dfs_elm.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2008-02-22 QiuYi The first version.
  9. * 2011-10-08 Bernard fixed the block size in statfs.
  10. * 2011-11-23 Bernard fixed the rename issue.
  11. * 2012-07-26 aozima implement ff_memalloc and ff_memfree.
  12. * 2012-12-19 Bernard fixed the O_APPEND and lseek issue.
  13. * 2013-03-01 aozima fixed the stat(st_mtime) issue.
  14. * 2014-01-26 Bernard Check the sector size before mount.
  15. * 2017-02-13 Hichard Update Fatfs version to 0.12b, support exFAT.
  16. * 2017-04-11 Bernard fix the st_blksize issue.
  17. * 2017-05-26 Urey fix f_mount error when mount more fats
  18. */
  19. #include <rtthread.h>
  20. #include "ffconf.h"
  21. #include "ff.h"
  22. #include <string.h>
  23. #include <sys/time.h>
  24. /* ELM FatFs provide a DIR struct */
  25. #define HAVE_DIR_STRUCTURE
  26. #include <dfs.h>
  27. #include <dfs_fs.h>
  28. #include <dfs_dentry.h>
  29. #include <dfs_file.h>
  30. #include <dfs_mnt.h>
  31. #ifdef RT_USING_PAGECACHE
  32. #include "dfs_pcache.h"
  33. #endif
  34. static int dfs_elm_free_vnode(struct dfs_vnode *vnode);
  35. #ifdef RT_USING_PAGECACHE
  36. static ssize_t dfs_elm_page_read(struct dfs_file *file, struct dfs_page *page);
  37. static ssize_t dfs_elm_page_write(struct dfs_page *page);
  38. static struct dfs_aspace_ops dfs_elm_aspace_ops =
  39. {
  40. .read = dfs_elm_page_read,
  41. .write = dfs_elm_page_write,
  42. };
  43. #endif
  44. #undef SS
  45. #if FF_MAX_SS == FF_MIN_SS
  46. #define SS(fs) ((UINT)FF_MAX_SS) /* Fixed sector size */
  47. #else
  48. #define SS(fs) ((fs)->ssize) /* Variable sector size */
  49. #endif
  50. static rt_device_t disk[FF_VOLUMES] = {0};
  51. int dfs_elm_unmount(struct dfs_mnt *mnt);
  52. static int elm_result_to_dfs(FRESULT result)
  53. {
  54. int status = RT_EOK;
  55. switch (result)
  56. {
  57. case FR_OK:
  58. break;
  59. case FR_NO_FILE:
  60. case FR_NO_PATH:
  61. case FR_NO_FILESYSTEM:
  62. status = -ENOENT;
  63. break;
  64. case FR_INVALID_NAME:
  65. status = -EINVAL;
  66. break;
  67. case FR_EXIST:
  68. case FR_INVALID_OBJECT:
  69. status = -EEXIST;
  70. break;
  71. case FR_DISK_ERR:
  72. case FR_NOT_READY:
  73. case FR_INT_ERR:
  74. status = -EIO;
  75. break;
  76. case FR_WRITE_PROTECTED:
  77. case FR_DENIED:
  78. status = -EROFS;
  79. break;
  80. case FR_MKFS_ABORTED:
  81. status = -EINVAL;
  82. break;
  83. default:
  84. status = -1;
  85. break;
  86. }
  87. return status;
  88. }
  89. /* results:
  90. * -1, no space to install fatfs driver
  91. * >= 0, there is an space to install fatfs driver
  92. */
  93. static int get_disk(rt_device_t id)
  94. {
  95. int index;
  96. for (index = 0; index < FF_VOLUMES; index ++)
  97. {
  98. if (disk[index] == id)
  99. return index;
  100. }
  101. return -1;
  102. }
  103. static int dfs_elm_mount(struct dfs_mnt *mnt, unsigned long rwflag, const void *data)
  104. {
  105. FATFS *fat;
  106. FRESULT result;
  107. int index;
  108. struct rt_device_blk_geometry geometry;
  109. char logic_nbr[3] = {'0',':', 0};
  110. /* open device, but do not check the status of device */
  111. if (mnt->dev_id == RT_NULL
  112. || rt_device_open(mnt->dev_id, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
  113. {
  114. return -ENODEV;
  115. }
  116. /* get an empty position */
  117. index = get_disk(RT_NULL);
  118. if (index == -1)
  119. {
  120. rt_device_close(mnt->dev_id);
  121. return -ENOENT;
  122. }
  123. logic_nbr[0] = '0' + index;
  124. /* save device */
  125. disk[index] = mnt->dev_id;
  126. /* check sector size */
  127. if (rt_device_control(mnt->dev_id, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry) == RT_EOK)
  128. {
  129. if (geometry.bytes_per_sector > FF_MAX_SS)
