board.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. /*
  2. * Copyright (c) 2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. *
  6. */
  7. #include "board.h"
  8. #include "hpm_uart_drv.h"
  9. #include "hpm_gptmr_drv.h"
  10. #include "hpm_lcdc_drv.h"
  11. #include "hpm_i2c_drv.h"
  12. #include "hpm_gpio_drv.h"
  13. #include "pinmux.h"
  14. #include "hpm_pmp_drv.h"
  15. #include "assert.h"
  16. #include "hpm_clock_drv.h"
  17. #include "hpm_sysctl_drv.h"
  18. #include "hpm_pwm_drv.h"
  19. #include "hpm_trgm_drv.h"
  20. #include "hpm_pllctlv2_drv.h"
  21. #include "hpm_pcfg_drv.h"
  22. static board_timer_cb timer_cb;
  23. ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag;
  24. /**
  25. * @brief FLASH configuration option definitions:
  26. * option[0]:
  27. * [31:16] 0xfcf9 - FLASH configuration option tag
  28. * [15:4] 0 - Reserved
  29. * [3:0] option words (exclude option[0])
  30. * option[1]:
  31. * [31:28] Flash probe type
  32. * 0 - SFDP SDR / 1 - SFDP DDR
  33. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  34. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  35. * 6 - OctaBus DDR (SPI -> OPI DDR)
  36. * 8 - Xccela DDR (SPI -> OPI DDR)
  37. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  38. * [27:24] Command Pads after Power-on Reset
  39. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  40. * [23:20] Command Pads after Configuring FLASH
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  43. * 0 - Not needed
  44. * 1 - QE bit is at bit 6 in Status Register 1
  45. * 2 - QE bit is at bit1 in Status Register 2
  46. * 3 - QE bit is at bit7 in Status Register 2
  47. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  48. * [15:8] Dummy cycles
  49. * 0 - Auto-probed / detected / default value
  50. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  51. * [7:4] Misc.
  52. * 0 - Not used
  53. * 1 - SPI mode
  54. * 2 - Internal loopback
  55. * 3 - External DQS
  56. * [3:0] Frequency option
  57. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  58. *
  59. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  60. * [31:20] Reserved
  61. * [19:16] IO voltage
  62. * 0 - 3V / 1 - 1.8V
  63. * [15:12] Pin group
  64. * 0 - 1st group / 1 - 2nd group
  65. * [11:8] Connection selection
  66. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  67. * [7:0] Drive Strength
  68. * 0 - Default value
  69. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  70. * JESD216)
  71. * [31:16] reserved
  72. * [15:12] Sector Erase Command Option, not required here
  73. * [11:8] Sector Size Option, not required here
  74. * [7:0] Flash Size Option
  75. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  76. */
  77. #if defined(FLASH_XIP) && FLASH_XIP
  78. __attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
  79. #endif
  80. #if defined(FLASH_UF2) && FLASH_UF2
  81. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  82. #endif
  83. void board_init_console(void)
  84. {
  85. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  86. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  87. console_config_t cfg;
  88. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  89. uart rx pin when configuring pin function will cause a wrong data to be received.
