1
0

drv_spi.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-5 SummerGift first version
  9. * 2018-12-11 greedyhao Porting for stm32f7xx
  10. * 2019-01-03 zylx modify DMA initialization and spixfer function
  11. * 2020-01-15 whj4674672 Porting for stm32h7xx
  12. * 2020-06-18 thread-liu Porting for stm32mp1xx
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. #include "board.h"
  18. #ifdef BSP_USING_SPI
  19. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  20. #include "drv_spi.h"
  21. #include "drv_config.h"
  22. #include <string.h>
  23. //#define DRV_DEBUG
  24. #define LOG_TAG "drv.spi"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI5
  41. SPI5_INDEX,
  42. #endif
  43. #ifdef BSP_USING_SPI6
  44. SPI6_INDEX,
  45. #endif
  46. };
  47. static struct stm32_spi_config spi_config[] =
  48. {
  49. #ifdef BSP_USING_SPI1
  50. SPI1_BUS_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_SPI2
  53. SPI2_BUS_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_SPI3
  56. SPI3_BUS_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_SPI4
  59. SPI4_BUS_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_SPI5
  62. SPI5_BUS_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_SPI6
  65. SPI6_BUS_CONFIG,
  66. #endif
  67. };
  68. static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  69. static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  70. {
  71. RT_ASSERT(spi_drv != RT_NULL);
  72. RT_ASSERT(cfg != RT_NULL);
  73. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  74. if (cfg->mode & RT_SPI_SLAVE)
  75. {
  76. spi_handle->Init.Mode = SPI_MODE_SLAVE;
  77. }
  78. else
  79. {
  80. spi_handle->Init.Mode = SPI_MODE_MASTER;
  81. }
  82. if (cfg->mode & RT_SPI_3WIRE)
  83. {
  84. spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
  85. }
  86. else
  87. {
  88. spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
  89. }
  90. if (cfg->data_width == 8)
  91. {
  92. spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
  93. }
  94. else if (cfg->data_width == 16)
  95. {
  96. spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
  97. }
  98. else
  99. {
  100. return -RT_EIO;
  101. }
  102. if (cfg->mode & RT_SPI_CPHA)
  103. {
  104. spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
  105. }
  106. else
  107. {
  108. spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
  109. }
  110. if (cfg->mode & RT_SPI_CPOL)
  111. {
  112. spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
  113. }
  114. else
  115. {
  116. spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
  117. }
  118. spi_handle->Init.NSS = SPI_NSS_SOFT;
  119. uint32_t SPI_CLOCK = 0UL;
  120. /* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */
  121. #if defined(APBPERIPH_BASE)
  122. SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
  123. #elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE)
  124. /* The SPI clock for H7 cannot be configured with a peripheral bus clock, so it needs to be written separately */
  125. #if defined(SOC_SERIES_STM32H7)
  126. /* When the configuration is generated using CUBEMX, the configuration for the SPI clock is placed in the HAL_SPI_Init function.
  127. Therefore, it is necessary to initialize and configure the SPI clock to automatically configure the frequency division */
  128. HAL_SPI_Init(spi_handle);
  129. SPI_CLOCK = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
  130. #else
  131. if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE)
  132. {
  133. SPI_CLOCK = HAL_RCC_GetPCLK2Freq();
  134. }
  135. else
  136. {
  137. SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
  138. }
  139. #endif /* SOC_SERIES_STM32H7) */
  140. #endif /* APBPERIPH_BASE */
  141. if (cfg->max_hz >= SPI_CLOCK / 2)
  142. {
  143. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  144. }
  145. else if (cfg->max_hz >= SPI_CLOCK / 4)
  146. {
  147. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  148. }
  149. else if (cfg->max_hz >= SPI_CLOCK / 8)
  150. {
  151. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  152. }
  153. else if (cfg->max_hz >= SPI_CLOCK / 16)
  154. {
  155. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  156. }
  157. else if (cfg->max_hz >= SPI_CLOCK / 32)
  158. {
  159. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  160. }
  161. else if (cfg->max_hz >= SPI_CLOCK / 64)
  162. {
  163. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  164. }
  165. else if (cfg->max_hz >= SPI_CLOCK / 128)
  166. {
  167. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
  168. }
  169. else
  170. {
  171. /* min prescaler 256 */
  172. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  173. }
  174. LOG_D("sys freq: %d, pclk freq: %d, SPI limiting freq: %d, SPI usage freq: %d",
  175. #if defined(SOC_SERIES_STM32MP1)
  176. HAL_RCC_GetSystemCoreClockFreq(),
  177. #else
  178. HAL_RCC_GetSysClockFreq(),
  179. #endif
  180. SPI_CLOCK,
  181. cfg->max_hz,
  182. SPI_CLOCK / (rt_size_t)pow(2,(spi_handle->Init.BaudRatePrescaler >> 28) + 1));
  183. if (cfg->mode & RT_SPI_MSB)
  184. {
  185. spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
  186. }
  187. else
  188. {
  189. spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
  190. }
  191. spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
