drv_spi.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. * Copyright (c) 2022, Xiaohua Semiconductor Co., Ltd.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2022-04-28 CDT first version
  10. */
  11. /*******************************************************************************
  12. * Include files
  13. ******************************************************************************/
  14. #include <rtthread.h>
  15. #include <rtdevice.h>
  16. #if defined(RT_USING_SPI)
  17. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || \
  18. defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  19. #include "drv_spi.h"
  20. #include "board_config.h"
  21. /*******************************************************************************
  22. * Local type definitions ('typedef')
  23. ******************************************************************************/
  24. /*******************************************************************************
  25. * Local pre-processor symbols/macros ('#define')
  26. ******************************************************************************/
  27. //#define DRV_DEBUG
  28. #define LOG_TAG "drv.spi"
  29. #include <drv_log.h>
  30. /*******************************************************************************
  31. * Global variable definitions (declared in header file with 'extern')
  32. ******************************************************************************/
  33. extern rt_err_t rt_hw_spi_board_init(CM_SPI_TypeDef *CM_SPIx);
  34. /*******************************************************************************
  35. * Local function prototypes ('static')
  36. ******************************************************************************/
  37. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  38. static void spi1_rx_dma_irq_handle(void);
  39. static void spi1_tx_dma_irq_handle(void);
  40. #endif /* BSP_USING_SPI1 */
  41. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  42. static void spi2_rx_dma_irq_handle(void);
  43. static void spi2_tx_dma_irq_handle(void);
  44. #endif /* BSP_USING_SPI2 */
  45. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  46. static void spi3_rx_dma_irq_handle(void);
  47. static void spi3_tx_dma_irq_handle(void);
  48. #endif /* BSP_USING_SPI3 */
  49. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  50. static void spi4_rx_dma_irq_handle(void);
  51. static void spi4_tx_dma_irq_handle(void);
  52. #endif /* BSP_USING_SPI4 */
  53. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  54. static void spi5_rx_dma_irq_handle(void);
  55. static void spi5_tx_dma_irq_handle(void);
  56. #endif /* BSP_USING_SPI5 */
  57. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  58. static void spi6_rx_dma_irq_handle(void);
  59. static void spi6_tx_dma_irq_handle(void);
  60. #endif /* BSP_USING_SPI6 */
  61. /*******************************************************************************
  62. * Local variable definitions ('static')
  63. ******************************************************************************/
  64. enum
  65. {
  66. #ifdef BSP_USING_SPI1
  67. SPI1_INDEX,
  68. #endif
  69. #ifdef BSP_USING_SPI2
  70. SPI2_INDEX,
  71. #endif
  72. #ifdef BSP_USING_SPI3
  73. SPI3_INDEX,
  74. #endif
  75. #ifdef BSP_USING_SPI4
  76. SPI4_INDEX,
  77. #endif
  78. #ifdef BSP_USING_SPI5
  79. SPI5_INDEX,
  80. #endif
  81. #ifdef BSP_USING_SPI6
  82. SPI6_INDEX,
  83. #endif
  84. };
  85. static struct hc32_spi_config spi_config[] =
  86. {
  87. #ifdef BSP_USING_SPI1
  88. SPI1_BUS_CONFIG,
  89. #endif
  90. #ifdef BSP_USING_SPI2
  91. SPI2_BUS_CONFIG,
  92. #endif
  93. #ifdef BSP_USING_SPI3
  94. SPI3_BUS_CONFIG,
  95. #endif
  96. #ifdef BSP_USING_SPI4
  97. SPI4_BUS_CONFIG,
  98. #endif
  99. #ifdef BSP_USING_SPI5
