)
  662. {
  663. case CAN_FIFO0:
  664. if( (can_base->RFF0 & CAN_RFF0_FFMP0) && ((can_base->INTE & CAN_INTE_FMPITE0) ==CAN_INTE_FMPITE0) )
  665. {
  666. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  667. }
  668. if( (can_base->RFF0 & CAN_RFF0_FFULL0) && ((can_base->INTE & CAN_INTE_FFITE0) ==CAN_INTE_FFITE0) )
  669. {
  670. can_base->RFF0 |= CAN_RFF0_FFULL0; //clear
  671. }
  672. if( (can_base->RFF0 & CAN_RFF0_FFOVR0) && ((can_base->INTE & CAN_INTE_FOVITE0) ==CAN_INTE_FOVITE0) )
  673. {
  674. can_base->RFF0 |= CAN_RFF0_FFOVR0; //clear
  675. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  676. }
  677. break;
  678. case CAN_FIFO1:
  679. if( (can_base->RFF1 & CAN_RFF1_FFMP1) && ((can_base->INTE & CAN_INTE_FMPITE1) ==CAN_INTE_FMPITE1) )
  680. {
  681. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  682. }
  683. if( (can_base->RFF1 & CAN_RFF1_FFULL1) && ((can_base->INTE & CAN_INTE_FFITE1) ==CAN_INTE_FFITE1) )
  684. {
  685. can_base->RFF1 |= CAN_RFF1_FFULL1; //clear
  686. }
  687. if( (can_base->RFF1 & CAN_RFF1_FFOVR1) && ((can_base->INTE & CAN_INTE_FOVITE1) ==CAN_INTE_FOVITE1) )
  688. {
  689. can_base->RFF1 |= CAN_RFF1_FFOVR1; //clear
  690. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  691. }
  692. break;
  693. }
  694. }
  695. #ifdef BSP_USING_CAN1
  696. /**
  697. * @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
  698. */
  699. void USB_HP_CAN1_TX_IRQHandler(void)
  700. {
  701. rt_interrupt_enter();
  702. struct n32g45x_can *drv_can = &drv_can1;
  703. CAN_Module * can_base = drv_can->can_base;
  704. if((can_base->INTE & CAN_INTE_TMEITE) == CAN_INTE_TMEITE)
  705. {
  706. if( (can_base->TSTS & CAN_TSTS_RQCPM0) == CAN_TSTS_RQCPM0)
  707. {
  708. //Request Completed Mailbox0
  709. if( ( can_base->TSTS & CAN_TSTS_TXOKM0) == CAN_TSTS_TXOKM0)
  710. {
  711. can_base->TSTS |= CAN_TSTS_TXOKM0; // set 1 clear
  712. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_DONE | (0x00 << 8));
  713. }
  714. if( ( ( can_base->TSTS & CAN_TSTS_ALSTM0) == CAN_TSTS_ALSTM0)
  715. || (( can_base->TSTS & CAN_TSTS_TERRM0) == CAN_TSTS_TERRM0) )
  716. {
  717. can_base->TSTS |= (CAN_TSTS_ALSTM0 | CAN_TSTS_TERRM0); // set 1 clear
  718. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | (0x00 << 8));
  719. }
  720. can_base->TSTS |= CAN_TSTS_RQCPM0; // set 1 clear
  721. }
  722. if( (can_base->TSTS & CAN_TSTS_RQCPM1) == CAN_TSTS_RQCPM1)
  723. {
  724. //Request Completed Mailbox0
  725. if( ( can_base->TSTS & CAN_TSTS_TXOKM1) == CAN_TSTS_TXOKM1)
  726. {
  727. can_base->TSTS |= CAN_TSTS_TXOKM1; // set 1 clear
  728. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_DONE | (0x01 << 8));
  729. }
  730. if( ( ( can_base->TSTS & CAN_TSTS_ALSTM1) == CAN_TSTS_ALSTM1)
  731. || (( can_base->TSTS & CAN_TSTS_TERRM1) == CAN_TSTS_TERRM1) )
  732. {
  733. can_base->TSTS |= (CAN_TSTS_ALSTM1 | CAN_TSTS_TERRM1); // set 1 clear
  734. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | (0x01 << 8));
  735. }
  736. can_base->TSTS |= CAN_TSTS_RQCPM1; // set 1 clear
  737. }
  738. if( (can_base->TSTS & CAN_TSTS_RQCPM2) == CAN_TSTS_RQCPM2)
  739. {
  740. //Request Completed Mailbox0
  741. if( ( can_base->TSTS & CAN_TSTS_TXOKM2) == CAN_TSTS_TXOKM2)
  742. {
  743. can_base->TSTS |= CAN_TSTS_TXOKM2; // set 1 clear
  744. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_DONE | (0x02 << 8));
  745. }
  746. if( ( ( can_base->TSTS & CAN_TSTS_ALSTM2) == CAN_TSTS_ALSTM2)
  747. || (( can_base->TSTS & CAN_TSTS_TERRM2) == CAN_TSTS_TERRM2) )
  748. {
  749. can_base->TSTS |= (CAN_TSTS_ALSTM2 | CAN_TSTS_TERRM2); // set 1 clear
  750. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | (0x02 << 8));
  751. }
  752. can_base->TSTS |= CAN_TSTS_RQCPM2; // set 1 clear
  753. }
  754. can_base->TSTS |= (CAN_TSTS_RQCPM0 | CAN_TSTS_RQCPM1 |CAN_TSTS_RQCPM2); // set 1 clear
  755. }
  756. rt_interrupt_leave();
  757. }
  758. /**
  759. * @brief This function handles CAN1 RX0 interrupts.
