board.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861
  1. /*
  2. * Copyright (c) 2022-2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_femc_drv.h"
  13. #include "pinmux.h"
  14. #include "hpm_pmp_drv.h"
  15. #include "assert.h"
  16. #include "hpm_clock_drv.h"
  17. #include "hpm_sysctl_drv.h"
  18. #include "hpm_sdxc_drv.h"
  19. #include "hpm_pwm_drv.h"
  20. #include "hpm_trgm_drv.h"
  21. #include "hpm_pllctlv2_drv.h"
  22. #include "hpm_enet_drv.h"
  23. #include "hpm_pcfg_drv.h"
  24. #include "hpm_debug_console.h"
  25. static board_timer_cb timer_cb;
  26. ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag;
  27. /**
  28. * @brief FLASH configuration option definitions:
  29. * option[0]:
  30. * [31:16] 0xfcf9 - FLASH configuration option tag
  31. * [15:4] 0 - Reserved
  32. * [3:0] option words (exclude option[0])
  33. * option[1]:
  34. * [31:28] Flash probe type
  35. * 0 - SFDP SDR / 1 - SFDP DDR
  36. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  37. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  38. * 6 - OctaBus DDR (SPI -> OPI DDR)
  39. * 8 - Xccela DDR (SPI -> OPI DDR)
  40. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  41. * [27:24] Command Pads after Power-on Reset
  42. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  43. * [23:20] Command Pads after Configuring FLASH
  44. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  45. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  46. * 0 - Not needed
  47. * 1 - QE bit is at bit 6 in Status Register 1
  48. * 2 - QE bit is at bit1 in Status Register 2
  49. * 3 - QE bit is at bit7 in Status Register 2
  50. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  51. * [15:8] Dummy cycles
  52. * 0 - Auto-probed / detected / default value
  53. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  54. * [7:4] Misc.
  55. * 0 - Not used
  56. * 1 - SPI mode
  57. * 2 - Internal loopback
  58. * 3 - External DQS
  59. * [3:0] Frequency option
  60. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  61. *
  62. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  63. * [31:20] Reserved
  64. * [19:16] IO voltage
  65. * 0 - 3V / 1 - 1.8V
  66. * [15:12] Pin group
  67. * 0 - 1st group / 1 - 2nd group
  68. * [11:8] Connection selection
  69. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  70. * [7:0] Drive Strength
  71. * 0 - Default value
  72. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  73. * JESD216)
  74. * [31:16] reserved
  75. * [15:12] Sector Erase Command Option, not required here
  76. * [11:8] Sector Size Option, not required here
  77. * [7:0] Flash Size Option
  78. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  79. */
  80. #if defined(FLASH_XIP) && FLASH_XIP
  81. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  82. #endif
  83. #if defined(FLASH_UF2) && FLASH_UF2
  84. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  85. #endif
  86. void board_init_console(void)
  87. {
  88. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  89. #if CONSOLE_TYPE_UART == BOARD_CONSOLE_TYPE
  90. console_config_t cfg;
  91. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  92. uart rx pin when configuring pin function will cause a wrong data to be received.