  90. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  91. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  92. /* Configure the UART clock to 24MHz */
  93. clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
  94. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  95. cfg.type = BOARD_CONSOLE_TYPE;
  96. cfg.base = (uint32_t)BOARD_CONSOLE_UART_BASE;
  97. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  98. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  99. if (status_success != console_init(&cfg)) {
  100. /* failed to initialize debug console */
  101. while (1) {
  102. }
  103. }
  104. #else
  105. while (1)
  106. ;
  107. #endif
  108. #endif
  109. }
  110. void board_print_clock_freq(void)
  111. {
  112. printf("==============================\n");
  113. printf(" %s clock summary\n", BOARD_NAME);
  114. printf("==============================\n");
  115. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  116. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  117. printf("axi:\t\t %luHz\n", clock_get_frequency(clock_axi));
  118. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  119. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  120. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  121. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  122. printf("==============================\n");
  123. }
  124. void board_init_uart(UART_Type *ptr)
  125. {
  126. /* configure uart's pin before opening uart's clock */
  127. init_uart_pins(ptr);
  128. board_init_uart_clock(ptr);
  129. }
  130. void board_print_banner(void)
  131. {
  132. const uint8_t banner[] = { "\n\
  133. ----------------------------------------------------------------------\n\
  134. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  135. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  136. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  137. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  138. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  139. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  140. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  141. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  142. ----------------------------------------------------------------------\n"};
  143. #ifdef SDK_VERSION_STRING
  144. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  145. #endif
  146. printf("%s", banner);
  147. }
  148. uint8_t board_get_led_pwm_off_level(void)
  149. {
  150. return BOARD_LED_OFF_LEVEL;
  151. }
  152. uint8_t board_get_led_gpio_off_level(void)
  153. {
  154. return BOARD_LED_OFF_LEVEL;
  155. }
  156. void board_ungate_mchtmr_at_lp_mode(void)
  157. {
  158. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  159. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  160. }
  161. void board_init(void)
  162. {
  163. board_init_clock();
  164. board_init_console();
  165. board_init_pmp();
  166. #if BOARD_SHOW_CLOCK
  167. board_print_clock_freq();
  168. #endif
  169. #if BOARD_SHOW_BANNER
  170. board_print_banner();
  171. #endif
  172. }
  173. void board_init_core1(void)
  174. {
  175. board_init_console();
  176. board_init_pmp();
  177. }
  178. void board_delay_us(uint32_t us)
  179. {
  180. clock_cpu_delay_us(us);
  181. }
  182. void board_delay_ms(uint32_t ms)
  183. {
  184. clock_cpu_delay_ms(ms);
  185. }
  186. void board_timer_isr(void)
  187. {
  188. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  189. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  190. timer_cb();
  191. }
  192. }
  193. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  194. void board_timer_create(uint32_t ms, board_timer_cb cb)
  195. {
  196. uint32_t gptmr_freq;
  197. gptmr_channel_config_t config;
  198. timer_cb = cb;
  199. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  200. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  201. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  202. config.reload = gptmr_freq / 1000 * ms;
  203. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  204. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  205. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  206. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  207. }
  208. void board_i2c_bus_clear(I2C_Type *ptr)
  209. {
  210. init_i2c_pins_as_gpio(ptr);
  211. if (ptr == BOARD_APP_I2C_BASE) {
  212. gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN);
  213. gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
  214. if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN)) {
  215. printf("CLK is low, please power cycle the board\n");
  216. while (1) {
  217. }
  218. }
