dm9000a.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706
  1. #include <rtthread.h>
  2. #include "dm9000.h"
  3. #include <netif/ethernetif.h>
  4. #include "lwipopts.h"
  5. #include "stm32f10x.h"
  6. // #define DM9000_DEBUG 1
  7. #if DM9000_DEBUG
  8. #define DM9000_TRACE rt_kprintf
  9. #else
  10. #define DM9000_TRACE(...)
  11. #endif
  12. /*
  13. * DM9000 interrupt line is connected to PA1
  14. * 16bit mode
  15. */
  16. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  17. #define MAX_ADDR_LEN 6
  18. enum DM9000_PHY_mode
  19. {
  20. DM9000_10MHD = 0, DM9000_100MHD = 1,
  21. DM9000_10MFD = 4, DM9000_100MFD = 5,
  22. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  23. };
  24. enum DM9000_TYPE
  25. {
  26. TYPE_DM9000E,
  27. TYPE_DM9000A,
  28. TYPE_DM9000B
  29. };
  30. struct rt_dm9000_eth
  31. {
  32. /* inherit from ethernet device */
  33. struct eth_device parent;
  34. enum DM9000_TYPE type;
  35. enum DM9000_PHY_mode mode;
  36. rt_uint8_t imr_all;
  37. rt_uint8_t packet_cnt; /* packet I or II */
  38. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  39. /* interface address info. */
  40. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  41. };
  42. static struct rt_dm9000_eth dm9000_device;
  43. static struct rt_semaphore sem_ack, sem_lock;
  44. void rt_dm9000_isr(void);
  45. static void delay_ms(rt_uint32_t ms)
  46. {
  47. rt_uint32_t len;
  48. for (;ms > 0; ms --)
  49. for (len = 0; len < 100; len++ );
  50. }
  51. /* Read a byte from I/O port */
  52. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  53. {
  54. DM9000_IO = reg;
  55. return (rt_uint8_t) DM9000_DATA;
  56. }
  57. /* Write a byte to I/O port */
  58. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  59. {
  60. DM9000_IO = reg;
  61. DM9000_DATA = value;
  62. }
  63. /* Read a word from phyxcer */
  64. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  65. {
  66. rt_uint16_t val;
  67. /* Fill the phyxcer register into REG_0C */
  68. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  69. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  70. delay_ms(100); /* Wait read complete */
  71. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  72. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  73. return val;
  74. }
  75. /* Write a word to phyxcer */
  76. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  77. {
  78. /* Fill the phyxcer register into REG_0C */
  79. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  80. /* Fill the written data into REG_0D & REG_0E */
  81. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  82. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  83. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  84. delay_ms(500); /* Wait write complete */
  85. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  86. }
  87. /* Set PHY operationg mode */
  88. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  89. {
  90. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  91. if (!(media_mode & DM9000_AUTO))
  92. {
  93. switch (media_mode)
  94. {
  95. case DM9000_10MHD:
  96. phy_reg4 = 0x21;
  97. phy_reg0 = 0x0000;
  98. break;
  99. case DM9000_10MFD:
  100. phy_reg4 = 0x41;
  101. phy_reg0 = 0x1100;
  102. break;
  103. case DM9000_100MHD:
  104. phy_reg4 = 0x81;
  105. phy_reg0 = 0x2000;
  106. break;
  107. case DM9000_100MFD:
  108. phy_reg4 = 0x101;
  109. phy_reg0 = 0x3100;
  110. break;
  111. }
  112. phy_write(4, phy_reg4); /* Set PHY media mode */
  113. phy_write(0, phy_reg0); /* Tmp */
  114. }
  115. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  116. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  117. }
  118. /* interrupt service routine */
  119. void rt_dm9000_isr()
  120. {
  121. rt_uint16_t int_status;
  122. rt_uint16_t last_io;
  123. last_io = DM9000_IO;
  124. /* Disable all interrupts */
  125. dm9000_io_write(DM9000_IMR, IMR_PAR);
  126. /* Got DM9000 interrupt status */
  127. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  128. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  129. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  130. /* receive overflow */
  131. if (int_status & ISR_ROS)
  132. {
  133. rt_kprintf("overflow\n");
  134. }
  135. if (int_status & ISR_ROOS)
  136. {
  137. rt_kprintf("overflow counter overflow\n");
  138. }
  139. /* Received the coming packet */
  140. if (int_status & ISR_PRS)
  141. {
  142. rt_err_t result;
  143. /* a frame has been received */
  144. result = eth_device_ready(&(dm9000_device.parent));
  145. if (result != RT_EOK) rt_kprintf("eth notification failed\n");
  146. RT_ASSERT(result == RT_EOK);
  147. }
  148. /* Transmit Interrupt check */
  149. if (int_status & ISR_PTS)
  150. {