  192. spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  193. spi_handle->State = HAL_SPI_STATE_RESET;
  194. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
  195. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  196. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  197. spi_handle->Init.Mode = SPI_MODE_MASTER;
  198. spi_handle->Init.NSS = SPI_NSS_SOFT;
  199. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  200. spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  201. spi_handle->Init.CRCPolynomial = 7;
  202. spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  203. spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  204. spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  205. spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  206. spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  207. spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
  208. spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
  209. spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
  210. #endif
  211. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  212. {
  213. return -RT_EIO;
  214. }
  215. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
  216. || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
  217. SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
  218. #endif
  219. /* DMA configuration */
  220. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  221. {
  222. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  223. __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
  224. /* NVIC configuration for DMA transfer complete interrupt */
  225. HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
  226. HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
  227. }
  228. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  229. {
  230. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  231. __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
  232. /* NVIC configuration for DMA transfer complete interrupt */
  233. HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 1, 0);
  234. HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
  235. }
  236. if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  237. {
  238. HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
  239. HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
  240. }
  241. LOG_D("%s init done", spi_drv->config->bus_name);
  242. return RT_EOK;
  243. }
  244. static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  245. {
  246. #define DMA_TRANS_MIN_LEN 10 /* only buffer length >= DMA_TRANS_MIN_LEN will use DMA mode */
  247. HAL_StatusTypeDef state = HAL_OK;
  248. rt_size_t message_length, already_send_length;
  249. rt_uint16_t send_length;
  250. rt_uint8_t *recv_buf;
  251. const rt_uint8_t *send_buf;
  252. RT_ASSERT(device != RT_NULL);
  253. RT_ASSERT(device->bus != RT_NULL);
  254. RT_ASSERT(message != RT_NULL);
  255. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  256. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  257. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
  258. {
  259. if (device->config.mode & RT_SPI_CS_HIGH)
  260. rt_pin_write(device->cs_pin, PIN_HIGH);
  261. else
  262. rt_pin_write(device->cs_pin, PIN_LOW);
  263. }
  264. LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
  265. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
  266. spi_drv->config->bus_name,
  267. (uint32_t)message->send_buf,
  268. (uint32_t)message->recv_buf, message->length);
  269. message_length = message->length;
  270. recv_buf = message->recv_buf;
  271. send_buf = message->send_buf;
  272. while (message_length)
  273. {
  274. /* the HAL library use uint16 to save the data length */
  275. if (message_length > 65535)
  276. {
  277. send_length = 65535;
  278. message_length = message_length - 65535;
  279. }
  280. else
  281. {
  282. send_length = message_length;
  283. message_length = 0;
  284. }
  285. /* calculate the start address */
  286. already_send_length = message->length - send_length - message_length;
  287. /* avoid null pointer problems */
  288. if (message->send_buf)
  289. {
  290. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  291. }
  292. if (message->recv_buf)
  293. {
  294. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  295. }
  296. rt_uint32_t* dma_aligned_buffer = RT_NULL;
  297. rt_uint32_t* p_txrx_buffer = RT_NULL;
  298. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  299. {
  300. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  301. if (RT_IS_ALIGN((rt_uint32_t)send_buf, 32)) /* aligned with 32 bytes? */
  302. {
  303. p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 32 bytes, no more operations */
  304. }
  305. else
  306. {
  307. /* send_buf doesn't align with 32 bytes, so creat a cache buffer with 32 bytes aligned */
  308. dma_aligned_buffer = (rt_uint32_t *)rt_malloc_align(send_length, 32);
  309. rt_memcpy(dma_aligned_buffer, send_buf, send_length);
  310. p_txrx_buffer = dma_aligned_buffer;
  311. }
  312. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, dma_aligned_buffer, send_length);
  313. #else
  314. if (RT_IS_ALIGN((rt_uint32_t)send_buf, 4)) /* aligned with 4 bytes? */
  315. {
  316. p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 4 bytes, no more operations */
