main.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. */
  9. #include <rtthread.h>
  10. #include <rtdevice.h>
  11. #define LED_PIN 32
  12. int main(void)
  13. {
  14. int count = 1;
  15. rt_pin_mode(LED_PIN, PIN_MODE_OUTPUT);
  16. while (count++)
  17. {
  18. rt_pin_write(LED_PIN, PIN_HIGH);
  19. rt_thread_mdelay(1000);
  20. rt_pin_write(LED_PIN, PIN_LOW);
  21. rt_thread_mdelay(1000);
  22. }
  23. return RT_EOK;
  24. }
  25. // #ifdef RT_USING_PIN
  26. // #define KEY1_PIN 31
  27. // void key1_cb(void *args)
  28. // {
  29. // rt_kprintf("key1 irq!\n");
  30. // }
  31. // static int pin_sample(int argc, char *argv[])
  32. // {
  33. // rt_pin_mode(KEY1_PIN, PIN_IRQ_MODE_FALLING);
  34. // rt_pin_attach_irq(KEY1_PIN, PIN_IRQ_MODE_FALLING, key1_cb, RT_NULL);
  35. // rt_pin_irq_enable(KEY1_PIN, PIN_IRQ_ENABLE);
  36. // return RT_EOK;
  37. // }
  38. // MSH_CMD_EXPORT(pin_sample, pin sample);
  39. // #endif
  40. #ifdef RT_USING_ADC
  41. #define ADC_DEV_NAME "adc1"
  42. #define ADC_DEV_CHANNEL 0
  43. #define REFER_VOLTAGE 330
  44. #define CONVERT_BITS (1 << 12)
  45. static int adc_vol_sample(int argc, char *argv[])
  46. {
  47. rt_adc_device_t adc_dev;
  48. rt_uint32_t value, vol;
  49. rt_err_t ret = RT_EOK;
  50. adc_dev = (rt_adc_device_t)rt_device_find(ADC_DEV_NAME);
  51. if (adc_dev == RT_NULL)
  52. {
  53. rt_kprintf("adc sample run failed! can't find %s device!\n", ADC_DEV_NAME);
  54. return RT_ERROR;
  55. }
  56. ret = rt_adc_enable(adc_dev, ADC_DEV_CHANNEL);
  57. value = rt_adc_read(adc_dev, ADC_DEV_CHANNEL);
  58. rt_kprintf("the value is :%d,", value);
  59. vol = value * REFER_VOLTAGE / CONVERT_BITS;
  60. rt_kprintf("the voltage is :%d.%02d \n", vol / 100, vol % 100);
  61. ret = rt_adc_disable(adc_dev, ADC_DEV_CHANNEL);
  62. return ret;
  63. }
  64. MSH_CMD_EXPORT(adc_vol_sample, adc voltage convert sample);
  65. #endif
  66. #ifdef RT_USING_HWTIMER
  67. #define HWTIMER_DEV_NAME "timer0"
  68. static rt_err_t timeout_cb(rt_device_t dev, rt_size_t size)
  69. {
  70. rt_kprintf("this is hwtimer timeout callback fucntion!\n");
  71. rt_kprintf("tick is :%d !\n", rt_tick_get());
  72. return 0;
  73. }
  74. static int hwtimer_sample(int argc, char *argv[])
  75. {
  76. rt_err_t ret = RT_EOK;
  77. rt_hwtimerval_t timeout_s;
  78. rt_device_t hw_dev = RT_NULL;
  79. rt_hwtimer_mode_t mode;
  80. hw_dev = rt_device_find(HWTIMER_DEV_NAME);
  81. if (hw_dev == RT_NULL)
  82. {
  83. rt_kprintf("hwtimer sample run failed! can't find %s device!\n", HWTIMER_DEV_NAME);
  84. return RT_ERROR;
  85. }
  86. ret = rt_device_open(hw_dev, RT_DEVICE_OFLAG_RDWR);
  87. if (ret != RT_EOK)
  88. {
  89. rt_kprintf("open %s device failed!\n", HWTIMER_DEV_NAME);
  90. return ret;
  91. }
  92. rt_device_set_rx_indicate(hw_dev, timeout_cb);
  93. mode = HWTIMER_MODE_PERIOD;
  94. //mode = HWTIMER_MODE_ONESHOT;
  95. ret = rt_device_control(hw_dev, HWTIMER_CTRL_MODE_SET, &mode);
  96. if (ret != RT_EOK)
  97. {
  98. rt_kprintf("set mode failed! ret is :%d\n", ret);
  99. return ret;
  100. }
  101. timeout_s.sec = 2;
  102. timeout_s.usec = 0;