  93. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  94. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  95. /* Configure the UART clock to 24MHz */
  96. clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
  97. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  98. cfg.type = BOARD_CONSOLE_TYPE;
  99. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  100. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  101. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  102. if (status_success != console_init(&cfg)) {
  103. /* failed to initialize debug console */
  104. while (1) {
  105. }
  106. }
  107. #else
  108. while (1) {
  109. }
  110. #endif
  111. #endif
  112. }
  113. void board_print_clock_freq(void)
  114. {
  115. printf("==============================\n");
  116. printf(" %s clock summary\n", BOARD_NAME);
  117. printf("==============================\n");
  118. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  119. printf("axi:\t\t %luHz\n", clock_get_frequency(clock_axi));
  120. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  121. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  122. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  123. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  124. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  125. printf("==============================\n");
  126. }
  127. void board_init_uart(UART_Type *ptr)
  128. {
  129. /* configure uart's pin before opening uart's clock */
  130. init_uart_pins(ptr);
  131. board_init_uart_clock(ptr);
  132. }
  133. void board_print_banner(void)
  134. {
  135. const uint8_t banner[] = {"\n\
  136. ----------------------------------------------------------------------\n\
  137. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  138. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  139. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  140. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  141. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  142. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  143. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  144. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  145. ----------------------------------------------------------------------\n"};
  146. #ifdef SDK_VERSION_STRING
  147. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  148. #endif
  149. printf("%s", banner);
  150. }
  151. void board_ungate_mchtmr_at_lp_mode(void)
  152. {
  153. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  154. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  155. }
  156. void board_init(void)
  157. {
  158. pcfg_dcdc_set_voltage(HPM_PCFG, 1100);
  159. board_init_clock();
  160. board_init_console();
  161. board_init_pmp();
  162. #if BOARD_SHOW_CLOCK
  163. board_print_clock_freq();
  164. #endif
  165. #if BOARD_SHOW_BANNER
  166. board_print_banner();
  167. #endif
  168. }
  169. void board_init_sdram_pins(void)
  170. {
  171. init_sdram_pins();
  172. }
  173. uint32_t board_init_femc_clock(void)
  174. {
  175. clock_add_to_group(clock_femc, 0);
  176. /* Configure the SDRAM to 166MHz */
  177. clock_set_source_divider(clock_femc, clk_src_pll0_clk1, 2U);
  178. return clock_get_frequency(clock_femc);
  179. }
  180. void board_delay_us(uint32_t us)
  181. {
  182. clock_cpu_delay_us(us);
  183. }
  184. void board_delay_ms(uint32_t ms)
  185. {
  186. clock_cpu_delay_ms(ms);
  187. }
  188. void board_timer_isr(void)
  189. {
  190. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  191. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  192. timer_cb();
  193. }
  194. }
  195. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  196. void board_timer_create(uint32_t ms, board_timer_cb cb)
  197. {
  198. uint32_t gptmr_freq;
  199. gptmr_channel_config_t config;
  200. timer_cb = cb;
  201. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  202. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  203. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  204. config.reload = gptmr_freq / 1000 * ms;
  205. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  206. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  207. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  208. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  209. }
  210. void board_i2c_bus_clear(I2C_Type *ptr)
  211. {
  212. init_i2c_pins_as_gpio(ptr);
  213. if (ptr == BOARD_APP_I2C_BASE) {
  214. gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN);
  215. gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
  216. if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN)) {
  217. printf("CLK is low, please power cycle the board\n");
  218. while (1) {
  219. }
  220. }
  221. if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN)) {