  151. /* transmit done */
  152. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  153. if (tx_status & (NSR_TX2END | NSR_TX1END))
  154. {
  155. dm9000_device.packet_cnt --;
  156. if (dm9000_device.packet_cnt > 0)
  157. {
  158. DM9000_TRACE("dm9000 isr: tx second packet\n");
  159. /* transmit packet II */
  160. /* Set TX length to DM9000 */
  161. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  162. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  163. /* Issue TX polling command */
  164. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  165. }
  166. /* One packet sent complete */
  167. rt_sem_release(&sem_ack);
  168. }
  169. }
  170. /* Re-enable interrupt mask */
  171. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  172. DM9000_IO = last_io;
  173. }
  174. /* RT-Thread Device Interface */
  175. /* initialize the interface */
  176. static rt_err_t rt_dm9000_init(rt_device_t dev)
  177. {
  178. int i, oft, lnk;
  179. rt_uint32_t value;
  180. /* RESET device */
  181. dm9000_io_write(DM9000_NCR, NCR_RST);
  182. delay_ms(1000); /* delay 1ms */
  183. /* identfy DM9000 */
  184. value = dm9000_io_read(DM9000_VIDL);
  185. value |= dm9000_io_read(DM9000_VIDH) << 8;
  186. value |= dm9000_io_read(DM9000_PIDL) << 16;
  187. value |= dm9000_io_read(DM9000_PIDH) << 24;
  188. if (value == DM9000_ID)
  189. {
  190. rt_kprintf("dm9000 id: 0x%x\n", value);
  191. }
  192. else
  193. {
  194. return -RT_ERROR;
  195. }
  196. /* GPIO0 on pre-activate PHY */
  197. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  198. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  199. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  200. /* Set PHY */
  201. phy_mode_set(dm9000_device.mode);
  202. /* Program operating register */
  203. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  204. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  205. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  206. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  207. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  208. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  209. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  210. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  211. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  212. /* set mac address */
  213. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  214. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  215. /* set multicast address */
  216. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  217. dm9000_io_write(oft, 0xff);
  218. /* Activate DM9000 */
  219. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  220. dm9000_io_write(DM9000_IMR, IMR_PAR);
  221. if (dm9000_device.mode == DM9000_AUTO)
  222. {
  223. while (!(phy_read(1) & 0x20))
  224. {
  225. /* autonegation complete bit */
  226. delay_ms(10);
  227. i++;
  228. if (i == 10000)
  229. {
  230. rt_kprintf("could not establish link\n");
  231. return 0;
  232. }
  233. }
  234. }
  235. /* see what we've got */
  236. lnk = phy_read(17) >> 12;
  237. rt_kprintf("operating at ");
  238. switch (lnk)
  239. {
  240. case 1:
  241. rt_kprintf("10M half duplex ");
  242. break;
  243. case 2:
  244. rt_kprintf("10M full duplex ");
  245. break;
  246. case 4:
  247. rt_kprintf("100M half duplex ");
  248. break;
  249. case 8:
  250. rt_kprintf("100M full duplex ");
  251. break;
  252. default:
  253. rt_kprintf("unknown: %d ", lnk);
  254. break;
  255. }
  256. rt_kprintf("mode\n");
  257. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  258. return RT_EOK;
  259. }
  260. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  261. {
  262. return RT_EOK;
  263. }
  264. static rt_err_t rt_dm9000_close(rt_device_t dev)
  265. {
  266. /* RESET devie */
  267. phy_write(0, 0x8000); /* PHY RESET */
  268. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  269. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  270. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  271. return RT_EOK;
  272. }
  273. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  274. {
  275. rt_set_errno(-RT_ENOSYS);
  276. return 0;
  277. }
  278. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  279. {
  280. rt_set_errno(-RT_ENOSYS);
  281. return 0;
  282. }
  283. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  284. {
  285. switch (cmd)
  286. {
  287. case NIOCTL_GADDR:
  288. /* get mac address */
  289. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  290. else return -RT_ERROR;
  291. break;
  292. default :
  293. break;
  294. }
  295. return RT_EOK;
  296. }
  297. /* ethernet device interface */
  298. /* transmit packet. */
  299. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  300. {
  301. struct pbuf* q;