  103. if (rt_device_write(hw_dev, 0, &timeout_s, sizeof(timeout_s)) != sizeof(timeout_s))
  104. {
  105. rt_kprintf("set timeout value failed\n");
  106. return RT_ERROR;
  107. }
  108. rt_thread_mdelay(3500);
  109. rt_device_read(hw_dev, 0, &timeout_s, sizeof(timeout_s));
  110. rt_kprintf("Read: Sec = %d, Usec = %d\n", timeout_s.sec, timeout_s.usec);
  111. return ret;
  112. }
  113. MSH_CMD_EXPORT(hwtimer_sample, hwtimer sample);
  114. #endif
  115. #ifdef RT_USING_PWM
  116. #define PWM_DEV_NAME "pwm0" /* PWM设备名称 */
  117. #define PWM_DEV_CHANNEL 0 /* PWM通道 */
  118. struct rt_device_pwm *pwm_dev; /* PWM设备句柄 */
  119. static int pwm_sample(int argc, char *argv[])
  120. {
  121. rt_uint32_t period, pulse;
  122. period = 500000; /* 周期为0.5ms,单位为纳秒ns */
  123. pulse = 250000; /* PWM脉冲宽度值,单位为纳秒ns */
  124. pwm_dev = (struct rt_device_pwm *)rt_device_find(PWM_DEV_NAME);
  125. if (pwm_dev == RT_NULL)
  126. {
  127. rt_kprintf("pwm sample run failed! can't find %s device!\n", PWM_DEV_NAME);
  128. return RT_ERROR;
  129. }
  130. rt_pwm_set(pwm_dev, PWM_DEV_CHANNEL, period, pulse);
  131. rt_pwm_enable(pwm_dev, PWM_DEV_CHANNEL);
  132. return RT_EOK;
  133. }
  134. MSH_CMD_EXPORT(pwm_sample, pwm sample);
  135. #endif
  136. #ifdef RT_USING_RTC
  137. #include <sys/time.h>
  138. static int rtc_sample(int argc, char *argv[])
  139. {
  140. rt_err_t ret = RT_EOK;
  141. time_t now;
  142. ret = set_date(2020, 2, 28);
  143. if (ret != RT_EOK)
  144. {
  145. rt_kprintf("set RTC date failed\n");
  146. return ret;
  147. }
  148. ret = set_time(23, 59, 55);
  149. if (ret != RT_EOK)
  150. {
  151. rt_kprintf("set RTC time failed\n");
  152. return ret;
  153. }
  154. //rt_thread_mdelay(3000);
  155. now = time(RT_NULL);
  156. rt_kprintf("%s\n", ctime(&now));
  157. return ret;
  158. }
  159. MSH_CMD_EXPORT(rtc_sample, rtc sample);
  160. #endif
  161. #ifdef RT_USING_WDT
  162. #define WDT_DEVICE_NAME "wdt"
  163. static rt_device_t wdg_dev;
  164. static void idle_hook(void)
  165. {
  166. rt_device_control(wdg_dev, RT_DEVICE_CTRL_WDT_KEEPALIVE, RT_NULL);
  167. rt_kprintf("feed the dog!\n ");
  168. }
  169. static int wdt_sample(int argc, char *argv[])
  170. {
  171. rt_err_t ret = RT_EOK;
  172. rt_uint32_t timeout = 1;
  173. char device_name[RT_NAME_MAX];
  174. if (argc == 2)
  175. {
  176. rt_strncpy(device_name, argv[1], RT_NAME_MAX);
  177. }
  178. else
  179. {
  180. rt_strncpy(device_name, WDT_DEVICE_NAME, RT_NAME_MAX);
  181. }
  182. wdg_dev = rt_device_find(device_name);
  183. if (!wdg_dev)
  184. {
  185. rt_kprintf("find %s failed!\n", device_name);
  186. return RT_ERROR;
  187. }
  188. ret = rt_device_init(wdg_dev);
  189. if (ret != RT_EOK)
  190. {
  191. rt_kprintf("initialize %s failed!\n", device_name);
  192. return RT_ERROR;
  193. }
  194. ret = rt_device_control(wdg_dev, RT_DEVICE_CTRL_WDT_SET_TIMEOUT, &timeout);
  195. if (ret != RT_EOK)
  196. {
  197. rt_kprintf("set %s timeout failed!\n", device_name);
  198. return RT_ERROR;
  199. }
  200. ret = rt_device_control(wdg_dev, RT_DEVICE_CTRL_WDT_START, RT_NULL);
  201. if (ret != RT_EOK)
  202. {
  203. rt_kprintf("start %s failed!\n", device_name);