  317. }
  318. else
  319. {
  320. /* send_buf doesn't align with 4 bytes, so creat a cache buffer with 4 bytes aligned */
  321. dma_aligned_buffer = (rt_uint32_t *)rt_malloc(send_length); /* aligned with RT_ALIGN_SIZE (8 bytes by default) */
  322. rt_memcpy(dma_aligned_buffer, send_buf, send_length);
  323. p_txrx_buffer = dma_aligned_buffer;
  324. }
  325. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  326. }
  327. /* start once data exchange in DMA mode */
  328. if (message->send_buf && message->recv_buf)
  329. {
  330. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  331. {
  332. state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, (uint8_t *)p_txrx_buffer, send_length);
  333. }
  334. else if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  335. {
  336. /* same as Tx ONLY. It will not receive SPI data any more. */
  337. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  338. }
  339. else if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  340. {
  341. state = HAL_ERROR;
  342. LOG_E("It shoule be enabled both BSP_SPIx_TX_USING_DMA and BSP_SPIx_TX_USING_DMA flag, if wants to use SPI DMA Rx singly.");
  343. break;
  344. }
  345. else
  346. {
  347. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
  348. }
  349. }
  350. else if (message->send_buf)
  351. {
  352. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  353. {
  354. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  355. }
  356. else
  357. {
  358. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
  359. }
  360. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  361. {
  362. /* release the CS by disable SPI when using 3 wires SPI */
  363. __HAL_SPI_DISABLE(spi_handle);
  364. }
  365. }
  366. else if(message->recv_buf)
  367. {
  368. rt_memset((uint8_t *)recv_buf, 0xff, send_length);
  369. if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  370. {
  371. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  372. }
  373. else
  374. {
  375. /* clear the old error flag */
  376. __HAL_SPI_CLEAR_OVRFLAG(spi_handle);
  377. state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
  378. }
  379. }
  380. else
  381. {
  382. state = HAL_ERROR;
  383. LOG_E("message->send_buf and message->recv_buf are both NULL!");
  384. }
  385. if (state != HAL_OK)
  386. {
  387. LOG_E("SPI transfer error: %d", state);
  388. message->length = 0;
  389. spi_handle->State = HAL_SPI_STATE_READY;
  390. break;
  391. }
  392. else
  393. {
  394. LOG_D("%s transfer done", spi_drv->config->bus_name);
  395. }
  396. /* For simplicity reasons, this example is just waiting till the end of the
  397. transfer, but application may perform other tasks while transfer operation
  398. is ongoing. */
  399. if ((spi_drv->spi_dma_flag & (SPI_USING_TX_DMA_FLAG | SPI_USING_RX_DMA_FLAG)) && (send_length >= DMA_TRANS_MIN_LEN))
  400. {
  401. /* blocking the thread,and the other tasks can run */
  402. if (rt_completion_wait(&spi_drv->cpt, 1000) != RT_EOK)
  403. {
  404. state = HAL_ERROR;
  405. LOG_E("wait for DMA interrupt overtime!");
  406. break;
  407. }
  408. }
  409. else
  410. {
  411. while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
  412. }
  413. if(dma_aligned_buffer != RT_NULL) /* re-aligned, so need to copy the data to recv_buf */
  414. {
  415. if(recv_buf != RT_NULL)
  416. {
  417. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  418. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, p_txrx_buffer, send_length);
  419. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  420. rt_memcpy(recv_buf, p_txrx_buffer, send_length);
  421. }
  422. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  423. rt_free_align(dma_aligned_buffer);
  424. #else
  425. rt_free(dma_aligned_buffer);
  426. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  427. }
  428. }
  429. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
  430. {
  431. if (device->config.mode & RT_SPI_CS_HIGH)
  432. rt_pin_write(device->cs_pin, PIN_LOW);
  433. else
  434. rt_pin_write(device->cs_pin, PIN_HIGH);
  435. }
  436. if(state != HAL_OK)
  437. {
  438. return -RT_ERROR;
  439. }
  440. return message->length;
  441. }
  442. static rt_err_t spi_configure(struct rt_spi_device *device,
  443. struct rt_spi_configuration *configuration)
  444. {
  445. RT_ASSERT(device != RT_NULL);
  446. RT_ASSERT(configuration != RT_NULL);
  447. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  448. spi_drv->cfg = configuration;
  449. return stm32_spi_init(spi_drv, configuration);
  450. }
  451. static const struct rt_spi_ops stm_spi_ops =
  452. {
  453. .configure = spi_configure,
  454. .xfer = spixfer,
  455. };
  456. static int rt_hw_spi_bus_init(void)
  457. {
  458. rt_err_t result;
  459. for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  460. {
  461. spi_bus_obj[i].config = &spi_config[i];
  462. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  463. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  464. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  465. {
  466. /* Configure the DMA handler for Transmission process */
  467. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  468. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  469. spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