  219. if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN)) {
  220. printf("SDA is low, try to issue I2C bus clear\n");
  221. } else {
  222. printf("I2C bus is ready\n");
  223. return;
  224. }
  225. gpio_set_pin_output(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
  226. while (1) {
  227. for (uint32_t i = 0; i < 9; i++) {
  228. gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 1);
  229. board_delay_ms(10);
  230. gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 0);
  231. board_delay_ms(10);
  232. }
  233. board_delay_ms(100);
  234. }
  235. printf("I2C bus is cleared\n");
  236. }
  237. }
  238. void board_init_i2c(I2C_Type *ptr)
  239. {
  240. i2c_config_t config;
  241. hpm_stat_t stat;
  242. uint32_t freq;
  243. if (ptr == NULL) {
  244. return;
  245. }
  246. board_i2c_bus_clear(ptr);
  247. init_i2c_pins(ptr);
  248. clock_add_to_group(clock_i2c0, 0);
  249. clock_add_to_group(clock_i2c1, 0);
  250. clock_add_to_group(clock_i2c2, 0);
  251. clock_add_to_group(clock_i2c3, 0);
  252. /* Configure the I2C clock to 24MHz */
  253. clock_set_source_divider(BOARD_APP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  254. config.i2c_mode = i2c_mode_normal;
  255. config.is_10bit_addressing = false;
  256. freq = clock_get_frequency(BOARD_APP_I2C_CLK_NAME);
  257. stat = i2c_init_master(ptr, freq, &config);
  258. if (stat != status_success) {
  259. printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr);
  260. while (1) {
  261. }
  262. }
  263. }
  264. uint32_t board_init_spi_clock(SPI_Type *ptr)
  265. {
  266. if (ptr == HPM_SPI1) {
  267. /* SPI1 clock configure */
  268. clock_add_to_group(clock_spi1, 0);
  269. clock_set_source_divider(clock_spi1, clk_src_pll0_clk0, 5U); /* 80MHz */
  270. return clock_get_frequency(clock_spi1);
  271. } else if (ptr == HPM_SPI2) {
  272. /* SPI3 clock configure */
  273. clock_add_to_group(clock_spi2, 0);
  274. clock_set_source_divider(clock_spi2, clk_src_pll0_clk0, 5U); /* 80MHz */
  275. return clock_get_frequency(clock_spi2);
  276. } else if (ptr == HPM_SPI3) {
  277. /* SPI3 clock configure */
  278. clock_add_to_group(clock_spi3, 0);
  279. clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); /* 80MHz */
  280. return clock_get_frequency(clock_spi3);
  281. }
  282. return 0;
  283. }
  284. void board_init_lin_pins(LIN_Type *ptr)
  285. {
  286. init_lin_pins(ptr);
  287. }
  288. uint32_t board_init_lin_clock(LIN_Type *ptr)
  289. {
  290. if (ptr == HPM_LIN0) {
  291. clock_add_to_group(clock_lin0, 0);
  292. clock_set_source_divider(clock_lin0, clk_src_pll0_clk0, 20U); /* 20MHz */
  293. return clock_get_frequency(clock_lin0);
  294. }
  295. return 0;
  296. }
  297. void board_init_gpio_pins(void)
  298. {
  299. init_gpio_pins();
  300. }
  301. void board_init_spi_pins(SPI_Type *ptr)
  302. {
  303. init_spi_pins(ptr);
  304. }
  305. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  306. {
  307. init_spi_pins_with_gpio_as_cs(ptr);
  308. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  309. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  310. }
  311. void board_write_spi_cs(uint32_t pin, uint8_t state)
  312. {
  313. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  314. }
  315. void board_init_led_pins(void)
  316. {
  317. init_led_pins_as_gpio();
  318. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  319. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  320. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  321. }
  322. void board_led_toggle(void)
  323. {
  324. #ifdef BOARD_LED_TOGGLE_RGB
  325. static uint8_t i;
  326. switch (i) {
  327. case 1:
  328. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  329. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
  330. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  331. break;
  332. case 2:
  333. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  334. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  335. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
  336. break;
  337. case 0:
  338. default:
  339. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
  340. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  341. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  342. break;
  343. }
  344. i++;
  345. i = i % 3;
  346. #else
  347. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  348. #endif
  349. }
  350. void board_led_write(uint8_t state)
  351. {
  352. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  353. }
  354. void board_init_usb_pins(void)
  355. {
  356. /* set pull-up for USBx ID pin */
  357. init_usb_pins();
  358. /* configure USBx ID pin as input function */