  130. {
  131. rt_kprintf("The sector size of device is greater than the sector size of FAT.\n");
  132. rt_device_close(mnt->dev_id);
  133. return -EINVAL;
  134. }
  135. }
  136. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  137. if (fat == RT_NULL)
  138. {
  139. disk[index] = RT_NULL;
  140. rt_device_close(mnt->dev_id);
  141. return -ENOMEM;
  142. }
  143. /* mount fatfs, always 0 logic driver */
  144. result = f_mount(fat, (const TCHAR *)logic_nbr, 1);
  145. if (result == FR_OK)
  146. {
  147. char drive[8];
  148. DIR *dir;
  149. rt_snprintf(drive, sizeof(drive), "%d:/", index);
  150. dir = (DIR *)rt_malloc(sizeof(DIR));
  151. if (dir == RT_NULL)
  152. {
  153. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  154. disk[index] = RT_NULL;
  155. rt_free(fat);
  156. rt_device_close(mnt->dev_id);
  157. return -ENOMEM;
  158. }
  159. /* open the root directory to test whether the fatfs is valid */
  160. result = f_opendir(dir, drive);
  161. if (result != FR_OK)
  162. goto __err;
  163. /* mount succeed! */
  164. mnt->data = fat;
  165. rt_free(dir);
  166. return RT_EOK;
  167. }
  168. __err:
  169. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  170. disk[index] = RT_NULL;
  171. rt_free(fat);
  172. rt_device_close(mnt->dev_id);
  173. return elm_result_to_dfs(result);
  174. }
  175. int dfs_elm_unmount(struct dfs_mnt *mnt)
  176. {
  177. FATFS *fat;
  178. FRESULT result;
  179. int index;
  180. char logic_nbr[3] = {'0',':', 0};
  181. fat = (FATFS *)mnt->data;
  182. RT_ASSERT(fat != RT_NULL);
  183. /* find the device index and then umount it */
  184. index = get_disk(mnt->dev_id);
  185. if (index == -1) /* not found */
  186. return -ENOENT;
  187. logic_nbr[0] = '0' + index;
  188. result = f_mount(RT_NULL, logic_nbr, (BYTE)0);
  189. if (result != FR_OK)
  190. return elm_result_to_dfs(result);
  191. mnt->data = RT_NULL;
  192. disk[index] = RT_NULL;
  193. rt_free(fat);
  194. rt_device_close(mnt->dev_id);
  195. return RT_EOK;
  196. }
  197. int dfs_elm_mkfs(rt_device_t dev_id, const char *fs_name)
  198. {
  199. #define FSM_STATUS_INIT 0
  200. #define FSM_STATUS_USE_TEMP_DRIVER 1
  201. FATFS *fat = RT_NULL;
  202. BYTE *work;
  203. int flag;
  204. FRESULT result;
  205. int index;
  206. char logic_nbr[3] = {'0',':', 0};
  207. MKFS_PARM opt;
  208. work = rt_malloc(FF_MAX_SS);
  209. if(RT_NULL == work) {
  210. return -ENOMEM;
  211. }
  212. if (dev_id == RT_NULL)
  213. {
  214. rt_free(work); /* release memory */
  215. return -EINVAL;
  216. }
  217. /* if the device is already mounted, then just do mkfs to the drv,
  218. * while if it is not mounted yet, then find an empty drive to do mkfs
  219. */
  220. flag = FSM_STATUS_INIT;
  221. index = get_disk(dev_id);
  222. if (index == -1)
  223. {
  224. /* not found the device id */
  225. index = get_disk(RT_NULL);
  226. if (index == -1)
  227. {
  228. /* no space to store an temp driver */
  229. rt_kprintf("sorry, there is no space to do mkfs! \n");
  230. rt_free(work); /* release memory */
  231. return -ENOSPC;
  232. }
  233. else
  234. {
  235. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  236. if (fat == RT_NULL)
  237. {
  238. rt_free(work); /* release memory */
  239. return -ENOMEM;
  240. }
  241. flag = FSM_STATUS_USE_TEMP_DRIVER;
  242. disk[index] = dev_id;
  243. /* try to open device */
  244. rt_device_open(dev_id, RT_DEVICE_OFLAG_RDWR);
  245. /* just fill the FatFs[vol] in ff.c, or mkfs will failded!
  246. * consider this condition: you just umount the elm fat,
  247. * then the space in FatFs[index] is released, and now do mkfs
  248. * on the disk, you will get a failure. so we need f_mount here,
  249. * just fill the FatFS[index] in elm fatfs to make mkfs work.