  470. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  471. spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
  472. #endif
  473. #ifndef SOC_SERIES_STM32U5
  474. spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
  475. spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  476. spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
  477. spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  478. spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  479. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  480. spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
  481. #endif
  482. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  483. spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  484. spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  485. spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
  486. spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
  487. #endif
  488. {
  489. rt_uint32_t tmpreg = 0x00U;
  490. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  491. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  492. SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  493. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  494. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  495. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  496. /* Delay after an RCC peripheral clock enabling */
  497. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  498. #elif defined(SOC_SERIES_STM32MP1)
  499. __HAL_RCC_DMAMUX_CLK_ENABLE();
  500. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  501. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  502. #endif
  503. UNUSED(tmpreg); /* To avoid compiler warnings */
  504. }
  505. }
  506. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  507. {
  508. /* Configure the DMA handler for Transmission process */
  509. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  510. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  511. spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
  512. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  513. spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
  514. #endif
  515. #ifndef SOC_SERIES_STM32U5
  516. spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  517. spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  518. spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
  519. spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  520. spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  521. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  522. spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
  523. #endif
  524. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  525. spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  526. spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  527. spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
  528. spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
  529. #endif
  530. {
  531. rt_uint32_t tmpreg = 0x00U;
  532. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  533. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  534. SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  535. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  536. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  537. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  538. /* Delay after an RCC peripheral clock enabling */
  539. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  540. #elif defined(SOC_SERIES_STM32MP1)
  541. __HAL_RCC_DMAMUX_CLK_ENABLE();
  542. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  543. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  544. #endif
  545. UNUSED(tmpreg); /* To avoid compiler warnings */
  546. }
  547. }
  548. /* initialize completion object */
  549. rt_completion_init(&spi_bus_obj[i].cpt);
  550. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
  551. RT_ASSERT(result == RT_EOK);
  552. LOG_D("%s bus init done", spi_config[i].bus_name);
  553. }
  554. return result;
  555. }
  556. /**
  557. * Attach the spi device to SPI bus, this function must be used after initialization.
  558. */
  559. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_base_t cs_pin)
  560. {
  561. RT_ASSERT(bus_name != RT_NULL);
  562. RT_ASSERT(device_name != RT_NULL);
  563. rt_err_t result;
  564. struct rt_spi_device *spi_device;
  565. /* attach the device to spi bus*/
  566. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  567. RT_ASSERT(spi_device != RT_NULL);
  568. result = rt_spi_bus_attach_device_cspin(spi_device, device_name, bus_name, cs_pin, RT_NULL);
  569. if (result != RT_EOK)
  570. {
  571. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  572. }
  573. RT_ASSERT(result == RT_EOK);
  574. LOG_D("%s attach to %s done", device_name, bus_name);
  575. return result;
  576. }
  577. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  578. void SPI1_IRQHandler(void)
  579. {
  580. /* enter interrupt */
  581. rt_interrupt_enter();
  582. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  583. /* leave interrupt */
  584. rt_interrupt_leave();
  585. }
  586. #endif
  587. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  588. /**
  589. * @brief This function handles DMA Rx interrupt request.