  222. printf("SDA is low, try to issue I2C bus clear\n");
  223. } else {
  224. printf("I2C bus is ready\n");
  225. return;
  226. }
  227. gpio_set_pin_output(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
  228. while (1) {
  229. for (uint32_t i = 0; i < 9; i++) {
  230. gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 1);
  231. board_delay_ms(10);
  232. gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 0);
  233. board_delay_ms(10);
  234. }
  235. board_delay_ms(100);
  236. }
  237. printf("I2C bus is cleared\n");
  238. }
  239. }
  240. void board_init_i2c(I2C_Type *ptr)
  241. {
  242. i2c_config_t config;
  243. hpm_stat_t stat;
  244. uint32_t freq;
  245. if (ptr == NULL) {
  246. return;
  247. }
  248. board_i2c_bus_clear(ptr);
  249. init_i2c_pins(ptr);
  250. clock_add_to_group(clock_i2c0, 0);
  251. clock_add_to_group(clock_i2c1, 0);
  252. clock_add_to_group(clock_i2c2, 0);
  253. clock_add_to_group(clock_i2c3, 0);
  254. /* Configure the I2C clock to 24MHz */
  255. clock_set_source_divider(BOARD_APP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  256. config.i2c_mode = i2c_mode_normal;
  257. config.is_10bit_addressing = false;
  258. freq = clock_get_frequency(BOARD_APP_I2C_CLK_NAME);
  259. stat = i2c_init_master(ptr, freq, &config);
  260. if (stat != status_success) {
  261. printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr);
  262. while (1) {
  263. }
  264. }
  265. }
  266. uint32_t board_init_spi_clock(SPI_Type *ptr)
  267. {
  268. if (ptr == HPM_SPI3) {
  269. /* SPI3 clock configure */
  270. clock_add_to_group(clock_spi3, 0);
  271. clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); /* 80MHz */
  272. return clock_get_frequency(clock_spi3);
  273. }
  274. return 0;
  275. }
  276. void board_init_gpio_pins(void)
  277. {
  278. init_gpio_pins();
  279. }
  280. void board_init_spi_pins(SPI_Type *ptr)
  281. {
  282. init_spi_pins(ptr);
  283. }
  284. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  285. {
  286. init_spi_pins_with_gpio_as_cs(ptr);
  287. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  288. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  289. }
  290. void board_write_spi_cs(uint32_t pin, uint8_t state)
  291. {
  292. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  293. }
  294. uint8_t board_get_led_gpio_off_level(void)
  295. {
  296. return BOARD_LED_OFF_LEVEL;
  297. }
  298. void board_init_led_pins(void)
  299. {
  300. init_led_pins();
  301. gpio_set_pin_output_with_initial(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, board_get_led_gpio_off_level());
  302. }
  303. void board_led_toggle(void)
  304. {
  305. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  306. }
  307. void board_led_write(uint8_t state)
  308. {
  309. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  310. }
  311. void board_init_usb_pins(void)
  312. {
  313. /* set pull-up for USBx ID pin */
  314. init_usb_pins();
  315. /* configure USBx ID pin as input function */
  316. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  317. }
  318. uint8_t board_get_usb_id_status(void)
  319. {
  320. return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  321. }
  322. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  323. {
  324. (void) usb_index;
  325. (void) level;
  326. }
  327. void board_init_pmp(void)
  328. {
  329. extern uint32_t __noncacheable_start__[];
  330. extern uint32_t __noncacheable_end__[];
  331. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  332. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  333. uint32_t length = end_addr - start_addr;
  334. if (length == 0) {
  335. return;
  336. }
  337. /* Ensure the address and the length are power of 2 aligned */
  338. assert((length & (length - 1U)) == 0U);
  339. assert((start_addr & (length - 1U)) == 0U);
  340. pmp_entry_t pmp_entry[3] = {0};
  341. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000);
  342. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  343. pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000);
  344. pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  345. pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  346. pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  347. pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  348. pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  349. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  350. }
  351. void board_init_clock(void)
  352. {
  353. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  354. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  355. /* Configure the External OSC ramp-up time: ~9ms */
  356. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
  357. /* Select clock setting preset1 */