  760. */
  761. void USB_LP_CAN1_RX0_IRQHandler(void)
  762. {
  763. rt_interrupt_enter();
  764. _can_rx_isr(&drv_can1.device, CAN_FIFO0);
  765. rt_interrupt_leave();
  766. }
  767. /**
  768. * @brief This function handles CAN1 RX1 interrupts.
  769. */
  770. void CAN1_RX1_IRQHandler(void)
  771. {
  772. rt_interrupt_enter();
  773. _can_rx_isr(&drv_can1.device, CAN_FIFO1);
  774. rt_interrupt_leave();
  775. }
  776. /**
  777. * @brief This function handles CAN1 SCE interrupts.
  778. */
  779. void CAN1_SCE_IRQHandler(void)
  780. {
  781. rt_interrupt_enter();
  782. struct n32g45x_can *drv_can = &drv_can1;
  783. CAN_Module * can_base = drv_can->can_base;
  784. uint32_t errval = can_base->ESTS;
  785. // ESTS -> LEC
  786. switch ((errval & 0x70) >> 4)
  787. {
  788. case RT_CAN_BUS_BIT_PAD_ERR:
  789. drv_can->device.status.bitpaderrcnt++;
  790. break;
  791. case RT_CAN_BUS_FORMAT_ERR:
  792. drv_can->device.status.formaterrcnt++;
  793. break;
  794. case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
  795. drv_can->device.status.ackerrcnt++;
  796. if( ( can_base->TSTS & CAN_TSTS_TXOKM0) == CAN_TSTS_TXOKM0)
  797. {
  798. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | 0x00 << 8);
  799. }else
  800. if( ( can_base->TSTS & CAN_TSTS_TXOKM1) == CAN_TSTS_TXOKM1)
  801. {
  802. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | 0x01 << 8);
  803. }else
  804. if( ( can_base->TSTS & CAN_TSTS_TXOKM2) == CAN_TSTS_TXOKM2)
  805. {
  806. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | 0x02 << 8);
  807. }
  808. break;
  809. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  810. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  811. drv_can->device.status.biterrcnt++;
  812. break;
  813. case RT_CAN_BUS_CRC_ERR:
  814. drv_can->device.status.crcerrcnt++;
  815. break;
  816. }
  817. drv_can->device.status.lasterrtype = errval & 0x70;
  818. drv_can->device.status.rcverrcnt = errval >> 24;
  819. drv_can->device.status.snderrcnt = (errval >> 16 & 0xFF);
  820. drv_can->device.status.errcode = errval & 0x07;
  821. CAN_ClearINTPendingBit(can_base, CAN_INT_ERR);
  822. rt_interrupt_leave();
  823. }
  824. #endif /* BSP_USING_CAN1 */
  825. #ifdef BSP_USING_CAN2
  826. /**
  827. * @brief This function handles CAN2 TX interrupts.