  204. return -RT_ERROR;
  205. }
  206. // rt_thread_idle_sethook(idle_hook);
  207. return ret;
  208. }
  209. MSH_CMD_EXPORT(wdt_sample, wdt sample);
  210. #endif
  211. #ifdef RT_USING_SPI
  212. #define W25Q_SPI_DEVICE_NAME "spi00"
  213. #define W25Q_FLASH_NAME "norflash0"
  214. #include "drv_spi.h"
  215. #include "spi_flash_sfud.h"
  216. #include "dfs_posix.h"
  217. static int rt_hw_spi_flash_init(void)
  218. {
  219. rt_hw_spi_device_attach("spi0", "spi00", GPIOP, PIN22);
  220. if (RT_NULL == rt_sfud_flash_probe(W25Q_FLASH_NAME, W25Q_SPI_DEVICE_NAME))
  221. {
  222. return -RT_ERROR;
  223. };
  224. return RT_EOK;
  225. }
  226. INIT_COMPONENT_EXPORT(rt_hw_spi_flash_init);
  227. static void spi_w25q_sample(int argc, char *argv[])
  228. {
  229. struct rt_spi_device *spi_dev_w25q;
  230. char name[RT_NAME_MAX];
  231. rt_uint8_t w25x_read_id = 0x90;
  232. rt_uint8_t id[5] = {0};
  233. if (argc == 2)
  234. {
  235. rt_strncpy(name, argv[1], RT_NAME_MAX);
  236. }
  237. else
  238. {
  239. rt_strncpy(name, W25Q_SPI_DEVICE_NAME, RT_NAME_MAX);
  240. }
  241. /* 查找 spi 设备获取设备句柄 */
  242. spi_dev_w25q = (struct rt_spi_device *)rt_device_find(name);
  243. struct rt_spi_configuration cfg;
  244. cfg.data_width = 8;
  245. cfg.mode = RT_SPI_MASTER | RT_SPI_MODE_0 | RT_SPI_MSB;
  246. cfg.max_hz = 30 * 1000 * 1000; /* 20M */
  247. rt_spi_configure(spi_dev_w25q, &cfg);
  248. if (!spi_dev_w25q)
  249. {
  250. rt_kprintf("spi sample run failed! can't find %s device!\n", name);
  251. }
  252. else
  253. {
  254. /* 方式1:使用 rt_spi_send_then_recv()发送命令读取ID */
  255. rt_spi_send_then_recv(spi_dev_w25q, &w25x_read_id, 1, id, 5);
  256. rt_kprintf("use rt_spi_send_then_recv() read w25q ID is:%x%x\n", id[3], id[4]);
  257. /* 方式2:使用 rt_spi_transfer_message()发送命令读取ID */
  258. struct rt_spi_message msg1, msg2;
  259. msg1.send_buf = &w25x_read_id;
  260. msg1.recv_buf = RT_NULL;
  261. msg1.length = 1;
  262. msg1.cs_take = 1;
  263. msg1.cs_release = 0;
  264. msg1.next = &msg2;
  265. msg2.send_buf = RT_NULL;
  266. msg2.recv_buf = id;
  267. msg2.length = 5;
  268. msg2.cs_take = 0;
  269. msg2.cs_release = 1;
  270. msg2.next = RT_NULL;
  271. rt_spi_transfer_message(spi_dev_w25q, &msg1);
  272. rt_kprintf("use rt_spi_transfer_message() read w25q ID is:%x%x\n", id[3], id[4]);
  273. }
  274. }
  275. static void spi_flash_elmfat_sample(void)
  276. {
  277. int fd, size;
  278. struct statfs elm_stat;
  279. char str[] = "elmfat mount to W25Q flash.\r\n", buf[80];
  280. if (dfs_mkfs("elm", W25Q_FLASH_NAME) == 0)
  281. rt_kprintf("make elmfat filesystem success.\n");
  282. if (dfs_mount(W25Q_FLASH_NAME, "/", "elm", 0, 0) == 0)
  283. rt_kprintf("elmfat filesystem mount success.\n");
  284. if (statfs("/", &elm_stat) == 0)
  285. rt_kprintf("elmfat filesystem block size: %d, total blocks: %d, free blocks: %d.\n",
  286. elm_stat.f_bsize, elm_stat.f_blocks, elm_stat.f_bfree);
  287. if (mkdir("/user", 0x777) == 0)
  288. rt_kprintf("make a directory: '/user'.\n");
  289. rt_kprintf("Write string '%s' to /user/test.txt.\n", str);
  290. fd = open("/user/test.txt", O_WRONLY | O_CREAT);