  302. rt_int32_t len;
  303. rt_uint16_t* ptr;
  304. #if DM9000_DEBUG
  305. rt_uint8_t* dump_ptr;
  306. rt_uint32_t cnt = 0;
  307. #endif
  308. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  309. /* lock DM9000 device */
  310. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  311. /* disable dm9000a interrupt */
  312. dm9000_io_write(DM9000_IMR, IMR_PAR);
  313. /* Move data to DM9000 TX RAM */
  314. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  315. for (q = p; q != NULL; q = q->next)
  316. {
  317. len = q->len;
  318. ptr = q->payload;
  319. #if DM9000_DEBUG
  320. dump_ptr = q->payload;
  321. #endif
  322. /* use 16bit mode to write data to DM9000 RAM */
  323. while (len > 0)
  324. {
  325. DM9000_outw(DM9000_DATA_BASE, *ptr);
  326. ptr ++;
  327. len -= 2;
  328. #ifdef DM9000_DEBUG
  329. DM9000_TRACE("%02x ", *dump_ptr++);
  330. if (++cnt % 16 == 0) DM9000_TRACE("\n");
  331. #endif
  332. }
  333. }
  334. DM9000_TRACE("\n");
  335. if (dm9000_device.packet_cnt == 0)
  336. {
  337. DM9000_TRACE("dm9000 tx: first packet\n");
  338. dm9000_device.packet_cnt ++;
  339. /* Set TX length to DM9000 */
  340. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  341. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  342. /* Issue TX polling command */
  343. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  344. }
  345. else
  346. {
  347. DM9000_TRACE("dm9000 tx: second packet\n");
  348. dm9000_device.packet_cnt ++;
  349. dm9000_device.queue_packet_len = p->tot_len;
  350. }
  351. /* enable dm9000a interrupt */
  352. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  353. /* unlock DM9000 device */
  354. rt_sem_release(&sem_lock);
  355. /* wait ack */
  356. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  357. DM9000_TRACE("dm9000 tx done\n");
  358. return RT_EOK;
  359. }
  360. /* reception packet. */
  361. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  362. {
  363. struct pbuf* p;
  364. rt_uint32_t rxbyte;
  365. #if DM9000_DEBUG
  366. rt_uint8_t* dump_ptr;
  367. rt_uint32_t cnt = 0;
  368. #endif
  369. /* init p pointer */
  370. p = RT_NULL;
  371. /* lock DM9000 device */
  372. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  373. /* Check packet ready or not */
  374. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  375. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  376. if (rxbyte)
  377. {
  378. rt_uint16_t rx_status, rx_len;
  379. rt_uint16_t* data;
  380. if (rxbyte > 1)
  381. {
  382. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  383. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  384. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  385. }
  386. /* A packet ready now & Get status/length */
  387. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  388. rx_status = DM9000_inw(DM9000_DATA_BASE);
  389. rx_len = DM9000_inw(DM9000_DATA_BASE);
  390. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  391. /* allocate buffer */
  392. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  393. if (p != RT_NULL)
  394. {
  395. struct pbuf* q;
  396. rt_int32_t len;
  397. for (q = p; q != RT_NULL; q= q->next)
  398. {
  399. data = (rt_uint16_t*)q->payload;
  400. len = q->len;
  401. #if DM9000_DEBUG
  402. dump_ptr = q->payload;
  403. #endif
  404. while (len > 0)
  405. {
  406. *data = DM9000_inw(DM9000_DATA_BASE);
  407. data ++;
  408. len -= 2;
  409. #if DM9000_DEBUG
  410. DM9000_TRACE("%02x ", *dump_ptr++);
  411. if (++cnt % 16 == 0) DM9000_TRACE("\n");
  412. #endif
  413. }
  414. }
  415. DM9000_TRACE("\n");
  416. }
  417. else
  418. {
  419. rt_uint16_t dummy;
  420. DM9000_TRACE("dm9000 rx: no pbuf\n");
  421. /* no pbuf, discard data from DM9000 */
  422. data = &dummy;
  423. while (rx_len)
  424. {
  425. *data = DM9000_inw(DM9000_DATA_BASE);
  426. rx_len -= 2;
  427. }
  428. }
  429. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  430. || (rx_len > DM9000_PKT_MAX))
  431. {
  432. rt_kprintf("rx error: status %04x\n", rx_status);
  433. if (rx_status & 0x100)
  434. {
  435. rt_kprintf("rx fifo error\n");
  436. }
  437. if (rx_status & 0x200)
  438. {
  439. rt_kprintf("rx crc error\n");
  440. }
  441. if (rx_status & 0x8000)
  442. {
  443. rt_kprintf("rx length error\n");
  444. }
  445. if (rx_len > DM9000_PKT_MAX)
  446. {
  447. rt_kprintf("rx length too big\n");
  448. /* RESET device */
  449. dm9000_io_write(DM9000_NCR, NCR_RST);
  450. rt_thread_delay(1); /* delay 5ms */
  451. }
  452. /* it issues an error, release pbuf */
  453. pbuf_free(p);
  454. p = RT_NULL;
  455. }
  456. }
  457. /* unlock DM9000 device */
  458. rt_sem_release(&sem_lock);
  459. return p;
  460. }
  461. static void RCC_Configuration(void)
  462. {