  359. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  360. }
  361. uint8_t board_get_usb_id_status(void)
  362. {
  363. return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  364. }
  365. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  366. {
  367. (void) usb_index;
  368. (void) level;
  369. }
  370. void board_init_pmp(void)
  371. {
  372. uint32_t start_addr;
  373. uint32_t end_addr;
  374. uint32_t length;
  375. pmp_entry_t pmp_entry[16];
  376. uint8_t index = 0;
  377. /* Init noncachable memory */
  378. extern uint32_t __noncacheable_start__[];
  379. extern uint32_t __noncacheable_end__[];
  380. start_addr = (uint32_t)__noncacheable_start__;
  381. end_addr = (uint32_t)__noncacheable_end__;
  382. length = end_addr - start_addr;
  383. if (length > 0) {
  384. /* Ensure the address and the length are power of 2 aligned */
  385. assert((length & (length - 1U)) == 0U);
  386. assert((start_addr & (length - 1U)) == 0U);
  387. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  388. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  389. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  390. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  391. index++;
  392. }
  393. /* Init share memory */
  394. extern uint32_t __share_mem_start__[];
  395. extern uint32_t __share_mem_end__[];
  396. start_addr = (uint32_t)__share_mem_start__;
  397. end_addr = (uint32_t)__share_mem_end__;
  398. length = end_addr - start_addr;
  399. if (length > 0) {
  400. /* Ensure the address and the length are power of 2 aligned */
  401. assert((length & (length - 1U)) == 0U);
  402. assert((start_addr & (length - 1U)) == 0U);
  403. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  404. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  405. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  406. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  407. index++;
  408. }
  409. pmp_config(&pmp_entry[0], index);
  410. }
  411. void board_init_clock(void)
  412. {
  413. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  414. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  415. /* Configure the External OSC ramp-up time: ~9ms */
  416. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
  417. /* Select clock setting preset1 */
  418. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  419. }
  420. /* Add most Clocks to group 0 */
  421. /* not open uart clock in this API, uart should configure pin function before opening clock */
  422. clock_add_to_group(clock_cpu0, 0);
  423. clock_add_to_group(clock_ahbp, 0);
  424. clock_add_to_group(clock_axic, 0);
  425. clock_add_to_group(clock_axis, 0);
  426. clock_add_to_group(clock_mchtmr0, 0);
  427. clock_add_to_group(clock_xpi0, 0);
  428. clock_add_to_group(clock_gptmr0, 0);
  429. clock_add_to_group(clock_gptmr1, 0);
  430. clock_add_to_group(clock_gptmr2, 0);
  431. clock_add_to_group(clock_gptmr3, 0);
  432. clock_add_to_group(clock_i2c0, 0);
  433. clock_add_to_group(clock_i2c1, 0);
  434. clock_add_to_group(clock_i2c2, 0);
  435. clock_add_to_group(clock_i2c3, 0);
  436. clock_add_to_group(clock_lin0, 0);
  437. clock_add_to_group(clock_lin1, 0);
  438. clock_add_to_group(clock_lin2, 0);
  439. clock_add_to_group(clock_lin3, 0);
  440. clock_add_to_group(clock_spi0, 0);
  441. clock_add_to_group(clock_spi1, 0);
  442. clock_add_to_group(clock_spi2, 0);
  443. clock_add_to_group(clock_spi3, 0);
  444. clock_add_to_group(clock_can0, 0);
  445. clock_add_to_group(clock_can1, 0);
  446. clock_add_to_group(clock_can2, 0);
  447. clock_add_to_group(clock_can3, 0);
  448. clock_add_to_group(clock_ptpc, 0);
  449. clock_add_to_group(clock_ref0, 0);
  450. clock_add_to_group(clock_ref1, 0);
  451. clock_add_to_group(clock_watchdog0, 0);
  452. clock_add_to_group(clock_sdp, 0);
  453. clock_add_to_group(clock_xdma, 0);
  454. clock_add_to_group(clock_ram0, 0);
  455. clock_add_to_group(clock_usb0, 0);
  456. clock_add_to_group(clock_kman, 0);
  457. clock_add_to_group(clock_gpio, 0);
  458. clock_add_to_group(clock_mbx0, 0);
  459. clock_add_to_group(clock_hdma, 0);
  460. clock_add_to_group(clock_rng, 0);
  461. clock_add_to_group(clock_mot0, 0);
  462. clock_add_to_group(clock_mot1, 0);
  463. clock_add_to_group(clock_mot2, 0);
  464. clock_add_to_group(clock_mot3, 0);
  465. clock_add_to_group(clock_acmp, 0);
  466. clock_add_to_group(clock_msyn, 0);
  467. clock_add_to_group(clock_lmm0, 0);
  468. clock_add_to_group(clock_lmm1, 0);
  469. clock_add_to_group(clock_adc0, 0);
  470. clock_add_to_group(clock_adc1, 0);
  471. clock_add_to_group(clock_adc2, 0);
  472. clock_add_to_group(clock_dac0, 0);
  473. clock_add_to_group(clock_dac1, 0);
  474. clock_add_to_group(clock_tsns, 0);