  358. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  359. }
  360. /* Add most Clocks to group 0 */
  361. /* not open uart clock in this API, uart should configure pin function before opening clock */
  362. clock_add_to_group(clock_cpu0, 0);
  363. clock_add_to_group(clock_ahbp, 0);
  364. clock_add_to_group(clock_axic, 0);
  365. clock_add_to_group(clock_axis, 0);
  366. clock_add_to_group(clock_mchtmr0, 0);
  367. clock_add_to_group(clock_femc, 0);
  368. clock_add_to_group(clock_xpi0, 0);
  369. clock_add_to_group(clock_xpi1, 0);
  370. clock_add_to_group(clock_gptmr0, 0);
  371. clock_add_to_group(clock_gptmr1, 0);
  372. clock_add_to_group(clock_gptmr2, 0);
  373. clock_add_to_group(clock_gptmr3, 0);
  374. clock_add_to_group(clock_i2c0, 0);
  375. clock_add_to_group(clock_i2c1, 0);
  376. clock_add_to_group(clock_i2c2, 0);
  377. clock_add_to_group(clock_i2c3, 0);
  378. clock_add_to_group(clock_spi0, 0);
  379. clock_add_to_group(clock_spi1, 0);
  380. clock_add_to_group(clock_spi2, 0);
  381. clock_add_to_group(clock_spi3, 0);
  382. clock_add_to_group(clock_can0, 0);
  383. clock_add_to_group(clock_can1, 0);
  384. clock_add_to_group(clock_sdxc0, 0);
  385. clock_add_to_group(clock_ptpc, 0);
  386. clock_add_to_group(clock_ref0, 0);
  387. clock_add_to_group(clock_ref1, 0);
  388. clock_add_to_group(clock_watchdog0, 0);
  389. clock_add_to_group(clock_eth0, 0);
  390. clock_add_to_group(clock_sdp, 0);
  391. clock_add_to_group(clock_xdma, 0);
  392. clock_add_to_group(clock_ram0, 0);
  393. clock_add_to_group(clock_usb0, 0);
  394. clock_add_to_group(clock_kman, 0);
  395. clock_add_to_group(clock_gpio, 0);
  396. clock_add_to_group(clock_mbx0, 0);
  397. clock_add_to_group(clock_hdma, 0);
  398. clock_add_to_group(clock_rng, 0);
  399. clock_add_to_group(clock_mot0, 0);
  400. clock_add_to_group(clock_mot1, 0);
  401. clock_add_to_group(clock_acmp, 0);
  402. clock_add_to_group(clock_dao, 0);
  403. clock_add_to_group(clock_msyn, 0);
  404. clock_add_to_group(clock_lmm0, 0);
  405. clock_add_to_group(clock_pdm, 0);
  406. clock_add_to_group(clock_adc0, 0);
  407. clock_add_to_group(clock_adc1, 0);
  408. clock_add_to_group(clock_adc2, 0);
  409. clock_add_to_group(clock_dac0, 0);
  410. clock_add_to_group(clock_i2s0, 0);
  411. clock_add_to_group(clock_i2s1, 0);
  412. clock_add_to_group(clock_ffa0, 0);
  413. clock_add_to_group(clock_tsns, 0);
  414. /* Connect Group0 to CPU0 */
  415. clock_connect_group_to_cpu(0, 0);
  416. /* Configure CPU to 480MHz, AXI/AHB to 160MHz */
  417. sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clock_source_pll1_clk0, 1, 3, 3);
  418. /* Configure PLL1_CLK0 Post Divider to 1.2 */
  419. pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 1);
  420. /* Configure PLL1 clock frequencey to 576MHz, the PLL1_CLK0 frequency = 576MHz / 1.2 = 480MHz */
  421. pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 576000000);
  422. clock_update_core_clock();
  423. /* Configure mchtmr to 24MHz */
  424. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  425. }
  426. uint32_t board_init_dao_clock(void)
  427. {
  428. return clock_get_frequency(clock_dao);
  429. }
  430. uint32_t board_init_pdm_clock(void)
  431. {
  432. return clock_get_frequency(clock_pdm);
  433. }
  434. hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
  435. {
  436. return pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 2, freq); /* pll2clk */
  437. }
  438. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  439. {
  440. (void) ptr;
  441. return 0;
  442. }
  443. void board_init_adc16_pins(void)
  444. {
  445. init_adc_pins();
  446. }
  447. uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
  448. {
  449. uint32_t freq = 0;
  450. if (ptr == HPM_ADC0) {
  451. if (clk_src_ahb) {
  452. /* Configure the ADC clock from AHB (@160MHz by default)*/
  453. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  454. } else {
  455. /* Configure the ADC clock from pll0_clk1 divided by 2 (@166MHz by default) */
  456. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  457. clock_set_source_divider(clock_ana0, clk_src_pll0_clk1, 2U);
  458. }
  459. freq = clock_get_frequency(clock_adc0);
  460. } else if (ptr == HPM_ADC1) {
  461. if (clk_src_ahb) {
  462. /* Configure the ADC clock from AHB (@160MHz by default)*/
  463. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  464. } else {
  465. /* Configure the ADC clock from pll1_clk1 divided by 2 (@166MHz by default) */
  466. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  467. clock_set_source_divider(clock_ana1, clk_src_pll0_clk1, 2U);
  468. }
  469. freq = clock_get_frequency(clock_adc1);
  470. } else if (ptr == HPM_ADC2) {
  471. if (clk_src_ahb) {
  472. /* Configure the ADC clock from AHB (@160MHz by default)*/