  291. if (fd >= 0)
  292. {
  293. if (write(fd, str, sizeof(str)) == sizeof(str))
  294. rt_kprintf("Write data done.\n");
  295. close(fd);
  296. }
  297. fd = open("/user/test.txt", O_RDONLY);
  298. if (fd >= 0)
  299. {
  300. size = read(fd, buf, sizeof(buf));
  301. close(fd);
  302. if (size == sizeof(str))
  303. rt_kprintf("Read data from file test.txt(size: %d): %s \n", size, buf);
  304. }
  305. }
  306. MSH_CMD_EXPORT(spi_flash_elmfat_sample, spi flash elmfat sample);
  307. MSH_CMD_EXPORT(spi_w25q_sample, spi w25q sample);
  308. #endif
  309. //#ifdef RT_USING_SPI
  310. //#define SD_SPI_DEVICE_NAME "spi10"
  311. //#define SDCARD_NAME "sd0"
  312. //#include "drv_spi.h"
  313. //#include "dfs_posix.h"
  314. //#include "spi_msd.h"
  315. //static int rt_hw_spi1_tfcard(void)
  316. //{
  317. // rt_hw_spi_device_attach("spi1", SD_SPI_DEVICE_NAME, GPIOB, PIN6);
  318. // return msd_init(SDCARD_NAME, SD_SPI_DEVICE_NAME);
  319. //}
  320. //INIT_DEVICE_EXPORT(rt_hw_spi1_tfcard);
  321. //static void elmfat_sample(void)
  322. //{
  323. // int fd, size;
  324. // struct statfs elm_stat;
  325. // char str[] = "elmfat mount to sdcard.", buf[80];
  326. // if (dfs_mkfs("elm", SDCARD_NAME) == 0)
  327. // rt_kprintf("make elmfat filesystem success.\n");
  328. // if (dfs_mount(SDCARD_NAME, "/", "elm", 0, 0) == 0)
  329. // rt_kprintf("elmfat filesystem mount success.\n");
  330. // if (statfs("/", &elm_stat) == 0)
  331. // rt_kprintf("elmfat filesystem block size: %d, total blocks: %d, free blocks: %d.\n",
  332. // elm_stat.f_bsize, elm_stat.f_blocks, elm_stat.f_bfree);
  333. // if (mkdir("/user", 0x777) == 0)
  334. // rt_kprintf("make a directory: '/user'.\n");
  335. // rt_kprintf("Write string '%s' to /user/test.txt.\n", str);
  336. // fd = open("/user/test.txt", O_WRONLY | O_CREAT);
  337. // if (fd >= 0)
  338. // {
  339. // if (write(fd, str, sizeof(str)) == sizeof(str))
  340. // rt_kprintf("Write data done.\n");
  341. // close(fd);
  342. // }
  343. // fd = open("/user/test.txt", O_RDONLY);
  344. // if (fd >= 0)
  345. // {
  346. // size = read(fd, buf, sizeof(buf));
  347. // close(fd);
  348. // if (size == sizeof(str))
  349. // rt_kprintf("Read data from file test.txt(size: %d): %s \n", size, buf);
  350. // }
  351. //}
  352. //MSH_CMD_EXPORT(elmfat_sample, elmfat sample);
  353. //#endif
  354. #ifdef RT_USING_SDIO
  355. #define SDCARD_NAME "sd0"
  356. #include "dfs_posix.h"
  357. static void sdio_elmfat_sample(void)
  358. {
  359. int fd, size;
  360. struct statfs elm_stat;
  361. char str[] = "elmfat mount to sdcard.\n", buf[80];
  362. if (dfs_mkfs("elm", SDCARD_NAME) == 0)
  363. rt_kprintf("make elmfat filesystem success.\n");
  364. if (dfs_mount(SDCARD_NAME, "/", "elm", 0, 0) == 0)
  365. rt_kprintf("elmfat filesystem mount success.\n");
  366. if (statfs("/", &elm_stat) == 0)
  367. rt_kprintf("elmfat filesystem block size: %d, total blocks: %d, free blocks: %d.\n",
  368. elm_stat.f_bsize, elm_stat.f_blocks, elm_stat.f_bfree);
  369. if (mkdir("/user", 0x777) == 0)
  370. rt_kprintf("make a directory: '/user'.\n");
  371. rt_kprintf("Write string '%s' to /user/test.txt.\n", str);
