drv_pwm.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-11-11 breo.com first version
  9. */
  10. #include <board.h>
  11. #include "drv_pwm.h"
  12. #ifdef RT_USING_PWM
  13. #if !defined(BSP_USING_TIM1_CH1) && !defined(BSP_USING_TIM1_CH2) && \
  14. !defined(BSP_USING_TIM1_CH3) && !defined(BSP_USING_TIM1_CH4) && \
  15. !defined(BSP_USING_TIM2_CH1) && !defined(BSP_USING_TIM2_CH2) && \
  16. !defined(BSP_USING_TIM2_CH3) && !defined(BSP_USING_TIM2_CH4) && \
  17. !defined(BSP_USING_TIM3_CH1) && !defined(BSP_USING_TIM3_CH2) && \
  18. !defined(BSP_USING_TIM3_CH3) && !defined(BSP_USING_TIM3_CH4) && \
  19. !defined(BSP_USING_TIM4_CH1) && !defined(BSP_USING_TIM4_CH2) && \
  20. !defined(BSP_USING_TIM4_CH3) && !defined(BSP_USING_TIM4_CH4) && \
  21. !defined(BSP_USING_TIM5_CH1) && !defined(BSP_USING_TIM5_CH2) && \
  22. !defined(BSP_USING_TIM5_CH3) && !defined(BSP_USING_TIM5_CH4) && \
  23. !defined(BSP_USING_TIM8_CH1) && !defined(BSP_USING_TIM8_CH2) && \
  24. !defined(BSP_USING_TIM8_CH3) && !defined(BSP_USING_TIM8_CH4)
  25. #error "Please define at least one BSP_USING_TIMx_CHx"
  26. #endif
  27. #endif /* RT_USING_PWM */
  28. #define MAX_PERIOD 65535
  29. #define MIN_PERIOD 3
  30. #ifdef BSP_USING_PWM
  31. struct n32_pwm
  32. {
  33. TIM_Module *tim_handle;
  34. const char *name;
  35. struct rt_device_pwm pwm_device;
  36. int8_t tim_en;
  37. uint8_t ch_en;
  38. uint32_t period;
  39. uint32_t psc;
  40. };
  41. static struct n32_pwm n32_pwm_obj[] =
  42. {
  43. #if defined(BSP_USING_TIM1_CH1) || defined(BSP_USING_TIM1_CH2) || \
  44. defined(BSP_USING_TIM1_CH3) || defined(BSP_USING_TIM1_CH4)
  45. {
  46. .tim_handle = TIM1,
  47. .name = "tim1pwm",
  48. },
  49. #endif
  50. #if defined(BSP_USING_TIM2_CH1) || defined(BSP_USING_TIM2_CH2) || \
  51. defined(BSP_USING_TIM2_CH3) || defined(BSP_USING_TIM2_CH4)
  52. {
  53. .tim_handle = TIM2,
  54. .name = "tim2pwm",
  55. },
  56. #endif
  57. #if defined(BSP_USING_TIM3_CH1) || defined(BSP_USING_TIM3_CH2) || \
  58. defined(BSP_USING_TIM3_CH3) || defined(BSP_USING_TIM3_CH4)
  59. {
  60. .tim_handle = TIM3,
  61. .name = "tim3pwm",
  62. },
  63. #endif
  64. #if defined(BSP_USING_TIM4_CH1) || defined(BSP_USING_TIM4_CH2) || \
  65. defined(BSP_USING_TIM4_CH3) || defined(BSP_USING_TIM4_CH4)
  66. {
  67. .tim_handle = TIM4,
  68. .name = "tim4pwm",
  69. },
  70. #endif
  71. #if defined(BSP_USING_TIM5_CH1) || defined(BSP_USING_TIM5_CH2) || \
  72. defined(BSP_USING_TIM5_CH3) || defined(BSP_USING_TIM5_CH4)
  73. {
  74. .tim_handle = TIM5,
  75. .name = "tim5pwm",
  76. },
  77. #endif
  78. #if defined(BSP_USING_TIM8_CH1) || defined(BSP_USING_TIM8_CH2) || \
  79. defined(BSP_USING_TIM8_CH3) || defined(BSP_USING_TIM8_CH4)
  80. {
  81. .tim_handle = TIM8,
  82. .name = "tim8pwm",
  83. }
  84. #endif
  85. };
  86. static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
  87. static struct rt_pwm_ops drv_ops =
  88. {
  89. drv_pwm_control
  90. };
  91. static rt_err_t drv_pwm_enable(struct n32_pwm *pwm_dev, struct rt_pwm_configuration *configuration, rt_bool_t enable)
  92. {
  93. /* Get the value of channel */
  94. rt_uint32_t channel = configuration->channel;
  95. TIM_Module *TIMx = pwm_dev->tim_handle;
  96. if (enable)
  97. {
  98. pwm_dev->ch_en |= 0x1 << channel;
  99. }
  100. else
  101. {
  102. pwm_dev->ch_en &= ~(0x1 << channel);
  103. }
  104. if (enable)
  105. {
  106. if (channel == 1)