  100. SPI5_BUS_CONFIG,
  101. #endif
  102. #ifdef BSP_USING_SPI6
  103. SPI6_BUS_CONFIG,
  104. #endif
  105. };
  106. static struct hc32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  107. /*******************************************************************************
  108. * Function implementation - global ('extern') and local ('static')
  109. ******************************************************************************/
  110. static rt_err_t hc32_spi_init(struct hc32_spi *spi_drv, struct rt_spi_configuration *cfg)
  111. {
  112. RT_ASSERT(spi_drv != RT_NULL);
  113. RT_ASSERT(cfg != RT_NULL);
  114. stc_spi_init_t stcSpiInit;
  115. stc_clock_freq_t stcClkFreq;
  116. CM_SPI_TypeDef *spi_instance = spi_drv->config->Instance;
  117. /* Enable spi clock */
  118. FCG_Fcg1PeriphClockCmd(spi_drv->config->clock, ENABLE);
  119. /* Init spi struct as default value */
  120. SPI_StructInit(&stcSpiInit);
  121. /* Slave or master mode */
  122. if (cfg->mode & RT_SPI_SLAVE)
  123. {
  124. stcSpiInit.u32MasterSlave = SPI_SLAVE;
  125. }
  126. else
  127. {
  128. stcSpiInit.u32MasterSlave = SPI_MASTER;
  129. }
  130. /* SI/SO pin shared */
  131. if (cfg->mode & RT_SPI_3WIRE)
  132. {
  133. return -RT_EINVAL;
  134. }
  135. else
  136. {
  137. stcSpiInit.u32TransMode = SPI_FULL_DUPLEX;
  138. }
  139. /* clock phase & polarity */
  140. if (RT_SPI_MODE_3 == (cfg->mode & RT_SPI_MODE_3))
  141. {
  142. stcSpiInit.u32SpiMode = SPI_MD_3;
  143. }
  144. else if (RT_SPI_MODE_2 == (cfg->mode & RT_SPI_MODE_3))
  145. {
  146. stcSpiInit.u32SpiMode = SPI_MD_2;
  147. }
  148. else if (RT_SPI_MODE_1 == (cfg->mode & RT_SPI_MODE_3))
  149. {
  150. stcSpiInit.u32SpiMode = SPI_MD_1;
  151. }
  152. else
  153. {
  154. stcSpiInit.u32SpiMode = SPI_MD_0;
  155. }
  156. /* No chipselect */
  157. if (cfg->mode & RT_SPI_NO_CS)
  158. {
  159. stcSpiInit.u32WireMode = SPI_4_WIRE;
  160. }
  161. else
  162. {
  163. stcSpiInit.u32WireMode = SPI_3_WIRE;
  164. }
  165. /* LSB or MSB */
  166. if (cfg->mode & RT_SPI_MSB)
  167. {
  168. stcSpiInit.u32FirstBit = SPI_FIRST_MSB;
  169. }
  170. else
  171. {
  172. stcSpiInit.u32FirstBit = SPI_FIRST_LSB;
  173. }
  174. /* config data width 8,16,32 */
  175. if (8 == cfg->data_width)
  176. {
  177. stcSpiInit.u32DataBits = SPI_DATA_SIZE_8BIT;
  178. }
  179. else if (16 == cfg->data_width)
  180. {
  181. stcSpiInit.u32DataBits = SPI_DATA_SIZE_16BIT;
  182. }
  183. else if (32 == cfg->data_width)
  184. {
  185. stcSpiInit.u32DataBits = SPI_DATA_SIZE_32BIT;
  186. }
  187. else
  188. {
  189. return -RT_EIO;
  190. }
  191. /* Get BUS clock */
  192. CLK_GetClockFreq(&stcClkFreq);
  193. if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 2)
  194. {
  195. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV2;
  196. }
  197. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 4)
  198. {
  199. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV4;
  200. }
  201. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 8)
  202. {
  203. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV8;
  204. }
  205. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 16)
  206. {
  207. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV16;
  208. }
  209. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 32)
  210. {
  211. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV32;
  212. }
  213. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 64)
  214. {
  215. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV64;
  216. }
  217. else if (cfg->max_hz >= stcClkFreq.u32Pclk1Freq / 128)
  218. {
  219. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV128;
  220. }
  221. else
  222. {
  223. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV256;
  224. }