  463. /* enable gpiob port clock */
  464. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
  465. }
  466. static void NVIC_Configuration(void)
  467. {
  468. NVIC_InitTypeDef NVIC_InitStructure;
  469. /* Configure one bit for preemption priority */
  470. NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
  471. /* Enable the EXTI0 Interrupt */
  472. NVIC_InitStructure.NVIC_IRQChannel = EXTI1_IRQn;
  473. NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
  474. NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  475. NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  476. NVIC_Init(&NVIC_InitStructure);
  477. }
  478. static void GPIO_Configuration()
  479. {
  480. GPIO_InitTypeDef GPIO_InitStructure;
  481. EXTI_InitTypeDef EXTI_InitStructure;
  482. /* configure PA1 as external interrupt */
  483. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
  484. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  485. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
  486. GPIO_Init(GPIOA, &GPIO_InitStructure);
  487. /* Connect DM9000 EXTI Line to GPIOA Pin 1 */
  488. GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource1);
  489. /* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
  490. EXTI_InitStructure.EXTI_Line = EXTI_Line1;
  491. EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  492. EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
  493. EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  494. EXTI_Init(&EXTI_InitStructure);
  495. /* Clear the Key Button EXTI line pending bit */
  496. EXTI_ClearITPendingBit(EXTI_Line1);
  497. }
  498. void rt_hw_dm9000_init()
  499. {
  500. RCC_Configuration();
  501. NVIC_Configuration();
  502. GPIO_Configuration();
  503. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  504. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  505. dm9000_device.type = TYPE_DM9000A;
  506. dm9000_device.mode = DM9000_AUTO;
  507. dm9000_device.packet_cnt = 0;
  508. dm9000_device.queue_packet_len = 0;
  509. /*
  510. * SRAM Tx/Rx pointer automatically return to start address,
  511. * Packet Transmitted, Packet Received
  512. */
  513. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  514. dm9000_device.dev_addr[0] = 0x01;
  515. dm9000_device.dev_addr[1] = 0x60;
  516. dm9000_device.dev_addr[2] = 0x6E;
  517. dm9000_device.dev_addr[3] = 0x11;
  518. dm9000_device.dev_addr[4] = 0x02;
  519. dm9000_device.dev_addr[5] = 0x0F;
  520. dm9000_device.parent.parent.init = rt_dm9000_init;
  521. dm9000_device.parent.parent.open = rt_dm9000_open;
  522. dm9000_device.parent.parent.close = rt_dm9000_close;
  523. dm9000_device.parent.parent.read = rt_dm9000_read;
  524. dm9000_device.parent.parent.write = rt_dm9000_write;
  525. dm9000_device.parent.parent.control = rt_dm9000_control;
  526. dm9000_device.parent.parent.private = RT_NULL;
  527. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  528. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  529. eth_device_init(&(dm9000_device.parent), "e0");
  530. }
  531. #ifdef RT_USING_FINSH
  532. #include <finsh.h>
  533. void dm9000(void)
  534. {
  535. rt_kprintf("\n");
  536. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  537. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  538. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  539. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  540. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  541. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  542. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  543. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  544. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  545. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  546. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  547. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  548. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  549. rt_kprintf("\n");
  550. }
  551. FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
  552. void rx(void)
  553. {
  554. rt_err_t result;
  555. dm9000_io_write(DM9000_ISR, ISR_PRS); /* Clear rx status */
  556. /* a frame has been received */
  557. result = eth_device_ready(&(dm9000_device.parent));
  558. if (result != RT_EOK) rt_kprintf("eth notification failed\n");
  559. RT_ASSERT(result == RT_EOK);
  560. }
  561. FINSH_FUNCTION_EXPORT(rx, notify packet rx);
  562. #endif
  563. void EXTI1_IRQHandler(void)
  564. {
  565. extern void rt_dm9000_isr(void);
  566. /* enter interrupt */
  567. rt_interrupt_enter();
  568. rt_dm9000_isr();
  569. /* Clear the Key Button EXTI line pending bit */
  570. EXTI_ClearITPendingBit(EXTI_Line1);
  571. /* leave interrupt */
  572. rt_interrupt_leave();
  573. rt_hw_interrupt_thread_switch();
  574. }