  473. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  474. } else {
  475. /* Configure the ADC clock from pll1_clk1 divided by 2 (@166MHz by default) */
  476. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  477. clock_set_source_divider(clock_ana2, clk_src_pll0_clk1, 2U);
  478. }
  479. freq = clock_get_frequency(clock_adc2);
  480. }
  481. return freq;
  482. }
  483. uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
  484. {
  485. uint32_t freq = 0;
  486. if (ptr == HPM_DAC) {
  487. if (clk_src_ahb == true) {
  488. /* Configure the DAC clock to 160MHz */
  489. clock_set_dac_source(clock_dac0, clk_dac_src_ahb0);
  490. } else {
  491. /* Configure the DAC clock to 166MHz */
  492. clock_set_dac_source(clock_dac0, clk_dac_src_ana3);
  493. clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
  494. }
  495. freq = clock_get_frequency(clock_dac0);
  496. }
  497. return freq;
  498. }
  499. void board_init_can(CAN_Type *ptr)
  500. {
  501. init_can_pins(ptr);
  502. }
  503. uint32_t board_init_can_clock(CAN_Type *ptr)
  504. {
  505. uint32_t freq = 0;
  506. if (ptr == HPM_CAN0) {
  507. /* Set the CAN0 peripheral clock to 80MHz */
  508. clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
  509. freq = clock_get_frequency(clock_can0);
  510. } else if (ptr == HPM_CAN1) {
  511. /* Set the CAN1 peripheral clock to 80MHz */
  512. clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
  513. freq = clock_get_frequency(clock_can1);
  514. } else {
  515. /* Invalid CAN instance */
  516. }
  517. return freq;
  518. }
  519. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  520. {
  521. uint32_t freq = 0;
  522. if (ptr == HPM_GPTMR0) {
  523. clock_add_to_group(clock_gptmr0, 0);
  524. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  525. freq = clock_get_frequency(clock_gptmr0);
  526. }
  527. else if (ptr == HPM_GPTMR1) {
  528. clock_add_to_group(clock_gptmr1, 0);
  529. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  530. freq = clock_get_frequency(clock_gptmr1);
  531. }
  532. else if (ptr == HPM_GPTMR2) {
  533. clock_add_to_group(clock_gptmr2, 0);
  534. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  535. freq = clock_get_frequency(clock_gptmr2);
  536. }
  537. else if (ptr == HPM_GPTMR3) {
  538. clock_add_to_group(clock_gptmr3, 0);
  539. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  540. freq = clock_get_frequency(clock_gptmr3);
  541. }
  542. else {
  543. /* Invalid instance */
  544. }
  545. return freq;
  546. }
  547. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  548. {
  549. /* This feature is not supported */
  550. }
  551. /*
  552. * this function will be called during startup to initialize external memory for data use
  553. */
  554. void _init_ext_ram(void)
  555. {
  556. uint32_t femc_clk_in_hz;
  557. board_init_sdram_pins();
  558. femc_clk_in_hz = board_init_femc_clock();
  559. femc_config_t config = {0};
  560. femc_sdram_config_t sdram_config = {0};
  561. femc_default_config(HPM_FEMC, &config);
  562. config.dqs = FEMC_DQS_INTERNAL;
  563. femc_init(HPM_FEMC, &config);
  564. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  565. sdram_config.prescaler = 0x3;
  566. sdram_config.burst_len_in_byte = 8;
  567. sdram_config.auto_refresh_count_in_one_burst = 1;
  568. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  569. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  570. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  571. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  572. sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
  573. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  574. sdram_config.cke_off_in_ns = 42; /* Trcd */
  575. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  576. sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
  577. sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
  578. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  579. sdram_config.idle_timeout_in_ns = 6;
  580. sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
  581. sdram_config.cs = BOARD_SDRAM_CS;
  582. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  583. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  584. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  585. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  586. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  587. sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
  588. sdram_config.delay_cell_disable = false;
  589. sdram_config.delay_cell_value = 29;
  590. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  591. }
  592. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  593. {
  594. uint32_t actual_freq = 0;
  595. do {
  596. if (ptr != HPM_SDXC0) {
  597. break;
  598. }