  225. if ((cfg->mode & RT_SPI_SLAVE) && (stcSpiInit.u32BaudRatePrescaler < SPI_BR_CLK_DIV8))
  226. {
  227. stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV8;
  228. }
  229. LOG_D("sys freq: %d, SPI freq: %d, BaudRatePrescaler: %d", stcClkFreq.u32HclkFreq, cfg->max_hz, stcSpiInit.u32BaudRatePrescaler);
  230. /* spi port init */
  231. rt_hw_spi_board_init(spi_instance);
  232. if (LL_OK != SPI_Init(spi_instance, &stcSpiInit))
  233. {
  234. return -RT_EIO;
  235. }
  236. /* DMA configuration */
  237. if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  238. {
  239. struct dma_config *spi_dma;
  240. stc_dma_init_t stcDmaInit;
  241. /* Get spi dma_rx */
  242. spi_dma = spi_drv->config->dma_rx;
  243. /* Enable Dma clock */
  244. FCG_Fcg0PeriphClockCmd(spi_dma->clock, ENABLE);
  245. AOS_SetTriggerEventSrc(spi_dma->trigger_select, spi_dma->trigger_event);
  246. /* Config Dma */
  247. DMA_StructInit(&stcDmaInit);
  248. stcDmaInit.u32IntEn = DMA_INT_ENABLE;
  249. stcDmaInit.u32BlockSize = 1UL;
  250. stcDmaInit.u32TransCount = 0;
  251. stcDmaInit.u32DestAddr = 0;
  252. stcDmaInit.u32SrcAddr = (uint32_t)(&spi_instance->DR);
  253. stcDmaInit.u32SrcAddrInc = DMA_SRC_ADDR_FIX;
  254. stcDmaInit.u32DestAddrInc = DMA_DEST_ADDR_INC;
  255. if (8 == cfg->data_width)
  256. {
  257. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_8BIT;
  258. }
  259. else if (16 == cfg->data_width)
  260. {
  261. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_16BIT;
  262. }
  263. else
  264. {
  265. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_32BIT;
  266. }
  267. /* Init Dma */
  268. if (LL_OK != DMA_Init(spi_dma->Instance, spi_dma->channel, &stcDmaInit))
  269. {
  270. return -RT_EIO;
  271. }
  272. NVIC_EnableIRQ(spi_dma->irq_config.irq_num);
  273. /* Enable Dma */
  274. DMA_Cmd(spi_dma->Instance, ENABLE);
  275. }
  276. if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  277. {
  278. struct dma_config *spi_dma;
  279. stc_dma_init_t stcDmaInit;
  280. /* Get spi dma_tx */
  281. spi_dma = spi_drv->config->dma_tx;
  282. FCG_Fcg0PeriphClockCmd(spi_dma->clock, ENABLE);
  283. AOS_SetTriggerEventSrc(spi_dma->trigger_select, spi_dma->trigger_event);
  284. /* Config Dma */
  285. DMA_StructInit(&stcDmaInit);
  286. stcDmaInit.u32IntEn = DMA_INT_ENABLE;
  287. stcDmaInit.u32BlockSize = 1UL;
  288. stcDmaInit.u32TransCount = 0;
  289. stcDmaInit.u32DestAddr = (uint32_t)(&spi_instance->DR);;
  290. stcDmaInit.u32SrcAddr = 0;
  291. stcDmaInit.u32SrcAddrInc = DMA_SRC_ADDR_INC;
  292. stcDmaInit.u32DestAddrInc = DMA_DEST_ADDR_FIX;
  293. if (8 == cfg->data_width)
  294. {
  295. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_8BIT;
  296. }
  297. else if (16 == cfg->data_width)
  298. {
  299. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_16BIT;
  300. }
  301. else
  302. {
  303. stcDmaInit.u32DataWidth = DMA_DATAWIDTH_32BIT;
  304. }
  305. /* Init Dma */
  306. if (LL_OK != DMA_Init(spi_dma->Instance, spi_dma->channel, &stcDmaInit))
  307. {
  308. return -RT_EIO;
  309. }
  310. NVIC_EnableIRQ(spi_dma->irq_config.irq_num);
  311. /* Enable Dma */
  312. DMA_Cmd(spi_dma->Instance, ENABLE);
  313. }
  314. LOG_D("%s init done", spi_drv->config->bus_name);
  315. return RT_EOK;
  316. }
  317. static rt_err_t hc32_spi_configure(struct rt_spi_device *device,
  318. struct rt_spi_configuration *configuration)
  319. {
  320. RT_ASSERT(device != RT_NULL);
  321. RT_ASSERT(configuration != RT_NULL);
  322. struct hc32_spi *spi_drv = rt_container_of(device->bus, struct hc32_spi, spi_bus);
  323. spi_drv->cfg = configuration;
  324. return hc32_spi_init(spi_drv, configuration);
  325. }
  326. static int32_t hc32_spi_dma_trans(struct hc32_spi_config *spi_config, const uint8_t *pvTxBuf, void *pvRxBuf, uint32_t u32Length)
  327. {