  250. */
  251. logic_nbr[0] = '0' + index;
  252. f_mount(fat, logic_nbr, (BYTE)index);
  253. }
  254. }
  255. else
  256. {
  257. logic_nbr[0] = '0' + index;
  258. }
  259. /* [IN] Logical drive number */
  260. /* [IN] Format options */
  261. /* [-] Working buffer */
  262. /* [IN] Size of working buffer */
  263. rt_memset(&opt, 0, sizeof(opt));
  264. opt.fmt = FM_ANY|FM_SFD;
  265. result = f_mkfs(logic_nbr, &opt, work, FF_MAX_SS);
  266. rt_free(work); work = RT_NULL;
  267. /* check flag status, we need clear the temp driver stored in disk[] */
  268. if (flag == FSM_STATUS_USE_TEMP_DRIVER)
  269. {
  270. rt_free(fat);
  271. f_mount(RT_NULL, logic_nbr, (BYTE)index);
  272. disk[index] = RT_NULL;
  273. /* close device */
  274. rt_device_close(dev_id);
  275. }
  276. if (result != FR_OK)
  277. {
  278. rt_kprintf("format error, result=%d\n", result);
  279. return elm_result_to_dfs(result);
  280. }
  281. return RT_EOK;
  282. }
  283. int dfs_elm_statfs(struct dfs_mnt *mnt, struct statfs *buf)
  284. {
  285. FATFS *f;
  286. FRESULT res;
  287. char driver[4];
  288. DWORD fre_clust, fre_sect, tot_sect;
  289. RT_ASSERT(mnt != RT_NULL);
  290. RT_ASSERT(buf != RT_NULL);
  291. f = (FATFS *)mnt->data;
  292. rt_snprintf(driver, sizeof(driver), "%d:", f->pdrv);
  293. res = f_getfree(driver, &fre_clust, &f);
  294. if (res)
  295. return elm_result_to_dfs(res);
  296. /* Get total sectors and free sectors */
  297. tot_sect = (f->n_fatent - 2) * f->csize;
  298. fre_sect = fre_clust * f->csize;
  299. buf->f_bfree = fre_sect;
  300. buf->f_blocks = tot_sect;
  301. #if FF_MAX_SS != 512
  302. buf->f_bsize = f->ssize;
  303. #else
  304. buf->f_bsize = 512;
  305. #endif
  306. return 0;
  307. }
  308. int dfs_elm_open(struct dfs_file *file)
  309. {
  310. FIL *fd;
  311. BYTE mode;
  312. FRESULT result;
  313. char *drivers_fn;
  314. #if (FF_VOLUMES > 1)
  315. int vol;
  316. struct dfs_mnt *mnt = file->vnode->mnt;
  317. extern int elm_get_vol(FATFS * fat);
  318. RT_ASSERT(file->vnode->ref_count > 0);
  319. if (file->vnode->data)
  320. {
  321. if (file->vnode->type == FT_DIRECTORY
  322. && !(file->flags & O_DIRECTORY))
  323. {
  324. return -ENOENT;
  325. }
  326. file->fpos = 0;
  327. return 0;
  328. }
  329. if (mnt == NULL)
  330. return -ENOENT;
  331. /* add path for ELM FatFS driver support */
  332. vol = elm_get_vol((FATFS *)mnt->data);
  333. if (vol < 0)
  334. return -ENOENT;
  335. drivers_fn = (char *)rt_malloc(256);
  336. if (drivers_fn == RT_NULL)
  337. return -ENOMEM;
  338. rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->dentry->pathname);
  339. #else
  340. drivers_fn = file->dentry->pathname;
  341. #endif
  342. if (file->flags & O_DIRECTORY)
  343. {
  344. DIR *dir;
  345. if (file->flags & O_CREAT)
  346. {
  347. result = f_mkdir(drivers_fn);
  348. if (result != FR_OK)
  349. {
  350. #if FF_VOLUMES > 1
  351. rt_free(drivers_fn);
  352. #endif
  353. return elm_result_to_dfs(result);
  354. }
  355. }
  356. /* open directory */
  357. dir = (DIR *)rt_malloc(sizeof(DIR));
  358. if (dir == RT_NULL)
  359. {
  360. #if FF_VOLUMES > 1
  361. rt_free(drivers_fn);
  362. #endif
  363. return -ENOMEM;
  364. }
  365. result = f_opendir(dir, drivers_fn);
  366. #if FF_VOLUMES > 1
  367. rt_free(drivers_fn);
  368. #endif
  369. if (result != FR_OK)
  370. {
  371. rt_free(dir);
  372. return elm_result_to_dfs(result);
  373. }
  374. file->vnode->data = dir;
  375. rt_mutex_init(&file->vnode->lock, file->dentry->pathname, RT_IPC_FLAG_PRIO);
  376. return RT_EOK;
  377. }
  378. else
  379. {
  380. mode = FA_READ;
  381. if (file->flags & O_WRONLY)
  382. mode |= FA_WRITE;
  383. if ((file->flags & O_ACCMODE) & O_RDWR)
  384. mode |= FA_WRITE;
  385. /* Opens the file, if it is existing. If not, a new file is created. */
  386. if (file->flags & O_CREAT)
  387. mode |= FA_OPEN_ALWAYS;
  388. /* Creates a new file. If the file is existing, it is truncated and overwritten. */