  828. */
  829. void CAN2_TX_IRQHandler(void)
  830. {
  831. rt_interrupt_enter();
  832. struct n32g45x_can *drv_can = &drv_can2;
  833. CAN_Module * can_base = drv_can->can_base;
  834. if((can_base->INTE & CAN_INTE_TMEITE) == CAN_INTE_TMEITE)
  835. {
  836. if( (can_base->TSTS & CAN_TSTS_RQCPM0) == CAN_TSTS_RQCPM0)
  837. {
  838. //Request Completed Mailbox0
  839. if( ( can_base->TSTS & CAN_TSTS_TXOKM0) == CAN_TSTS_TXOKM0)
  840. {
  841. can_base->TSTS |= CAN_TSTS_TXOKM0; // set 1 clear
  842. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_DONE | (0x00 << 8));
  843. }
  844. if( ( ( can_base->TSTS & CAN_TSTS_ALSTM0) == CAN_TSTS_ALSTM0)
  845. || (( can_base->TSTS & CAN_TSTS_TERRM0) == CAN_TSTS_TERRM0) )
  846. {
  847. can_base->TSTS |= (CAN_TSTS_ALSTM0 | CAN_TSTS_TERRM0); // set 1 clear
  848. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | (0x00 << 8));
  849. }
  850. can_base->TSTS |= CAN_TSTS_RQCPM0; // set 1 clear
  851. }
  852. if( (can_base->TSTS & CAN_TSTS_RQCPM1) == CAN_TSTS_RQCPM1)
  853. {
  854. //Request Completed Mailbox1
  855. if( ( can_base->TSTS & CAN_TSTS_TXOKM1) == CAN_TSTS_TXOKM1)
  856. {
  857. can_base->TSTS |= CAN_TSTS_TXOKM1; // set 1 clear
  858. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_DONE | (0x01 << 8));
  859. }
  860. if( ( ( can_base->TSTS & CAN_TSTS_ALSTM1) == CAN_TSTS_ALSTM1)
  861. || (( can_base->TSTS & CAN_TSTS_TERRM1) == CAN_TSTS_TERRM1) )
  862. {
  863. can_base->TSTS |= (CAN_TSTS_ALSTM1 | CAN_TSTS_TERRM1); // set 1 clear
  864. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | (0x01 << 8));
  865. }
  866. can_base->TSTS |= CAN_TSTS_RQCPM1; // set 1 clear
  867. }
  868. if( (can_base->TSTS & CAN_TSTS_RQCPM2) == CAN_TSTS_RQCPM2)
  869. {
  870. //Request Completed Mailbox2
  871. if( ( can_base->TSTS & CAN_TSTS_TXOKM2) == CAN_TSTS_TXOKM2)
  872. {
  873. can_base->TSTS |= CAN_TSTS_TXOKM2; // set 1 clear
  874. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_DONE | (0x02 << 8));
  875. }
  876. if( ( ( can_base->TSTS & CAN_TSTS_ALSTM2) == CAN_TSTS_ALSTM2)
  877. || (( can_base->TSTS & CAN_TSTS_TERRM2) == CAN_TSTS_TERRM2) )
  878. {
  879. can_base->TSTS |= (CAN_TSTS_ALSTM2 | CAN_TSTS_TERRM2); // set 1 clear
  880. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | (0x02 << 8));
  881. }
  882. can_base->TSTS |= CAN_TSTS_RQCPM2; // set 1 clear
  883. }
  884. can_base->TSTS |= (CAN_TSTS_RQCPM0 | CAN_TSTS_RQCPM1 |CAN_TSTS_RQCPM2); // set 1 clear
  885. }
  886. rt_interrupt_leave();
  887. }
  888. /**
  889. * @brief This function handles CAN2 RX0 interrupts.
  890. */
  891. void CAN2_RX0_IRQHandler(void)
  892. {
  893. rt_interrupt_enter();
  894. _can_rx_isr(&drv_can2.device, CAN_FIFO0);
  895. rt_interrupt_leave();
  896. }
  897. /**
  898. * @brief This function handles CAN2 RX1 interrupts.
  899. */
  900. void CAN2_RX1_IRQHandler(void)
  901. {
  902. rt_interrupt_enter();
  903. _can_rx_isr(&drv_can2.device, CAN_FIFO1);
  904. rt_interrupt_leave();
  905. }
  906. /**
  907. * @brief This function handles CAN2 SCE interrupts.