  475. clock_add_to_group(clock_crc0, 0);
  476. clock_add_to_group(clock_sdm0, 0);
  477. /* Connect Group0 to CPU0 */
  478. clock_connect_group_to_cpu(0, 0);
  479. /* Add the CPU1 clock to Group1 */
  480. clock_add_to_group(clock_mchtmr1, 1);
  481. /* Connect Group1 to CPU1 */
  482. clock_connect_group_to_cpu(1, 1);
  483. /* Bump up DCDC voltage to 1275mv */
  484. pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
  485. /* Connect CAN2/CAN3 to pll0clk0*/
  486. clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 1);
  487. clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 1);
  488. /* Configure CPU to 600MHz, AXI/AHB to 200MHz */
  489. sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clock_source_pll1_clk0, 1, 3, 3);
  490. /* Configure PLL1_CLK0 Post Divider to 1 */
  491. pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 0);
  492. pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 600000000);
  493. clock_update_core_clock();
  494. /* Configure mchtmr to 24MHz */
  495. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  496. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  497. }
  498. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  499. {
  500. uint32_t freq = 0;
  501. if (ptr == HPM_GPTMR0) {
  502. clock_add_to_group(clock_gptmr0, 0);
  503. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  504. freq = clock_get_frequency(clock_gptmr0);
  505. }
  506. else if (ptr == HPM_GPTMR1) {
  507. clock_add_to_group(clock_gptmr1, 0);
  508. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  509. freq = clock_get_frequency(clock_gptmr1);
  510. }
  511. else if (ptr == HPM_GPTMR2) {
  512. clock_add_to_group(clock_gptmr2, 0);
  513. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  514. freq = clock_get_frequency(clock_gptmr2);
  515. }
  516. else if (ptr == HPM_GPTMR3) {
  517. clock_add_to_group(clock_gptmr3, 0);
  518. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  519. freq = clock_get_frequency(clock_gptmr3);
  520. }
  521. else {
  522. /* Invalid instance */
  523. }
  524. return freq;
  525. }
  526. uint32_t board_init_adc12_clock(ADC16_Type *ptr)
  527. {
  528. uint32_t freq = 0;
  529. switch ((uint32_t)ptr) {
  530. case HPM_ADC0_BASE:
  531. /* Configure the ADC clock to 200MHz */
  532. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  533. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  534. freq = clock_get_frequency(clock_adc0);
  535. break;
  536. case HPM_ADC1_BASE:
  537. /* Configure the ADC clock to 200MHz */
  538. clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
  539. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  540. freq = clock_get_frequency(clock_adc1);
  541. break;
  542. case HPM_ADC2_BASE:
  543. /* Configure the ADC clock to 200MHz */
  544. clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
  545. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  546. freq = clock_get_frequency(clock_adc2);
  547. break;
  548. default:
  549. /* Invalid ADC instance */
  550. break;
  551. }
  552. return freq;
  553. }
  554. uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
  555. {
  556. uint32_t freq = 0;
  557. if (ptr == HPM_ADC0) {
  558. if (clk_src_ahb) {
  559. /* Configure the ADC clock from AHB (@200MHz by default)*/
  560. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  561. } else {
  562. /* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
  563. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  564. clock_set_source_divider(clock_ana0, clk_src_pll0_clk0, 2U);
  565. }
  566. freq = clock_get_frequency(clock_adc0);
  567. } else if (ptr == HPM_ADC1) {
  568. if (clk_src_ahb) {
  569. /* Configure the ADC clock from AHB (@200MHz by default)*/
  570. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  571. } else {
  572. /* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
  573. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  574. clock_set_source_divider(clock_ana1, clk_src_pll0_clk0, 2U);
  575. }
  576. freq = clock_get_frequency(clock_adc1);
  577. } else if (ptr == HPM_ADC2) {
  578. if (clk_src_ahb) {
  579. /* Configure the ADC clock from AHB (@200MHz by default)*/
  580. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  581. } else {
  582. /* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
  583. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  584. clock_set_source_divider(clock_ana2, clk_src_pll0_clk0, 2U);
  585. }
  586. freq = clock_get_frequency(clock_adc2);
  587. }
  588. return freq;
  589. }
  590. uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
  591. {
  592. uint32_t freq = 0;
  593. if (ptr == HPM_DAC0) {