  328. if ((spi_config == RT_NULL) || (pvTxBuf == RT_NULL) || (pvRxBuf == RT_NULL))
  329. {
  330. return LL_ERR;
  331. }
  332. SPI_Cmd(spi_config->Instance, DISABLE);
  333. if (RT_NULL == pvTxBuf)
  334. {
  335. DMA_SetSrcAddr(spi_config->dma_tx->Instance, spi_config->dma_tx->channel, (uint32_t)pvTxBuf);
  336. DMA_SetTransCount(spi_config->dma_tx->Instance, spi_config->dma_tx->channel, u32Length);
  337. DMA_ChCmd(spi_config->dma_tx->Instance, spi_config->dma_tx->channel, ENABLE);
  338. }
  339. if (RT_NULL == pvRxBuf)
  340. {
  341. DMA_SetDestAddr(spi_config->dma_rx->Instance, spi_config->dma_rx->channel, (uint32_t)pvRxBuf);
  342. DMA_SetTransCount(spi_config->dma_rx->Instance, spi_config->dma_rx->channel, u32Length);
  343. DMA_ChCmd(spi_config->dma_rx->Instance, spi_config->dma_rx->channel, ENABLE);
  344. }
  345. SPI_Cmd(spi_config->Instance, ENABLE);
  346. return LL_OK;
  347. }
  348. static void hc32_spi_enable(CM_SPI_TypeDef *SPIx)
  349. {
  350. /* Check if the SPI is already enabled */
  351. if ((SPIx->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
  352. {
  353. SPI_Cmd(SPIx, ENABLE);
  354. }
  355. }
  356. static rt_uint32_t hc32_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
  357. {
  358. int32_t state;
  359. rt_size_t message_length, already_send_length;
  360. rt_uint16_t send_length;
  361. rt_uint8_t *recv_buf;
  362. const rt_uint8_t *send_buf;
  363. RT_ASSERT(device != RT_NULL);
  364. RT_ASSERT(device->bus != RT_NULL);
  365. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  366. RT_ASSERT(message != RT_NULL);
  367. struct hc32_spi *spi_drv = rt_container_of(device->bus, struct hc32_spi, spi_bus);
  368. CM_SPI_TypeDef *spi_instance = spi_drv->config->Instance;
  369. struct hc32_hw_spi_cs *cs = device->parent.user_data;
  370. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
  371. {
  372. if (device->config.mode & RT_SPI_CS_HIGH)
  373. {
  374. GPIO_SetPins(cs->port, cs->pin);
  375. }
  376. else
  377. {
  378. GPIO_ResetPins(cs->port, cs->pin);
  379. }
  380. }
  381. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d", spi_drv->config->bus_name,
  382. (uint32_t)message->send_buf, (uint32_t)message->recv_buf, message->length);
  383. message_length = message->length;
  384. recv_buf = message->recv_buf;
  385. send_buf = message->send_buf;
  386. while (message_length)
  387. {
  388. if (message_length > 65535)
  389. {
  390. send_length = 65535;
  391. message_length = message_length - 65535;
  392. }
  393. else
  394. {
  395. send_length = message_length;
  396. message_length = 0;
  397. }
  398. /* calculate the start address */
  399. already_send_length = message->length - send_length - message_length;
  400. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  401. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  402. if (message->send_buf && message->recv_buf)
  403. {
  404. if ((spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX) && (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX))
  405. {
  406. state = hc32_spi_dma_trans(spi_drv->config, send_buf, recv_buf, send_length);
  407. }
  408. else
  409. {
  410. hc32_spi_enable(spi_instance);
  411. state = SPI_TransReceive(spi_instance, send_buf, recv_buf, send_length, 1000);
  412. }
  413. }
  414. else if (message->send_buf)
  415. {
  416. if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  417. {
  418. /* Maybe need to switch to send only mode */
  419. state = hc32_spi_dma_trans(spi_drv->config, send_buf, RT_NULL, send_length);
  420. }
  421. else
  422. {
  423. hc32_spi_enable(spi_instance);
  424. state = SPI_Trans(spi_instance, send_buf, send_length, 1000);
  425. }
  426. }
  427. else
  428. {
  429. rt_memset((uint8_t *)recv_buf, 0xFF, send_length);