  389. if (file->flags & O_TRUNC)
  390. mode |= FA_CREATE_ALWAYS;
  391. /* Creates a new file. The function fails if the file is already existing. */
  392. if (file->flags & O_EXCL)
  393. mode |= FA_CREATE_NEW;
  394. /* allocate a fd */
  395. fd = (FIL *)rt_malloc(sizeof(FIL));
  396. if (fd == RT_NULL)
  397. {
  398. #if FF_VOLUMES > 1
  399. rt_free(drivers_fn);
  400. #endif
  401. return -ENOMEM;
  402. }
  403. result = f_open(fd, drivers_fn, mode);
  404. #if FF_VOLUMES > 1
  405. rt_free(drivers_fn);
  406. #endif
  407. if (result == FR_OK)
  408. {
  409. file->fpos = fd->fptr;
  410. file->vnode->size = f_size(fd);
  411. file->vnode->type = FT_REGULAR;
  412. file->vnode->data = fd;
  413. rt_mutex_init(&file->vnode->lock, file->dentry->pathname, RT_IPC_FLAG_PRIO);
  414. if (file->flags & O_APPEND)
  415. {
  416. /* seek to the end of file */
  417. f_lseek(fd, f_size(fd));
  418. file->fpos = fd->fptr;
  419. }
  420. }
  421. else
  422. {
  423. /* open failed, return */
  424. rt_free(fd);
  425. return elm_result_to_dfs(result);
  426. }
  427. }
  428. return RT_EOK;
  429. }
  430. int dfs_elm_close(struct dfs_file *file)
  431. {
  432. FRESULT result;
  433. RT_ASSERT(file->vnode->ref_count > 0);
  434. if (file->vnode->ref_count > 1)
  435. {
  436. return 0;
  437. }
  438. result = FR_OK;
  439. if (file->vnode->type == FT_DIRECTORY)
  440. {
  441. DIR *dir = RT_NULL;
  442. dir = (DIR *)(file->vnode->data);
  443. RT_ASSERT(dir != RT_NULL);
  444. /* release memory */
  445. rt_free(dir);
  446. }
  447. else if (file->vnode->type == FT_REGULAR)
  448. {
  449. FIL *fd = RT_NULL;
  450. fd = (FIL *)(file->vnode->data);
  451. RT_ASSERT(fd != RT_NULL);
  452. f_close(fd);
  453. /* release memory */
  454. rt_free(fd);
  455. }
  456. file->vnode->data = RT_NULL;
  457. rt_mutex_detach(&file->vnode->lock);
  458. return elm_result_to_dfs(result);
  459. }
  460. int dfs_elm_ioctl(struct dfs_file *file, int cmd, void *args)
  461. {
  462. switch (cmd)
  463. {
  464. case RT_FIOFTRUNCATE:
  465. {
  466. FIL *fd;
  467. FSIZE_t fptr, length;
  468. FRESULT result = FR_OK;
  469. fd = (FIL *)(file->vnode->data);
  470. RT_ASSERT(fd != RT_NULL);
  471. /* save file read/write point */
  472. fptr = fd->fptr;
  473. length = *(off_t*)args;
  474. if (length <= fd->obj.objsize)
  475. {
  476. fd->fptr = length;
  477. result = f_truncate(fd);
  478. }
  479. else
  480. {
  481. result = f_lseek(fd, length);
  482. }
  483. /* restore file read/write point */
  484. fd->fptr = fptr;
  485. return elm_result_to_dfs(result);
  486. }
  487. case F_GETLK:
  488. return 0;
  489. case F_SETLK:
  490. return 0;
  491. }
  492. return -ENOSYS;
  493. }
  494. ssize_t dfs_elm_read(struct dfs_file *file, void *buf, size_t len, off_t *pos)
  495. {
  496. FIL *fd;
  497. FRESULT result = FR_OK;
  498. UINT byte_read;
  499. if (file->vnode->type == FT_DIRECTORY)
  500. {
  501. return -EISDIR;
  502. }
  503. if (file->vnode->size > *pos)
  504. {
  505. fd = (FIL *)(file->vnode->data);
  506. RT_ASSERT(fd != RT_NULL);
  507. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  508. f_lseek(fd, *pos);
  509. result = f_read(fd, buf, len, &byte_read);
  510. /* update position */
  511. *pos = fd->fptr;
  512. rt_mutex_release(&file->vnode->lock);
  513. if (result == FR_OK)
  514. return byte_read;
  515. }
  516. return elm_result_to_dfs(result);
  517. }
  518. ssize_t dfs_elm_write(struct dfs_file *file, const void *buf, size_t len, off_t *pos)
  519. {
  520. FIL *fd;
  521. FRESULT result;
  522. UINT byte_write;
  523. if (file->vnode->type == FT_DIRECTORY)
  524. {
  525. return -EISDIR;
  526. }
  527. fd = (FIL *)(file->vnode->data);
  528. RT_ASSERT(fd != RT_NULL);
  529. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  530. f_lseek(fd, *pos);
  531. result = f_write(fd, buf, len, &byte_write);
  532. /* update position and file size */
  533. *pos = fd->fptr;
  534. file->vnode->size = f_size(fd);