  107. {
  108. TIM_EnableCapCmpCh(TIMx, TIM_CH_1, TIM_CAP_CMP_ENABLE);
  109. }
  110. else if (channel == 2)
  111. {
  112. TIM_EnableCapCmpCh(TIMx, TIM_CH_2, TIM_CAP_CMP_ENABLE);
  113. }
  114. else if (channel == 3)
  115. {
  116. TIM_EnableCapCmpCh(TIMx, TIM_CH_3, TIM_CAP_CMP_ENABLE);
  117. }
  118. else if (channel == 4)
  119. {
  120. TIM_EnableCapCmpCh(TIMx, TIM_CH_4, TIM_CAP_CMP_ENABLE);
  121. }
  122. }
  123. else
  124. {
  125. if (channel == 1)
  126. {
  127. TIM_EnableCapCmpCh(TIMx, TIM_CH_1, TIM_CAP_CMP_DISABLE);
  128. }
  129. else if (channel == 2)
  130. {
  131. TIM_EnableCapCmpCh(TIMx, TIM_CH_2, TIM_CAP_CMP_DISABLE);
  132. }
  133. else if (channel == 3)
  134. {
  135. TIM_EnableCapCmpCh(TIMx, TIM_CH_3, TIM_CAP_CMP_DISABLE);
  136. }
  137. else if (channel == 4)
  138. {
  139. TIM_EnableCapCmpCh(TIMx, TIM_CH_4, TIM_CAP_CMP_DISABLE);
  140. }
  141. }
  142. if (pwm_dev->ch_en)
  143. {
  144. pwm_dev->tim_en = 0x1;
  145. TIM_Enable(TIMx, ENABLE);
  146. }
  147. else
  148. {
  149. pwm_dev->tim_en = 0x0;
  150. TIM_Enable(TIMx, DISABLE);
  151. }
  152. return RT_EOK;
  153. }
  154. static rt_err_t drv_pwm_get(struct n32_pwm *pwm_dev, struct rt_pwm_configuration *configuration)
  155. {
  156. RCC_ClocksType RCC_Clockstruct;
  157. rt_uint32_t ar, div, cc1, cc2, cc3, cc4;
  158. rt_uint64_t tim_clock;
  159. rt_uint32_t channel = configuration->channel;
  160. TIM_Module *TIMx = pwm_dev->tim_handle;
  161. ar = TIMx->AR;
  162. div = TIMx->PSC;
  163. cc1 = TIMx->CCDAT1;
  164. cc2 = TIMx->CCDAT2;
  165. cc3 = TIMx->CCDAT3;
  166. cc4 = TIMx->CCDAT4;
  167. RCC_GetClocksFreqValue(&RCC_Clockstruct);
  168. tim_clock = RCC_Clockstruct.Pclk2Freq;
  169. /* Convert nanosecond to frequency and duty cycle. */
  170. tim_clock /= 1000000UL;
  171. configuration->period = (ar + 1) * (div + 1) * 1000UL / tim_clock;
  172. if (channel == 1)
  173. configuration->pulse = (cc1 + 1) * (div + 1) * 1000UL / tim_clock;
  174. if (channel == 2)
  175. configuration->pulse = (cc2 + 1) * (div + 1) * 1000UL / tim_clock;
  176. if (channel == 3)
  177. configuration->pulse = (cc3 + 1) * (div + 1) * 1000UL / tim_clock;
  178. if (channel == 4)
  179. configuration->pulse = (cc4 + 1) * (div + 1) * 1000UL / tim_clock;
  180. return RT_EOK;
  181. }
  182. static rt_err_t drv_pwm_set(struct n32_pwm *pwm_dev, struct rt_pwm_configuration *configuration)
  183. {
  184. TIM_Module *TIMx = pwm_dev->tim_handle;
  185. rt_uint32_t channel = configuration->channel;
  186. rt_uint32_t period;
  187. rt_uint64_t psc;
  188. rt_uint32_t pulse;
  189. RCC_ClocksType RCC_Clock;
  190. RCC_GetClocksFreqValue(&RCC_Clock);
  191. rt_uint64_t input_clock;
  192. if ((TIM1 == TIMx) || (TIM8 == TIMx))
  193. {
  194. RCC_ConfigTim18Clk(RCC_TIM18CLK_SRC_SYSCLK);
  195. input_clock = RCC_Clock.SysclkFreq;
  196. }
  197. else
  198. {
  199. if (1 == (RCC_Clock.HclkFreq / RCC_Clock.Pclk1Freq))
  200. input_clock = RCC_Clock.Pclk1Freq;
  201. else
  202. input_clock = RCC_Clock.Pclk1Freq * 2;
  203. }
  204. input_clock /= 1000000UL;
  205. /* Convert nanosecond to frequency and duty cycle. */
  206. period = (unsigned long long)configuration->period * input_clock / 1000ULL;
  207. psc = period / MAX_PERIOD + 1;
  208. period = period / psc;
  209. if (period < MIN_PERIOD)
  210. {
  211. period = MIN_PERIOD;
  212. }
  213. if ((pwm_dev->period != period) || (pwm_dev->psc != psc))