  430. if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  431. {
  432. state = hc32_spi_dma_trans(spi_drv->config, recv_buf, recv_buf, send_length);
  433. }
  434. else
  435. {
  436. hc32_spi_enable(spi_instance);
  437. state = SPI_Receive(spi_instance, recv_buf, send_length, 1000);
  438. }
  439. }
  440. if (state != LL_OK)
  441. {
  442. LOG_I("spi transfer error : %d", state);
  443. message->length = 0;
  444. }
  445. /* Wait for the spi transfer complete */
  446. while (RESET != SPI_GetStatus(spi_instance, SPI_FLAG_IDLE));
  447. }
  448. /* clear error flag */
  449. SPI_ClearStatus(spi_instance, SPI_FLAG_CLR_ALL | SPI_FLAG_RX_BUF_FULL);
  450. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
  451. {
  452. if (device->config.mode & RT_SPI_CS_HIGH)
  453. {
  454. GPIO_ResetPins(cs->port, cs->pin);
  455. }
  456. else
  457. {
  458. GPIO_SetPins(cs->port, cs->pin);
  459. }
  460. }
  461. return message->length;
  462. }
  463. static const struct rt_spi_ops hc32_spi_ops =
  464. {
  465. .configure = hc32_spi_configure,
  466. .xfer = hc32_spi_xfer,
  467. };
  468. /**
  469. * Attach the spi device to SPI bus, this function must be used after initialization.
  470. */
  471. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, uint8_t cs_gpio_port, uint16_t cs_gpio_pin)
  472. {
  473. RT_ASSERT(bus_name != RT_NULL);
  474. RT_ASSERT(device_name != RT_NULL);
  475. rt_err_t result;
  476. struct rt_spi_device *spi_device;
  477. struct hc32_hw_spi_cs *cs_pin;
  478. stc_gpio_init_t stcGpioInit;
  479. GPIO_StructInit(&stcGpioInit);
  480. stcGpioInit.u16PinState = PIN_STAT_SET;
  481. stcGpioInit.u16PinDir = PIN_DIR_OUT;
  482. stcGpioInit.u16PullUp = PIN_PU_ON;
  483. GPIO_Init(cs_gpio_port, cs_gpio_pin, &stcGpioInit);
  484. /* attach the device to spi bus*/
  485. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  486. RT_ASSERT(spi_device != RT_NULL);
  487. cs_pin = (struct hc32_hw_spi_cs *)rt_malloc(sizeof(struct hc32_hw_spi_cs));
  488. RT_ASSERT(cs_pin != RT_NULL);
  489. cs_pin->port = cs_gpio_port;
  490. cs_pin->pin = cs_gpio_pin;
  491. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  492. if (result != RT_EOK)
  493. {
  494. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  495. }
  496. return result;
  497. }
  498. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI4_TX_USING_DMA) || \
  499. defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI6_TX_USING_DMA)
  500. /**
  501. * @brief Clear DMA transfer complete flag.
  502. * @param dma specific dam witch spi used.
  503. * @retval None
  504. */
  505. static void hc32_dma_irq_handle(struct dma_config *dma)
  506. {
  507. DMA_ClearTransCompleteStatus(dma->Instance, (1U << dma->channel));
  508. }
  509. #endif
  510. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  511. /**
  512. * @brief This function handles DMA Rx complete interrupt request.
  513. * @param None
  514. * @retval None
  515. */
  516. static void spi1_rx_dma_irq_handle(void)
  517. {
  518. /* enter interrupt */
  519. rt_interrupt_enter();
  520. hc32_dma_irq_handle(spi_config[SPI1_INDEX].dma_rx);
  521. /* leave interrupt */
  522. rt_interrupt_leave();
  523. }
  524. #endif
  525. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  526. /**
  527. * @brief This function handles DMA Tx complete interrupt request.
  528. * @param None
  529. * @retval None
  530. */
  531. static void spi1_tx_dma_irq_handle(void)
  532. {
  533. /* enter interrupt */
  534. rt_interrupt_enter();
  535. hc32_dma_irq_handle(spi_config[SPI1_INDEX].dma_tx);
  536. /* leave interrupt */
  537. rt_interrupt_leave();
  538. }
  539. #endif
  540. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  541. /**
  542. * @brief This function handles DMA Rx complete interrupt request.