  590. * @param None
  591. * @retval None
  592. */
  593. void SPI1_DMA_RX_IRQHandler(void)
  594. {
  595. /* enter interrupt */
  596. rt_interrupt_enter();
  597. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
  598. /* leave interrupt */
  599. rt_interrupt_leave();
  600. }
  601. #endif
  602. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  603. /**
  604. * @brief This function handles DMA Tx interrupt request.
  605. * @param None
  606. * @retval None
  607. */
  608. void SPI1_DMA_TX_IRQHandler(void)
  609. {
  610. /* enter interrupt */
  611. rt_interrupt_enter();
  612. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
  613. /* leave interrupt */
  614. rt_interrupt_leave();
  615. }
  616. #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
  617. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  618. void SPI2_IRQHandler(void)
  619. {
  620. /* enter interrupt */
  621. rt_interrupt_enter();
  622. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  623. /* leave interrupt */
  624. rt_interrupt_leave();
  625. }
  626. #endif
  627. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  628. /**
  629. * @brief This function handles DMA Rx interrupt request.
  630. * @param None
  631. * @retval None
  632. */
  633. void SPI2_DMA_RX_IRQHandler(void)
  634. {
  635. /* enter interrupt */
  636. rt_interrupt_enter();
  637. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
  638. /* leave interrupt */
  639. rt_interrupt_leave();
  640. }
  641. #endif
  642. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  643. /**
  644. * @brief This function handles DMA Tx interrupt request.
  645. * @param None
  646. * @retval None
  647. */
  648. void SPI2_DMA_TX_IRQHandler(void)
  649. {
  650. /* enter interrupt */
  651. rt_interrupt_enter();
  652. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
  653. /* leave interrupt */
  654. rt_interrupt_leave();
  655. }
  656. #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
  657. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  658. void SPI3_IRQHandler(void)
  659. {
  660. /* enter interrupt */
  661. rt_interrupt_enter();
  662. HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
  663. /* leave interrupt */
  664. rt_interrupt_leave();
  665. }
  666. #endif
  667. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  668. /**
  669. * @brief This function handles DMA Rx interrupt request.
  670. * @param None
  671. * @retval None
  672. */
  673. void SPI3_DMA_RX_IRQHandler(void)
  674. {
  675. /* enter interrupt */
  676. rt_interrupt_enter();
  677. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
  678. /* leave interrupt */
  679. rt_interrupt_leave();
  680. }
  681. #endif
  682. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  683. /**
  684. * @brief This function handles DMA Tx interrupt request.
  685. * @param None
  686. * @retval None
  687. */
  688. void SPI3_DMA_TX_IRQHandler(void)
  689. {
  690. /* enter interrupt */
  691. rt_interrupt_enter();
  692. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
  693. /* leave interrupt */
  694. rt_interrupt_leave();
  695. }
  696. #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
  697. #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
  698. void SPI4_IRQHandler(void)
  699. {
  700. /* enter interrupt */
  701. rt_interrupt_enter();
  702. HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
  703. /* leave interrupt */
  704. rt_interrupt_leave();
  705. }
  706. #endif
  707. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  708. /**
  709. * @brief This function handles DMA Rx interrupt request.
  710. * @param None
  711. * @retval None
  712. */
  713. void SPI4_DMA_RX_IRQHandler(void)
  714. {
  715. /* enter interrupt */
  716. rt_interrupt_enter();
  717. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
  718. /* leave interrupt */
  719. rt_interrupt_leave();
  720. }
  721. #endif
  722. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  723. /**
  724. * @brief This function handles DMA Tx interrupt request.
  725. * @param None
  726. * @retval None
  727. */
  728. void SPI4_DMA_TX_IRQHandler(void)
  729. {
  730. /* enter interrupt */
  731. rt_interrupt_enter();
  732. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
  733. /* leave interrupt */
  734. rt_interrupt_leave();
  735. }
  736. #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
  737. #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
  738. void SPI5_IRQHandler(void)
  739. {
  740. /* enter interrupt */
  741. rt_interrupt_enter();
  742. HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
  743. /* leave interrupt */
  744. rt_interrupt_leave();
  745. }
  746. #endif
  747. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  748. /**
  749. * @brief This function handles DMA Rx interrupt request.