  594. if (clk_src_ahb == true) {
  595. /* Configure the DAC clock to 200MHz */
  596. clock_set_dac_source(clock_dac0, clk_dac_src_ahb0);
  597. } else {
  598. /* Configure the DAC clock to 166MHz */
  599. clock_set_dac_source(clock_dac0, clk_dac_src_ana3);
  600. clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
  601. }
  602. freq = clock_get_frequency(clock_dac0);
  603. } else if (ptr == HPM_DAC1) {
  604. if (clk_src_ahb == true) {
  605. /* Configure the DAC clock to 200MHz */
  606. clock_set_dac_source(clock_dac1, clk_dac_src_ahb0);
  607. } else {
  608. /* Configure the DAC clock to 166MHz */
  609. clock_set_dac_source(clock_dac1, clk_dac_src_ana4);
  610. clock_set_source_divider(clock_ana4, clk_src_pll0_clk1, 2);
  611. }
  612. freq = clock_get_frequency(clock_dac1);
  613. }
  614. return freq;
  615. }
  616. void board_init_can(MCAN_Type *ptr)
  617. {
  618. init_can_pins(ptr);
  619. }
  620. uint32_t board_init_can_clock(MCAN_Type *ptr)
  621. {
  622. uint32_t freq = 0;
  623. if (ptr == HPM_MCAN0) {
  624. /* Set the CAN0 peripheral clock to 8MHz */
  625. clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
  626. freq = clock_get_frequency(clock_can0);
  627. } else if (ptr == HPM_MCAN1) {
  628. /* Set the CAN1 peripheral clock to 8MHz */
  629. clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
  630. freq = clock_get_frequency(clock_can1);
  631. } else if (ptr == HPM_MCAN2) {
  632. /* Set the CAN2 peripheral clock to 8MHz */
  633. clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 5);
  634. freq = clock_get_frequency(clock_can2);
  635. } else if (ptr == HPM_MCAN3) {
  636. /* Set the CAN2 peripheral clock to 8MHz */
  637. clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 5);
  638. freq = clock_get_frequency(clock_can3);
  639. } else {
  640. /* Invalid CAN instance */
  641. }
  642. return freq;
  643. }
  644. void board_init_adc16_pins(void)
  645. {
  646. init_adc_pins();
  647. }
  648. void board_init_rgb_pwm_pins(void)
  649. {
  650. init_led_pins_as_pwm();
  651. }
  652. void board_disable_output_rgb_led(uint8_t color)
  653. {
  654. switch (color) {
  655. case BOARD_RGB_RED:
  656. pwm_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  657. break;
  658. case BOARD_RGB_GREEN:
  659. pwm_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  660. break;
  661. case BOARD_RGB_BLUE:
  662. pwm_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  663. break;
  664. default:
  665. while (1) {
  666. ;
  667. }
  668. }
  669. }
  670. void board_enable_output_rgb_led(uint8_t color)
  671. {
  672. switch (color) {
  673. case BOARD_RGB_RED:
  674. pwm_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  675. break;
  676. case BOARD_RGB_GREEN:
  677. pwm_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  678. break;
  679. case BOARD_RGB_BLUE:
  680. pwm_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  681. break;
  682. default:
  683. while (1) {
  684. ;
  685. }
  686. }
  687. }
  688. void board_init_dac_pins(DAC_Type *ptr)
  689. {
  690. init_dac_pins(ptr);
  691. }
  692. uint32_t board_init_uart_clock(UART_Type *ptr)
  693. {
  694. uint32_t freq = 0U;
  695. if (ptr == HPM_UART0) {
  696. clock_set_source_divider(clock_uart0, clk_src_pll1_clk0, 6);
  697. clock_add_to_group(clock_uart0, 0);
  698. freq = clock_get_frequency(clock_uart0);
  699. } else if (ptr == HPM_UART1) {
  700. clock_set_source_divider(clock_uart1, clk_src_pll1_clk0, 6);
  701. clock_add_to_group(clock_uart1, 0);
  702. freq = clock_get_frequency(clock_uart1);
  703. } else if (ptr == HPM_UART2) {
  704. clock_set_source_divider(clock_uart2, clk_src_pll1_clk0, 6);
  705. clock_add_to_group(clock_uart2, 0);
  706. freq = clock_get_frequency(clock_uart2);
  707. } else if (ptr == HPM_UART6) {
  708. clock_set_source_divider(clock_uart6, clk_src_pll1_clk0, 6);
  709. clock_add_to_group(clock_uart6, 0);
  710. freq = clock_get_frequency(clock_uart6);
  711. } else {
  712. /* Not supported */
  713. }
  714. return freq;
  715. }
  716. uint32_t board_init_pwm_clock(PWM_Type *ptr)
  717. {
  718. uint32_t freq = 0;
  719. if (ptr == HPM_PWM0) {
  720. clock_add_to_group(clock_mot0, 0);
  721. freq = clock_get_frequency(clock_mot0);
  722. } else if (ptr == HPM_PWM1) {
  723. clock_add_to_group(clock_mot1, 0);
  724. freq = clock_get_frequency(clock_mot1);
  725. } else if (ptr == HPM_PWM2) {
  726. clock_add_to_group(clock_mot2, 0);
  727. freq = clock_get_frequency(clock_mot2);
  728. } else if (ptr == HPM_PWM3) {
  729. clock_add_to_group(clock_mot3, 0);
  730. freq = clock_get_frequency(clock_mot3);
  731. } else {
  732. }
  733. return freq;
  734. }