  543. * @param None
  544. * @retval None
  545. */
  546. static void spi2_rx_dma_irq_handle(void)
  547. {
  548. /* enter interrupt */
  549. rt_interrupt_enter();
  550. hc32_dma_irq_handle(spi_config[SPI2_INDEX].dma_rx);
  551. /* leave interrupt */
  552. rt_interrupt_leave();
  553. }
  554. #endif
  555. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  556. /**
  557. * @brief This function handles DMA Tx complete interrupt request.
  558. * @param None
  559. * @retval None
  560. */
  561. static void spi2_tx_dma_irq_handle(void)
  562. {
  563. /* enter interrupt */
  564. rt_interrupt_enter();
  565. hc32_dma_irq_handle(spi_config[SPI2_INDEX].dma_tx);
  566. /* leave interrupt */
  567. rt_interrupt_leave();
  568. }
  569. #endif
  570. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  571. /**
  572. * @brief This function handles DMA Rx complete interrupt request.
  573. * @param None
  574. * @retval None
  575. */
  576. static void spi3_rx_dma_irq_handle(void)
  577. {
  578. /* enter interrupt */
  579. rt_interrupt_enter();
  580. hc32_dma_irq_handle(spi_config[SPI3_INDEX].dma_rx);
  581. /* leave interrupt */
  582. rt_interrupt_leave();
  583. }
  584. #endif
  585. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  586. /**
  587. * @brief This function handles DMA Tx complete interrupt request.
  588. * @param None
  589. * @retval None
  590. */
  591. static void spi3_tx_dma_irq_handle(void)
  592. {
  593. /* enter interrupt */
  594. rt_interrupt_enter();
  595. hc32_dma_irq_handle(spi_config[SPI3_INDEX].dma_tx);
  596. /* leave interrupt */
  597. rt_interrupt_leave();
  598. }
  599. #endif
  600. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  601. /**
  602. * @brief This function handles DMA Rx complete interrupt request.
  603. * @param None
  604. * @retval None
  605. */
  606. static void spi4_rx_dma_irq_handle(void)
  607. {
  608. /* enter interrupt */
  609. rt_interrupt_enter();
  610. hc32_dma_irq_handle(spi_config[SPI4_INDEX].dma_rx);
  611. /* leave interrupt */
  612. rt_interrupt_leave();
  613. }
  614. #endif
  615. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  616. /**
  617. * @brief This function handles DMA Tx complete interrupt request.
  618. * @param None
  619. * @retval None
  620. */
  621. static void spi4_tx_dma_irq_handle(void)
  622. {
  623. /* enter interrupt */
  624. rt_interrupt_enter();
  625. hc32_dma_irq_handle(spi_config[SPI4_INDEX].dma_tx);
  626. /* leave interrupt */
  627. rt_interrupt_leave();
  628. }
  629. #endif
  630. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  631. /**
  632. * @brief This function handles DMA Rx complete interrupt request.
  633. * @param None
  634. * @retval None
  635. */
  636. static void spi5_rx_dma_irq_handle(void)
  637. {
  638. /* enter interrupt */
  639. rt_interrupt_enter();
  640. hc32_dma_irq_handle(spi_config[SPI5_INDEX].dma_rx);
  641. /* leave interrupt */
  642. rt_interrupt_leave();
  643. }
  644. #endif
  645. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  646. /**
  647. * @brief This function handles DMA Tx complete interrupt request.
  648. * @param None
  649. * @retval None
  650. */
  651. static void spi5_tx_dma_irq_handle(void)
  652. {
  653. /* enter interrupt */
  654. rt_interrupt_enter();
  655. hc32_dma_irq_handle(spi_config[SPI5_INDEX].dma_tx);
  656. /* leave interrupt */
  657. rt_interrupt_leave();
  658. }
  659. #endif
  660. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  661. /**
  662. * @brief This function handles DMA Rx complete interrupt request.
  663. * @param None
  664. * @retval None
  665. */
  666. static void spi6_rx_dma_irq_handle(void)
  667. {
  668. /* enter interrupt */
  669. rt_interrupt_enter();
  670. hc32_dma_irq_handle(spi_config[SPI6_INDEX].dma_rx);
  671. /* leave interrupt */
  672. rt_interrupt_leave();
  673. }
  674. #endif
  675. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  676. /**
  677. * @brief This function handles DMA Tx complete interrupt request.