  908. */
  909. void CAN2_SCE_IRQHandler(void)
  910. {
  911. rt_interrupt_enter();
  912. struct n32g45x_can *drv_can = &drv_can2;
  913. CAN_Module * can_base = drv_can->can_base;
  914. uint32_t errval = can_base->ESTS;
  915. // ESTS -> LEC
  916. switch ((errval & 0x70) >> 4)
  917. {
  918. case RT_CAN_BUS_BIT_PAD_ERR:
  919. drv_can->device.status.bitpaderrcnt++;
  920. break;
  921. case RT_CAN_BUS_FORMAT_ERR:
  922. drv_can->device.status.formaterrcnt++;
  923. break;
  924. case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
  925. drv_can->device.status.ackerrcnt++;
  926. if( ( can_base->TSTS & CAN_TSTS_TXOKM0) == CAN_TSTS_TXOKM0)
  927. {
  928. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | 0x00 << 8);
  929. }else
  930. if( ( can_base->TSTS & CAN_TSTS_TXOKM1) == CAN_TSTS_TXOKM1)
  931. {
  932. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | 0x01 << 8);
  933. }else
  934. if( ( can_base->TSTS & CAN_TSTS_TXOKM2) == CAN_TSTS_TXOKM2)
  935. {
  936. rt_hw_can_isr(&drv_can->device, RT_CAN_EVENT_TX_FAIL | 0x02 << 8);
  937. }
  938. break;
  939. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  940. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  941. drv_can->device.status.biterrcnt++;
  942. break;
  943. case RT_CAN_BUS_CRC_ERR:
  944. drv_can->device.status.crcerrcnt++;
  945. break;
  946. }
  947. drv_can->device.status.lasterrtype = errval & 0x70;
  948. drv_can->device.status.rcverrcnt = errval >> 24;
  949. drv_can->device.status.snderrcnt = (errval >> 16 & 0xFF);
  950. drv_can->device.status.errcode = errval & 0x07;
  951. CAN_ClearINTPendingBit(can_base, CAN_INT_ERR);
  952. rt_interrupt_leave();
  953. }
  954. #endif /* BSP_USING_CAN2 */
  955. int rt_hw_can_init(void)
  956. {
  957. struct can_configure config = CANDEFAULTCONFIG;
  958. config.privmode = RT_CAN_MODE_NOPRIV;
  959. config.ticks = 50;
  960. #ifdef RT_CAN_USING_HDR
  961. config.maxhdr = 14;
  962. #ifdef CAN2
  963. config.maxhdr = 28;
  964. #endif
  965. #endif
  966. #ifdef BSP_USING_CAN1
  967. /* config default filter */
  968. drv_can1.can_filter_init.Filter_Num = 0;
  969. drv_can1.can_filter_init.Filter_Mode = CAN_Filter_IdMaskMode;
  970. drv_can1.can_filter_init.Filter_Scale = CAN_Filter_32bitScale;
  971. drv_can1.can_filter_init.Filter_HighId = 0x0000;
  972. drv_can1.can_filter_init.Filter_LowId = 0x0000;
  973. drv_can1.can_filter_init.FilterMask_HighId = 0;
  974. drv_can1.can_filter_init.FilterMask_LowId = 0;
  975. drv_can1.can_filter_init.Filter_FIFOAssignment = CAN_FIFO0;
  976. drv_can1.can_filter_init.Filter_Act = ENABLE;
  977. drv_can1.device.config = config;
  978. /* register CAN1 device */
  979. rt_hw_can_register(&drv_can1.device, drv_can1.name, &_can_ops, &drv_can1);
  980. #endif /* BSP_USING_CAN1 */
  981. #ifdef BSP_USING_CAN2
  982. /* config default filter */
  983. drv_can2.can_filter_init.Filter_Num = 0;
  984. drv_can2.can_filter_init.Filter_Mode = CAN_Filter_IdMaskMode;
  985. drv_can2.can_filter_init.Filter_Scale = CAN_Filter_32bitScale;
  986. drv_can2.can_filter_init.Filter_HighId = 0x0000;
  987. drv_can2.can_filter_init.Filter_LowId = 0x0000;
  988. drv_can2.can_filter_init.FilterMask_HighId = 0;
  989. drv_can2.can_filter_init.FilterMask_LowId = 0;
  990. drv_can2.can_filter_init.Filter_FIFOAssignment = CAN_FIFO0;
  991. drv_can2.can_filter_init.Filter_Act = ENABLE;
  992. drv_can2.device.config = config;
  993. /* register CAN2 device */
  994. rt_hw_can_register(&drv_can2.device, drv_can2.name, &_can_ops, &drv_can2);
  995. #endif /* BSP_USING_CAN2 */
  996. return 0;
  997. }
  998. INIT_BOARD_EXPORT(rt_hw_can_init);
  999. #endif /* BSP_USING_CAN */
  1000. /************************** end of file ******************/