  535. rt_mutex_release(&file->vnode->lock);
  536. if (result == FR_OK)
  537. return byte_write;
  538. return elm_result_to_dfs(result);
  539. }
  540. int dfs_elm_flush(struct dfs_file *file)
  541. {
  542. FIL *fd;
  543. FRESULT result;
  544. fd = (FIL *)(file->vnode->data);
  545. RT_ASSERT(fd != RT_NULL);
  546. result = f_sync(fd);
  547. return elm_result_to_dfs(result);
  548. }
  549. off_t dfs_elm_lseek(struct dfs_file *file, off_t offset, int wherece)
  550. {
  551. FRESULT result = FR_OK;
  552. switch (wherece)
  553. {
  554. case SEEK_SET:
  555. break;
  556. case SEEK_CUR:
  557. offset += file->fpos;
  558. break;
  559. case SEEK_END:
  560. offset += file->vnode->size;
  561. break;
  562. default:
  563. return -EINVAL;
  564. }
  565. if (file->vnode->type == FT_REGULAR)
  566. {
  567. FIL *fd;
  568. /* regular file type */
  569. fd = (FIL *)(file->vnode->data);
  570. RT_ASSERT(fd != RT_NULL);
  571. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  572. result = f_lseek(fd, offset);
  573. rt_mutex_release(&file->vnode->lock);
  574. if (result == FR_OK)
  575. {
  576. /* return current position */
  577. return fd->fptr;
  578. }
  579. }
  580. else if (file->vnode->type == FT_DIRECTORY)
  581. {
  582. /* which is a directory */
  583. DIR *dir = RT_NULL;
  584. dir = (DIR *)(file->vnode->data);
  585. RT_ASSERT(dir != RT_NULL);
  586. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  587. result = f_seekdir(dir, offset / sizeof(struct dirent));
  588. rt_mutex_release(&file->vnode->lock);
  589. if (result == FR_OK)
  590. {
  591. /* update file position */
  592. return offset;
  593. }
  594. }
  595. return elm_result_to_dfs(result);
  596. }
  597. int dfs_elm_getdents(struct dfs_file *file, struct dirent *dirp, uint32_t count)
  598. {
  599. DIR *dir;
  600. FILINFO fno;
  601. FRESULT result;
  602. rt_uint32_t index;
  603. struct dirent *d;
  604. dir = (DIR *)(file->vnode->data);
  605. RT_ASSERT(dir != RT_NULL);
  606. /* make integer count */
  607. count = (count / sizeof(struct dirent)) * sizeof(struct dirent);
  608. if (count == 0)
  609. return -EINVAL;
  610. index = 0;
  611. while (1)
  612. {
  613. char *fn;
  614. d = dirp + index;
  615. result = f_readdir(dir, &fno);
  616. if (result != FR_OK || fno.fname[0] == 0)
  617. break;
  618. #if FF_USE_LFN
  619. fn = *fno.fname ? fno.fname : fno.altname;
  620. #else
  621. fn = fno.fname;
  622. #endif
  623. d->d_type = DT_UNKNOWN;
  624. if (fno.fattrib & AM_DIR)
  625. d->d_type = DT_DIR;
  626. else
  627. d->d_type = DT_REG;
  628. d->d_namlen = (rt_uint8_t)rt_strlen(fn);
  629. d->d_reclen = (rt_uint16_t)sizeof(struct dirent);
  630. rt_strncpy(d->d_name, fn, DFS_PATH_MAX);
  631. index ++;
  632. if (index * sizeof(struct dirent) >= count)
  633. break;
  634. }
  635. if (index == 0)
  636. return elm_result_to_dfs(result);
  637. file->fpos += index * sizeof(struct dirent);
  638. return index * sizeof(struct dirent);
  639. }
  640. int dfs_elm_unlink(struct dfs_dentry *dentry)
  641. {
  642. FRESULT result;
  643. #if FF_VOLUMES > 1
  644. int vol;
  645. char *drivers_fn;
  646. extern int elm_get_vol(FATFS * fat);
  647. /* add path for ELM FatFS driver support */
  648. vol = elm_get_vol((FATFS *)dentry->mnt->data);
  649. if (vol < 0)
  650. return -ENOENT;
  651. drivers_fn = (char *)rt_malloc(256);
  652. if (drivers_fn == RT_NULL)
  653. return -ENOMEM;
  654. rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
  655. #else
  656. const char *drivers_fn;
  657. drivers_fn = path;
  658. #endif
  659. result = f_unlink(drivers_fn);
  660. #if FF_VOLUMES > 1
  661. rt_free(drivers_fn);
  662. #endif
  663. return elm_result_to_dfs(result);
  664. }
  665. int dfs_elm_rename(struct dfs_dentry *old_dentry, struct dfs_dentry *new_dentry)
  666. {
  667. FRESULT result;
  668. #if FF_VOLUMES > 1
  669. char *drivers_oldfn;
  670. const char *drivers_newfn;
  671. int vol;
  672. extern int elm_get_vol(FATFS * fat);