  599. clock_name_t sdxc_clk = clock_sdxc0;
  600. sdxc_enable_inverse_clock(ptr, false);
  601. sdxc_enable_sd_clock(ptr, false);
  602. /* Configure the SDXC Frequency to 200MHz */
  603. clock_set_source_divider(sdxc_clk, clk_src_pll0_clk0, 2);
  604. sdxc_enable_freq_selection(ptr);
  605. /* Configure the clock below 400KHz for the identification state */
  606. if (freq <= 400000UL) {
  607. sdxc_set_clock_divider(ptr, 600);
  608. }
  609. /* configure the clock to 24MHz for the SDR12/Default speed */
  610. else if (freq <= 26000000UL) {
  611. sdxc_set_clock_divider(ptr, 8);
  612. }
  613. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  614. else if (freq <= 52000000UL) {
  615. sdxc_set_clock_divider(ptr, 4);
  616. }
  617. /* Configure the clock to 100MHz for the SDR50 */
  618. else if (freq <= 100000000UL) {
  619. sdxc_set_clock_divider(ptr, 2);
  620. }
  621. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  622. else if (freq <= 208000000UL) {
  623. sdxc_set_clock_divider(ptr, 1);
  624. }
  625. /* For other unsupported clock ranges, configure the clock to 24MHz */
  626. else {
  627. sdxc_set_clock_divider(ptr, 8);
  628. }
  629. if (need_inverse) {
  630. sdxc_enable_inverse_clock(ptr, true);
  631. }
  632. sdxc_enable_sd_clock(ptr, true);
  633. actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr);
  634. } while (false);
  635. return actual_freq;
  636. }
  637. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  638. {
  639. (void) ptr;
  640. /* This feature is not supported */
  641. }
  642. bool board_sd_detect_card(SDXC_Type *ptr)
  643. {
  644. return sdxc_is_card_inserted(ptr);
  645. }
  646. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  647. {
  648. /* set clock source */
  649. if (ptr == HPM_ENET0) {
  650. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for ent0 ptp clock */
  651. clock_set_source_divider(clock_ptp0, clk_src_pll0_clk0, 4); /* 100MHz */
  652. } else {
  653. return status_invalid_argument;
  654. }
  655. return status_success;
  656. }
  657. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  658. {
  659. /* Configure Enet clock to output reference clock */
  660. if (ptr == HPM_ENET0) {
  661. if (internal) {
  662. /* set pll output frequency at 1GHz */
  663. if (pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1000000000UL) == status_success) {
  664. /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 (1 + 15 / 5) */
  665. pllctlv2_set_postdiv(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1, 15);
  666. /* set eth clock frequency at 50MHz for enet0 */
  667. clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5);
  668. } else {
  669. return status_fail;
  670. }
  671. }
  672. } else {
  673. return status_invalid_argument;
  674. }
  675. enet_rmii_enable_clock(ptr, internal);
  676. return status_success;
  677. }
  678. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  679. {
  680. init_enet_pins(ptr);
  681. return status_success;
  682. }
  683. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  684. {
  685. (void) ptr;
  686. return status_success;
  687. }
  688. void board_init_dac_pins(DAC_Type *ptr)
  689. {
  690. init_dac_pins(ptr);
  691. }
  692. uint32_t board_init_uart_clock(UART_Type *ptr)
  693. {
  694. uint32_t freq = 0U;
  695. if (ptr == HPM_UART0) {
  696. clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
  697. clock_add_to_group(clock_uart0, 0);
  698. freq = clock_get_frequency(clock_uart0);
  699. } else if (ptr == HPM_UART1) {
  700. clock_set_source_divider(clock_uart1, clk_src_osc24m, 1);
  701. clock_add_to_group(clock_uart1, 0);
  702. freq = clock_get_frequency(clock_uart1);
  703. } else if (ptr == HPM_UART2) {
  704. clock_set_source_divider(clock_uart2, clk_src_osc24m, 1);
  705. clock_add_to_group(clock_uart2, 0);
  706. freq = clock_get_frequency(clock_uart2);
  707. } else {
  708. /* Not supported */
  709. }
  710. return freq;
  711. }
  712. uint32_t board_init_pwm_clock(PWM_Type *ptr)
  713. {
  714. uint32_t freq = 0;
  715. (void) ptr;
  716. return freq;
  717. }
  718. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  719. {
  720. (void) ptr;
  721. return enet_pbl_16;
  722. }
  723. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  724. {
  725. if (ptr == HPM_ENET0) {
  726. intc_m_enable_irq(IRQn_ENET0);
  727. } else {
  728. return status_invalid_argument;
  729. }
  730. return status_success;
  731. }
  732. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  733. {
  734. if (ptr == HPM_ENET0) {
  735. intc_m_disable_irq(IRQn_ENET0);
  736. } else {
  737. return status_invalid_argument;
  738. }
  739. return status_success;
  740. }
  741. void board_init_enet_pps_pins(ENET_Type *ptr)
  742. {
  743. (void) ptr;
  744. init_enet_pps_pins();
  745. }