  678. * @param None
  679. * @retval None
  680. */
  681. static void spi6_tx_dma_irq_handle(void)
  682. {
  683. /* enter interrupt */
  684. rt_interrupt_enter();
  685. hc32_dma_irq_handle(spi_config[SPI6_INDEX].dma_tx);
  686. /* leave interrupt */
  687. rt_interrupt_leave();
  688. }
  689. #endif
  690. /**
  691. * @brief This function gets dma witch spi used infomation include unit,
  692. * channel, interrupt etc.
  693. * @param None
  694. * @retval None
  695. */
  696. static void hc32_get_dma_info(void)
  697. {
  698. #ifdef BSP_SPI1_RX_USING_DMA
  699. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  700. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  701. spi1_dma_rx.irq_callback = spi1_rx_dma_irq_handle;
  702. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  703. #endif
  704. #ifdef BSP_SPI1_TX_USING_DMA
  705. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  706. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  707. spi1_dma_tx.irq_callback = spi1_tx_dma_irq_handle;
  708. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  709. #endif
  710. #ifdef BSP_SPI2_RX_USING_DMA
  711. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  712. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  713. spi2_dma_rx.irq_callback = spi2_rx_dma_irq_handle;
  714. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  715. #endif
  716. #ifdef BSP_SPI2_TX_USING_DMA
  717. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  718. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  719. spi2_dma_tx.irq_callback = spi2_tx_dma_irq_handle;
  720. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  721. #endif
  722. #ifdef BSP_SPI3_RX_USING_DMA
  723. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  724. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  725. spi3_dma_rx.irq_callback = spi3_rx_dma_irq_handle;
  726. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  727. #endif
  728. #ifdef BSP_SPI3_TX_USING_DMA
  729. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  730. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  731. spi3_dma_tx.irq_callback = spi3_tx_dma_irq_handle;
  732. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  733. #endif
  734. #ifdef BSP_SPI4_RX_USING_DMA
  735. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  736. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  737. spi4_dma_rx.irq_callback = spi4_rx_dma_irq_handle;
  738. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  739. #endif
  740. #ifdef BSP_SPI4_TX_USING_DMA
  741. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  742. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  743. spi4_dma_tx.irq_callback = spi4_tx_dma_irq_handle;
  744. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  745. #endif
  746. #ifdef BSP_SPI5_RX_USING_DMA
  747. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  748. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  749. spi5_dma_rx.irq_callback = spi5_rx_dma_irq_handle;
  750. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  751. #endif
  752. #ifdef BSP_SPI5_TX_USING_DMA
  753. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  754. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  755. spi5_dma_tx.irq_callback = spi5_tx_dma_irq_handle;
  756. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  757. #endif
  758. #ifdef BSP_SPI6_RX_USING_DMA
  759. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  760. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  761. spi6_dma_rx.irq_callback = spi6_rx_dma_irq_handle;
  762. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  763. #endif
  764. #ifdef BSP_SPI6_TX_USING_DMA
  765. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  766. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  767. spi6_dma_tx.irq_callback = spi6_tx_dma_irq_handle;
  768. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  769. #endif
  770. }
  771. static int hc32_hw_spi_bus_init(void)
  772. {
  773. rt_err_t result;
  774. for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  775. {
  776. spi_bus_obj[i].config = &spi_config[i];
  777. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  778. if (spi_bus_obj[i].spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  779. {
  780. /* Configure the DMA handler */
  781. hc32_install_irq_handler(&spi_config[i].dma_rx->irq_config, spi_config[i].dma_rx->irq_callback, RT_FALSE);
  782. }
  783. if (spi_bus_obj[i].spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  784. {
  785. /* Configure the DMA handler */
  786. hc32_install_irq_handler(&spi_config[i].dma_tx->irq_config, spi_config[i].dma_tx->irq_callback, RT_FALSE);
  787. }
  788. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &hc32_spi_ops);
  789. LOG_D("%s bus init done", spi_config[i].bus_name);
  790. }
  791. return result;
  792. }
  793. int hc32_hw_spi_init(void)
  794. {
  795. hc32_get_dma_info();
  796. return hc32_hw_spi_bus_init();
  797. }
  798. INIT_BOARD_EXPORT(hc32_hw_spi_init);
  799. #endif
  800. #endif /* BSP_USING_SPI */