  673. /* add path for ELM FatFS driver support */
  674. vol = elm_get_vol((FATFS *)old_dentry->mnt->data);
  675. if (vol < 0)
  676. return -ENOENT;
  677. drivers_oldfn = (char *)rt_malloc(256);
  678. if (drivers_oldfn == RT_NULL)
  679. return -ENOMEM;
  680. drivers_newfn = new_dentry->pathname;
  681. rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, old_dentry->pathname);
  682. #else
  683. const char *drivers_oldfn, *drivers_newfn;
  684. drivers_oldfn = old_dentry->pathname;
  685. drivers_newfn = new_dentry->pathname;
  686. #endif
  687. result = f_rename(drivers_oldfn, drivers_newfn);
  688. #if FF_VOLUMES > 1
  689. rt_free(drivers_oldfn);
  690. #endif
  691. return elm_result_to_dfs(result);
  692. }
  693. int dfs_elm_stat(struct dfs_dentry *dentry, struct stat *st)
  694. {
  695. FATFS *fat;
  696. FILINFO file_info;
  697. FRESULT result;
  698. fat = (FATFS *)dentry->mnt->data;
  699. #if FF_VOLUMES > 1
  700. int vol;
  701. char *drivers_fn;
  702. extern int elm_get_vol(FATFS * fat);
  703. /* add path for ELM FatFS driver support */
  704. vol = elm_get_vol(fat);
  705. if (vol < 0)
  706. return -ENOENT;
  707. drivers_fn = (char *)rt_malloc(256);
  708. if (drivers_fn == RT_NULL)
  709. return -ENOMEM;
  710. rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
  711. #else
  712. const char *drivers_fn;
  713. drivers_fn = dentry->pathname;
  714. #endif
  715. result = f_stat(drivers_fn, &file_info);
  716. #if FF_VOLUMES > 1
  717. rt_free(drivers_fn);
  718. #endif
  719. if (result == FR_OK)
  720. {
  721. /* convert to dfs stat structure */
  722. st->st_dev = (dev_t)(size_t)(dentry->mnt->dev_id);
  723. st->st_ino = (ino_t)dfs_dentry_full_path_crc32(dentry);
  724. if (file_info.fattrib & AM_DIR)
  725. {
  726. st->st_mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  727. }
  728. else
  729. {
  730. st->st_mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  731. }
  732. if (file_info.fattrib & AM_RDO)
  733. st->st_mode &= ~(S_IWUSR | S_IWGRP | S_IWOTH);
  734. if (S_IFDIR & st->st_mode)
  735. {
  736. st->st_size = file_info.fsize;
  737. }
  738. else
  739. {
  740. #ifdef RT_USING_PAGECACHE
  741. st->st_size = (dentry->vnode && dentry->vnode->aspace) ? dentry->vnode->size : file_info.fsize;
  742. #else
  743. st->st_size = file_info.fsize;
  744. #endif
  745. }
  746. st->st_blksize = fat->csize * SS(fat);
  747. if (file_info.fattrib & AM_ARC)
  748. {
  749. st->st_blocks = st->st_size ? ((st->st_size - 1) / SS(fat) / fat->csize + 1) : 0;
  750. st->st_blocks *= (st->st_blksize / 512); // man say st_blocks is number of 512B blocks allocated
  751. }
  752. else
  753. {
  754. st->st_blocks = fat->csize;
  755. }
  756. /* get st_mtime. */
  757. {
  758. struct tm tm_file;
  759. int year, mon, day, hour, min, sec;
  760. WORD tmp;
  761. tmp = file_info.fdate;
  762. day = tmp & 0x1F; /* bit[4:0] Day(1..31) */
  763. tmp >>= 5;
  764. mon = tmp & 0x0F; /* bit[8:5] Month(1..12) */
  765. tmp >>= 4;
  766. year = (tmp & 0x7F) + 1980; /* bit[15:9] Year origin from 1980(0..127) */
  767. tmp = file_info.ftime;
  768. sec = (tmp & 0x1F) * 2; /* bit[4:0] Second/2(0..29) */
  769. tmp >>= 5;
  770. min = tmp & 0x3F; /* bit[10:5] Minute(0..59) */
  771. tmp >>= 6;
  772. hour = tmp & 0x1F; /* bit[15:11] Hour(0..23) */
  773. rt_memset(&tm_file, 0, sizeof(tm_file));
  774. tm_file.tm_year = year - 1900; /* Years since 1900 */
  775. tm_file.tm_mon = mon - 1; /* Months *since* january: 0-11 */
  776. tm_file.tm_mday = day; /* Day of the month: 1-31 */
  777. tm_file.tm_hour = hour; /* Hours since midnight: 0-23 */
  778. tm_file.tm_min = min; /* Minutes: 0-59 */
  779. tm_file.tm_sec = sec; /* Seconds: 0-59 */
  780. st->st_mtime = timegm(&tm_file);
  781. } /* get st_mtime. */
  782. }
  783. return elm_result_to_dfs(result);
  784. }
  785. static struct dfs_vnode *dfs_elm_lookup(struct dfs_dentry *dentry)
  786. {
  787. struct stat st;