  214. {
  215. /* Tim base configuration */
  216. TIM_TimeBaseInitType TIM_TIMeBaseStructure;
  217. TIM_InitTimBaseStruct(&TIM_TIMeBaseStructure);
  218. TIM_TIMeBaseStructure.Period = period - 1;
  219. TIM_TIMeBaseStructure.Prescaler = psc - 1;
  220. TIM_TIMeBaseStructure.ClkDiv = 0;
  221. TIM_TIMeBaseStructure.CntMode = TIM_CNT_MODE_UP;
  222. TIM_InitTimeBase(TIMx, &TIM_TIMeBaseStructure);
  223. }
  224. pulse = (unsigned long long)configuration->pulse * input_clock / psc / 1000ULL;
  225. if (pulse > period)
  226. {
  227. pulse = period;
  228. }
  229. /* PWM1 Mode configuration: Channel1 */
  230. OCInitType TIM_OCInitStructure;
  231. TIM_InitOcStruct(&TIM_OCInitStructure);
  232. TIM_OCInitStructure.OcMode = TIM_OCMODE_PWM1;
  233. TIM_OCInitStructure.OutputState = TIM_OUTPUT_STATE_ENABLE;
  234. TIM_OCInitStructure.Pulse = pulse;
  235. TIM_OCInitStructure.OcPolarity = TIM_OC_POLARITY_HIGH;
  236. if (channel == 1)
  237. {
  238. TIM_InitOc1(TIMx, &TIM_OCInitStructure);
  239. TIM_ConfigOc1Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
  240. if (!(pwm_dev->ch_en & (0x1 << channel)))
  241. TIM_EnableCapCmpCh(TIMx, TIM_CH_1, TIM_CAP_CMP_DISABLE);
  242. }
  243. else if (channel == 2)
  244. {
  245. TIM_InitOc2(TIMx, &TIM_OCInitStructure);
  246. TIM_ConfigOc2Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
  247. if (!(pwm_dev->ch_en & (0x1 << channel)))
  248. TIM_EnableCapCmpCh(TIMx, TIM_CH_2, TIM_CAP_CMP_DISABLE);
  249. }
  250. else if (channel == 3)
  251. {
  252. TIM_InitOc3(TIMx, &TIM_OCInitStructure);
  253. TIM_ConfigOc3Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
  254. if (!(pwm_dev->ch_en & (0x1 << channel)))
  255. TIM_EnableCapCmpCh(TIMx, TIM_CH_3, TIM_CAP_CMP_DISABLE);
  256. }
  257. else if (channel == 4)
  258. {
  259. TIM_InitOc4(TIMx, &TIM_OCInitStructure);
  260. TIM_ConfigOc4Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
  261. if (!(pwm_dev->ch_en & (0x1 << channel)))
  262. TIM_EnableCapCmpCh(TIMx, TIM_CH_4, TIM_CAP_CMP_DISABLE);
  263. }
  264. TIM_ConfigArPreload(TIMx, ENABLE);
  265. TIM_EnableCtrlPwmOutputs(TIMx, ENABLE);
  266. return RT_EOK;
  267. }
  268. static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
  269. {
  270. struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
  271. struct n32_pwm *pwm_dev = (struct n32_pwm *)(device->parent.user_data);
  272. switch (cmd)
  273. {
  274. case PWM_CMD_ENABLE:
  275. return drv_pwm_enable(pwm_dev, configuration, RT_TRUE);
  276. case PWM_CMD_DISABLE:
  277. return drv_pwm_enable(pwm_dev, configuration, RT_FALSE);
  278. case PWM_CMD_SET:
  279. return drv_pwm_set(pwm_dev, configuration);
  280. case PWM_CMD_GET:
  281. return drv_pwm_get(pwm_dev, configuration);
  282. default:
  283. return -RT_EINVAL;
  284. }
  285. }
  286. static int rt_hw_pwm_init(void)
  287. {
  288. int i = 0;
  289. int result = RT_EOK;
  290. for (i = 0; i < sizeof(n32_pwm_obj) / sizeof(n32_pwm_obj[0]); i++)
  291. {
  292. if (rt_device_pwm_register(&n32_pwm_obj[i].pwm_device,
  293. n32_pwm_obj[i].name, &drv_ops, &(n32_pwm_obj[i])) == RT_EOK)
  294. {
  295. /* Init timer pin and enable clock */
  296. void n32_msp_tim_init(void *Instance);
  297. n32_msp_tim_init(n32_pwm_obj[i].tim_handle);
  298. }
  299. else
  300. {
  301. result = -RT_ERROR;
  302. }
  303. }
  304. return result;
  305. }
  306. INIT_BOARD_EXPORT(rt_hw_pwm_init);
  307. #endif