123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- /*
- * Copyright (c) 2016, Freescale Semiconductor, Inc.
- * Copyright 2016-2017 NXP
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- *
- * o Redistributions of source code must retain the above copyright notice, this list
- * of conditions and the following disclaimer.
- *
- * o Redistributions in binary form must reproduce the above copyright notice, this
- * list of conditions and the following disclaimer in the documentation and/or
- * other materials provided with the distribution.
- *
- * o Neither the name of the copyright holder nor the names of its
- * contributors may be used to endorse or promote products derived from this
- * software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include "fsl_phy.h"
- /*******************************************************************************
- * Definitions
- ******************************************************************************/
- /*! @brief Defines the timeout macro. */
- #define PHY_TIMEOUT_COUNT 0xFFFFU
- /*******************************************************************************
- * Prototypes
- ******************************************************************************/
- /*!
- * @brief Get the ENET instance from peripheral base address.
- *
- * @param base ENET peripheral base address.
- * @return ENET instance.
- */
- extern uint32_t ENET_GetInstance(ENET_Type *base);
- /*******************************************************************************
- * Variables
- ******************************************************************************/
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /*! @brief Pointers to enet clocks for each instance. */
- #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0)
- extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
- #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
- extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_LPC_ENET_COUNT];
- #endif
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
- /*******************************************************************************
- * Code
- ******************************************************************************/
- status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
- {
- uint32_t reg;
- uint32_t idReg = 0;
- uint32_t delay = PHY_TIMEOUT_COUNT;
- uint32_t instance = ENET_GetInstance(base);
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* Set SMI first. */
- CLOCK_EnableClock(s_enetClock[instance]);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
- #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0)
- ENET_SetSMI(base, srcClock_Hz, false);
- #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
- ENET_SetSMI(base);
- #endif
- /* Initialization after PHY stars to work. */
- while ((idReg != PHY_CONTROL_ID1) && (delay != 0))
- {
- PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
- delay --;
- }
- if (!delay)
- {
- return kStatus_Fail;
- }
- delay = PHY_TIMEOUT_COUNT;
- /* Reset PHY and wait until completion. */
- PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
- do
- {
- PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, ®);
- } while (delay-- && reg & PHY_BCTL_RESET_MASK);
- if (!delay)
- {
- return kStatus_Fail;
- }
- /* Set the ability. */
- PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG, (PHY_ALL_CAPABLE_MASK | 0x1U));
- /* Start Auto negotiation and wait until auto negotiation completion */
- PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
- delay = PHY_TIMEOUT_COUNT;
- do
- {
- PHY_Read(base, phyAddr, PHY_SEPCIAL_CONTROL_REG, ®);
- delay --;
- } while (delay && ((reg & PHY_SPECIALCTL_AUTONEGDONE_MASK) == 0));
- if (!delay)
- {
- return kStatus_Fail;
- }
- return kStatus_Success;
- }
- status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
- {
- #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0)
- uint32_t counter;
- /* Clear the SMI interrupt event. */
- ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
- /* Starts a SMI write command. */
- ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
- /* Wait for SMI complete. */
- for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
- {
- if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
- {
- break;
- }
- }
- /* Check for timeout. */
- if (!counter)
- {
- return kStatus_PHY_SMIVisitTimeout;
- }
- /* Clear MII interrupt event. */
- ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
- #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
- ENET_StartSMIWrite(base, phyAddr, phyReg, data);
- while (ENET_IsSMIBusy(base))
- ;
- #endif
- return kStatus_Success;
- }
- status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
- {
- #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0)
- assert(dataPtr);
- uint32_t counter;
- /* Clear the MII interrupt event. */
- ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
- /* Starts a SMI read command operation. */
- ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
- /* Wait for MII complete. */
- for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
- {
- if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
- {
- break;
- }
- }
- /* Check for timeout. */
- if (!counter)
- {
- return kStatus_PHY_SMIVisitTimeout;
- }
- /* Get data from MII register. */
- *dataPtr = ENET_ReadSMIData(base);
- /* Clear MII interrupt event. */
- ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
- #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
- ENET_StartSMIRead(base, phyAddr, phyReg);
- while (ENET_IsSMIBusy(base))
- ;
- *dataPtr = ENET_ReadSMIData(base);
- #endif
- return kStatus_Success;
- }
- status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
- {
- uint32_t reg;
- status_t result = kStatus_Success;
- /* Read the basic status register. */
- result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, ®);
- if (result == kStatus_Success)
- {
- if (reg & PHY_BSTATUS_LINKSTATUS_MASK)
- {
- /* link up. */
- *status = true;
- }
- else
- {
- *status = false;
- }
- }
- return result;
- }
- status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
- {
- assert(duplex);
- assert(speed);
- uint32_t reg;
- status_t result = kStatus_Success;
- /* Read the control two register. */
- result = PHY_Read(base, phyAddr, PHY_SEPCIAL_CONTROL_REG, ®);
- if (result == kStatus_Success)
- {
- if (reg & PHY_SPECIALCTL_DUPLEX_MASK)
- {
- /* Full duplex. */
- *duplex = kPHY_FullDuplex;
- }
- else
- {
- /* Half duplex. */
- *duplex = kPHY_HalfDuplex;
- }
- if (reg & PHY_SPECIALCTL_100SPEED_MASK)
- {
- /* 100M speed. */
- *speed = kPHY_Speed100M;
- }
- else
- { /* 10M speed. */
- *speed = kPHY_Speed10M;
- }
- }
- return result;
- }
|