  788. struct dfs_vnode *vnode = RT_NULL;
  789. if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
  790. {
  791. return NULL;
  792. }
  793. if (dfs_elm_stat(dentry, &st) != 0)
  794. {
  795. return vnode;
  796. }
  797. vnode = dfs_vnode_create();
  798. if (vnode)
  799. {
  800. vnode->mnt = dentry->mnt;
  801. vnode->size = st.st_size;
  802. vnode->data = NULL;
  803. if (S_ISDIR(st.st_mode))
  804. {
  805. vnode->mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  806. vnode->type = FT_DIRECTORY;
  807. }
  808. else
  809. {
  810. vnode->mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  811. vnode->type = FT_REGULAR;
  812. #ifdef RT_USING_PAGECACHE
  813. vnode->aspace = dfs_aspace_create(dentry, vnode, &dfs_elm_aspace_ops);
  814. #endif
  815. }
  816. }
  817. return vnode;
  818. }
  819. static struct dfs_vnode *dfs_elm_create_vnode(struct dfs_dentry *dentry, int type, mode_t mode)
  820. {
  821. struct dfs_vnode *vnode = RT_NULL;
  822. if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
  823. {
  824. return NULL;
  825. }
  826. vnode = dfs_vnode_create();
  827. if (vnode)
  828. {
  829. if (type == FT_DIRECTORY)
  830. {
  831. /* fat directory force mode 0555 */
  832. vnode->mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  833. vnode->type = FT_DIRECTORY;
  834. }
  835. else
  836. {
  837. /* fat REGULAR file mode force mode 0777 */
  838. vnode->mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  839. vnode->type = FT_REGULAR;
  840. #ifdef RT_USING_PAGECACHE
  841. vnode->aspace = dfs_aspace_create(dentry, vnode, &dfs_elm_aspace_ops);
  842. #endif
  843. }
  844. vnode->mnt = dentry->mnt;
  845. vnode->data = NULL;
  846. vnode->size = 0;
  847. }
  848. return vnode;
  849. }
  850. static int dfs_elm_free_vnode(struct dfs_vnode *vnode)
  851. {
  852. /* nothing to be freed */
  853. if (vnode && vnode->ref_count <= 1)
  854. {
  855. vnode->data = NULL;
  856. }
  857. return 0;
  858. }
  859. #ifdef RT_USING_PAGECACHE
  860. static ssize_t dfs_elm_page_read(struct dfs_file *file, struct dfs_page *page)
  861. {
  862. int ret = -EINVAL;
  863. if (page->page)
  864. {
  865. off_t fpos = page->fpos;
  866. ret = dfs_elm_read(file, page->page, page->size, &fpos);
  867. }
  868. return ret;
  869. }
  870. ssize_t dfs_elm_page_write(struct dfs_page *page)
  871. {
  872. FIL *fd;
  873. FRESULT result;
  874. UINT byte_write;
  875. if (page->aspace->vnode->type == FT_DIRECTORY)
  876. {
  877. return -EISDIR;
  878. }
  879. fd = (FIL *)(page->aspace->vnode->data);
  880. RT_ASSERT(fd != RT_NULL);
  881. rt_mutex_take(&page->aspace->vnode->lock, RT_WAITING_FOREVER);
  882. f_lseek(fd, page->fpos);
  883. result = f_write(fd, page->page, page->len, &byte_write);
  884. rt_mutex_release(&page->aspace->vnode->lock);
  885. if (result == FR_OK)
  886. {
  887. return byte_write;
  888. }
  889. return elm_result_to_dfs(result);
  890. }
  891. #endif
  892. static const struct dfs_file_ops dfs_elm_fops =
  893. {
  894. .open = dfs_elm_open,
  895. .close = dfs_elm_close,
  896. .ioctl = dfs_elm_ioctl,
  897. .read = dfs_elm_read,
  898. .write = dfs_elm_write,
  899. .flush = dfs_elm_flush,
  900. .lseek = dfs_elm_lseek,
  901. .getdents = dfs_elm_getdents,
  902. };
  903. static const struct dfs_filesystem_ops dfs_elm =
  904. {
  905. "elm",
  906. FS_NEED_DEVICE,
  907. &dfs_elm_fops,
  908. .mount = dfs_elm_mount,
  909. .umount = dfs_elm_unmount,
  910. .mkfs = dfs_elm_mkfs,
  911. .statfs = dfs_elm_statfs,
  912. .unlink = dfs_elm_unlink,
  913. .stat = dfs_elm_stat,
  914. .rename = dfs_elm_rename,
  915. .lookup = dfs_elm_lookup,
  916. .create_vnode = dfs_elm_create_vnode,
  917. .free_vnode = dfs_elm_free_vnode
  918. };
  919. static struct dfs_filesystem_type _elmfs =
  920. {
  921. .fs_ops = &dfs_elm,
  922. };
  923. int elm_init(void)
  924. {
  925. /* register fatfs file system */
  926. dfs_register(&_elmfs);
  927. return 0;
  928. }
  929. INIT_COMPONENT_EXPORT(elm_init);