  372. fd = open("/user/test.txt", O_WRONLY | O_CREAT);
  373. if (fd >= 0)
  374. {
  375. if (write(fd, str, sizeof(str)) == sizeof(str))
  376. rt_kprintf("Write data done.\n");
  377. close(fd);
  378. }
  379. fd = open("/user/test.txt", O_RDONLY);
  380. if (fd >= 0)
  381. {
  382. size = read(fd, buf, sizeof(buf));
  383. close(fd);
  384. if (size == sizeof(str))
  385. rt_kprintf("Read data from file test.txt(size: %d): %s \n", size, buf);
  386. }
  387. }
  388. MSH_CMD_EXPORT(sdio_elmfat_sample, sdio elmfat sample);
  389. #endif
  390. #ifdef RT_USING_HWCRYPTO
  391. static void crypto_sample(void)
  392. {
  393. rt_uint8_t temp[] = {0, 1, 2, 3, 4, 5, 6, 7};
  394. struct rt_hwcrypto_ctx *ctx;
  395. rt_uint32_t result = 0;
  396. struct hwcrypto_crc_cfg cfg =
  397. {
  398. .last_val = 0x0,
  399. .poly = 0x04C11DB7,
  400. .width = 8,
  401. .xorout = 0x00000000,
  402. .flags = 0,
  403. };
  404. ctx = rt_hwcrypto_crc_create(rt_hwcrypto_dev_default(), HWCRYPTO_CRC_CRC32);
  405. rt_hwcrypto_crc_cfg(ctx, &cfg);
  406. result = rt_hwcrypto_crc_update(ctx, temp, sizeof(temp));
  407. rt_kprintf("result: 0x%08x \n", result);
  408. rt_hwcrypto_crc_destroy(ctx);
  409. }
  410. MSH_CMD_EXPORT(crypto_sample, crypto sample);
  411. #endif
  412. #ifdef BSP_USING_NOR_FLASH
  413. #define NORFLASH_DEV_NAME "nor"
  414. static int norflash_sample(int argc, char *argv[])
  415. {
  416. rt_err_t ret = RT_EOK;
  417. rt_device_t hw_dev = RT_NULL;
  418. hw_dev = rt_device_find(NORFLASH_DEV_NAME);
  419. if (hw_dev == RT_NULL)
  420. {
  421. rt_kprintf("norflash sample run failed! can't find %s device!\n", NORFLASH_DEV_NAME);
  422. return RT_ERROR;
  423. }
  424. else
  425. {
  426. rt_kprintf("norflash sample run success! find %s device!\n", NORFLASH_DEV_NAME);
  427. }
  428. ret = rt_device_open(hw_dev, RT_DEVICE_OFLAG_RDWR);
  429. if (ret != RT_EOK)
  430. {
  431. rt_kprintf("open %s device failed!\n", NORFLASH_DEV_NAME);
  432. return ret;
  433. }
  434. else
  435. {
  436. rt_kprintf("open %s device success!\n", NORFLASH_DEV_NAME);
  437. }
  438. struct rt_mtd_nor_device *hw_nor;
  439. hw_nor = RT_MTD_NOR_DEVICE(hw_dev);
  440. long id = hw_nor->ops->read_id(hw_nor);
  441. rt_kprintf("id = %08x!\n", id);
  442. // rt_device_set_rx_indicate(hw_dev, timeout_cb);
  443. // mode = HWTIMER_MODE_PERIOD;
  444. // //mode = HWTIMER_MODE_ONESHOT;
  445. // ret = rt_device_control(hw_dev, HWTIMER_CTRL_MODE_SET, &mode);
  446. // if (ret != RT_EOK)
  447. // {
  448. // rt_kprintf("set mode failed! ret is :%d\n", ret);
  449. // return ret;
  450. // }
  451. // timeout_s.sec = 2;
  452. // timeout_s.usec = 0;
  453. // if (rt_device_write(hw_dev, 0, &timeout_s, sizeof(timeout_s)) != sizeof(timeout_s))
  454. // {
  455. // rt_kprintf("set timeout value failed\n");
  456. // return RT_ERROR;
  457. // }
  458. // rt_thread_mdelay(3500);
  459. // rt_device_read(hw_dev, 0, &timeout_s, sizeof(timeout_s));
  460. // rt_kprintf("Read: Sec = %d, Usec = %d\n", timeout_s.sec, timeout_s.usec);
  461. return ret;
  462. }
  463. MSH_CMD_EXPORT(norflash_sample, norflash sample);
  464. #endif