  750. * @param None
  751. * @retval None
  752. */
  753. void SPI5_DMA_RX_IRQHandler(void)
  754. {
  755. /* enter interrupt */
  756. rt_interrupt_enter();
  757. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
  758. /* leave interrupt */
  759. rt_interrupt_leave();
  760. }
  761. #endif
  762. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  763. /**
  764. * @brief This function handles DMA Tx interrupt request.
  765. * @param None
  766. * @retval None
  767. */
  768. void SPI5_DMA_TX_IRQHandler(void)
  769. {
  770. /* enter interrupt */
  771. rt_interrupt_enter();
  772. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
  773. /* leave interrupt */
  774. rt_interrupt_leave();
  775. }
  776. #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
  777. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  778. /**
  779. * @brief This function handles DMA Rx interrupt request.
  780. * @param None
  781. * @retval None
  782. */
  783. void SPI6_DMA_RX_IRQHandler(void)
  784. {
  785. /* enter interrupt */
  786. rt_interrupt_enter();
  787. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
  788. /* leave interrupt */
  789. rt_interrupt_leave();
  790. }
  791. #endif
  792. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  793. /**
  794. * @brief This function handles DMA Tx interrupt request.
  795. * @param None
  796. * @retval None
  797. */
  798. void SPI6_DMA_TX_IRQHandler(void)
  799. {
  800. /* enter interrupt */
  801. rt_interrupt_enter();
  802. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
  803. /* leave interrupt */
  804. rt_interrupt_leave();
  805. }
  806. #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
  807. static void stm32_get_dma_info(void)
  808. {
  809. #ifdef BSP_SPI1_RX_USING_DMA
  810. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  811. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  812. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  813. #endif
  814. #ifdef BSP_SPI1_TX_USING_DMA
  815. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  816. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  817. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  818. #endif
  819. #ifdef BSP_SPI2_RX_USING_DMA
  820. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  821. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  822. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  823. #endif
  824. #ifdef BSP_SPI2_TX_USING_DMA
  825. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  826. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  827. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  828. #endif
  829. #ifdef BSP_SPI3_RX_USING_DMA
  830. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  831. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  832. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  833. #endif
  834. #ifdef BSP_SPI3_TX_USING_DMA
  835. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  836. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  837. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  838. #endif
  839. #ifdef BSP_SPI4_RX_USING_DMA
  840. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  841. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  842. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  843. #endif
  844. #ifdef BSP_SPI4_TX_USING_DMA
  845. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  846. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  847. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  848. #endif
  849. #ifdef BSP_SPI5_RX_USING_DMA
  850. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  851. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  852. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  853. #endif
  854. #ifdef BSP_SPI5_TX_USING_DMA
  855. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  856. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  857. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  858. #endif
  859. #ifdef BSP_SPI6_RX_USING_DMA
  860. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  861. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  862. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  863. #endif
  864. #ifdef BSP_SPI6_TX_USING_DMA
  865. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  866. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  867. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  868. #endif
  869. }
  870. void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
  871. {
  872. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  873. rt_completion_done(&spi_drv->cpt);
  874. }
  875. void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
  876. {
  877. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  878. rt_completion_done(&spi_drv->cpt);
  879. }
  880. void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
  881. {
  882. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  883. rt_completion_done(&spi_drv->cpt);
  884. }
  885. #if defined(SOC_SERIES_STM32F0)
  886. void SPI1_DMA_RX_TX_IRQHandler(void)
  887. {
  888. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  889. SPI1_DMA_TX_IRQHandler();
  890. #endif
  891. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  892. SPI1_DMA_RX_IRQHandler();
  893. #endif
  894. }
  895. void SPI2_DMA_RX_TX_IRQHandler(void)
  896. {
  897. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  898. SPI2_DMA_TX_IRQHandler();
  899. #endif
  900. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  901. SPI2_DMA_RX_IRQHandler();
  902. #endif
  903. }
  904. #endif /* SOC_SERIES_STM32F0 */
  905. int rt_hw_spi_init(void)
  906. {
  907. stm32_get_dma_info();
  908. return rt_hw_spi_bus_init();
  909. }
  910. INIT_BOARD_EXPORT(rt_hw_spi_init);
  911. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
  912. #endif /* BSP_USING_SPI */