  930. /*
  931. * RT-Thread Device Interface for ELM FatFs
  932. */
  933. #include "diskio.h"
  934. /* Initialize a Drive */
  935. DSTATUS disk_initialize(BYTE drv)
  936. {
  937. return 0;
  938. }
  939. /* Return Disk Status */
  940. DSTATUS disk_status(BYTE drv)
  941. {
  942. return 0;
  943. }
  944. /* Read Sector(s) */
  945. DRESULT disk_read(BYTE drv, BYTE *buff, DWORD sector, UINT count)
  946. {
  947. rt_size_t result;
  948. rt_device_t device = disk[drv];
  949. result = rt_device_read(device, sector, buff, count);
  950. if (result == count)
  951. {
  952. return RES_OK;
  953. }
  954. return RES_ERROR;
  955. }
  956. /* Write Sector(s) */
  957. DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, UINT count)
  958. {
  959. rt_size_t result;
  960. rt_device_t device = disk[drv];
  961. result = rt_device_write(device, sector, buff, count);
  962. if (result == count)
  963. {
  964. return RES_OK;
  965. }
  966. return RES_ERROR;
  967. }
  968. /* Miscellaneous Functions */
  969. DRESULT disk_ioctl(BYTE drv, BYTE ctrl, void *buff)
  970. {
  971. rt_device_t device = disk[drv];
  972. if (device == RT_NULL)
  973. return RES_ERROR;
  974. if (ctrl == GET_SECTOR_COUNT)
  975. {
  976. struct rt_device_blk_geometry geometry;
  977. rt_memset(&geometry, 0, sizeof(geometry));
  978. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  979. *(DWORD *)buff = geometry.sector_count;
  980. if (geometry.sector_count == 0)
  981. return RES_ERROR;
  982. }
  983. else if (ctrl == GET_SECTOR_SIZE)
  984. {
  985. struct rt_device_blk_geometry geometry;
  986. rt_memset(&geometry, 0, sizeof(geometry));
  987. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  988. *(WORD *)buff = (WORD)(geometry.bytes_per_sector);
  989. }
  990. else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */
  991. {
  992. struct rt_device_blk_geometry geometry;
  993. rt_memset(&geometry, 0, sizeof(geometry));
  994. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  995. *(DWORD *)buff = geometry.block_size / geometry.bytes_per_sector;
  996. }
  997. else if (ctrl == CTRL_SYNC)
  998. {
  999. rt_device_control(device, RT_DEVICE_CTRL_BLK_SYNC, RT_NULL);
  1000. }
  1001. else if (ctrl == CTRL_TRIM)
  1002. {
  1003. rt_device_control(device, RT_DEVICE_CTRL_BLK_ERASE, buff);
  1004. }
  1005. return RES_OK;
  1006. }
  1007. DWORD get_fattime(void)
  1008. {
  1009. DWORD fat_time = 0;
  1010. time_t now;
  1011. struct tm tm_now;
  1012. now = time(RT_NULL);
  1013. gmtime_r(&now, &tm_now);
  1014. fat_time = (DWORD)(tm_now.tm_year - 80) << 25 |
  1015. (DWORD)(tm_now.tm_mon + 1) << 21 |
  1016. (DWORD)tm_now.tm_mday << 16 |
  1017. (DWORD)tm_now.tm_hour << 11 |
  1018. (DWORD)tm_now.tm_min << 5 |
  1019. (DWORD)tm_now.tm_sec / 2 ;
  1020. return fat_time;
  1021. }
  1022. #if FF_FS_REENTRANT
  1023. static rt_mutex_t Mutex[FF_VOLUMES + 1];
  1024. int ff_mutex_create (int vol)
  1025. {
  1026. char name[8];
  1027. rt_mutex_t mutex;
  1028. rt_snprintf(name, sizeof(name), "fat%d", vol);
  1029. mutex = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
  1030. if (mutex != RT_NULL)
  1031. {
  1032. Mutex[vol] = mutex;
  1033. return RT_TRUE;
  1034. }
  1035. return RT_FALSE;
  1036. }
  1037. void ff_mutex_delete (int vol)
  1038. {
  1039. if (Mutex[vol] != RT_NULL)
  1040. rt_mutex_delete(Mutex[vol]);
  1041. }
  1042. int ff_mutex_take (int vol)
  1043. {
  1044. if (rt_mutex_take(Mutex[vol], FF_FS_TIMEOUT) == RT_EOK)
  1045. return RT_TRUE;
  1046. return RT_FALSE;
  1047. }
  1048. void ff_mutex_give (int vol)
  1049. {
  1050. rt_mutex_release(Mutex[vol]);
  1051. }
  1052. #endif
  1053. /* Memory functions */
  1054. #if FF_USE_LFN == 3
  1055. /* Allocate memory block */
  1056. void *ff_memalloc(UINT size)
  1057. {
  1058. return rt_malloc(size);
  1059. }
  1060. /* Free memory block */
  1061. void ff_memfree(void *mem)
  1062. {
  1063. rt_free(mem);
  1064. }
  1065. #endif /* FF_USE_LFN == 3 */