slab.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958
  1. /*
  2. * File : slab.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2008 - 2012, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2008-07-12 Bernard the first version
  13. * 2010-07-13 Bernard fix RT_ALIGN issue found by kuronca
  14. * 2010-10-23 yi.qiu add module memory allocator
  15. * 2010-12-18 yi.qiu fix zone release bug
  16. */
  17. /*
  18. * KERN_SLABALLOC.C - Kernel SLAB memory allocator
  19. *
  20. * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
  21. *
  22. * This code is derived from software contributed to The DragonFly Project
  23. * by Matthew Dillon <dillon@backplane.com>
  24. *
  25. * Redistribution and use in source and binary forms, with or without
  26. * modification, are permitted provided that the following conditions
  27. * are met:
  28. *
  29. * 1. Redistributions of source code must retain the above copyright
  30. * notice, this list of conditions and the following disclaimer.
  31. * 2. Redistributions in binary form must reproduce the above copyright
  32. * notice, this list of conditions and the following disclaimer in
  33. * the documentation and/or other materials provided with the
  34. * distribution.
  35. * 3. Neither the name of The DragonFly Project nor the names of its
  36. * contributors may be used to endorse or promote products derived
  37. * from this software without specific, prior written permission.
  38. *
  39. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  40. * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  41. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  42. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  43. * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  44. * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
  45. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  46. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
  47. * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  48. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  49. * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. */
  53. #include <rthw.h>
  54. #include <rtthread.h>
  55. #define RT_MEM_STATS
  56. #if defined (RT_USING_HEAP) && defined (RT_USING_SLAB)
  57. /* some statistical variable */
  58. #ifdef RT_MEM_STATS
  59. static rt_size_t used_mem, max_mem;
  60. #endif
  61. #ifdef RT_USING_HOOK
  62. static void (*rt_malloc_hook)(void *ptr, rt_size_t size);
  63. static void (*rt_free_hook)(void *ptr);
  64. /**
  65. * @addtogroup Hook
  66. */
  67. /*@{*/
  68. /**
  69. * This function will set a hook function, which will be invoked when a memory
  70. * block is allocated from heap memory.
  71. *
  72. * @param hook the hook function
  73. */
  74. void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size))
  75. {
  76. rt_malloc_hook = hook;
  77. }
  78. RTM_EXPORT(rt_malloc_sethook);
  79. /**
  80. * This function will set a hook function, which will be invoked when a memory
  81. * block is released to heap memory.
  82. *
  83. * @param hook the hook function
  84. */
  85. void rt_free_sethook(void (*hook)(void *ptr))
  86. {
  87. rt_free_hook = hook;
  88. }
  89. RTM_EXPORT(rt_free_sethook);
  90. /*@}*/
  91. #endif
  92. /*
  93. * slab allocator implementation
  94. *
  95. * A slab allocator reserves a ZONE for each chunk size, then lays the
  96. * chunks out in an array within the zone. Allocation and deallocation
  97. * is nearly instantanious, and fragmentation/overhead losses are limited
  98. * to a fixed worst-case amount.
  99. *
  100. * The downside of this slab implementation is in the chunk size
  101. * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
  102. * In a kernel implementation all this memory will be physical so
  103. * the zone size is adjusted downward on machines with less physical
  104. * memory. The upside is that overhead is bounded... this is the *worst*
  105. * case overhead.
  106. *
  107. * Slab management is done on a per-cpu basis and no locking or mutexes
  108. * are required, only a critical section. When one cpu frees memory
  109. * belonging to another cpu's slab manager an asynchronous IPI message
  110. * will be queued to execute the operation. In addition, both the
  111. * high level slab allocator and the low level zone allocator optimize
  112. * M_ZERO requests, and the slab allocator does not have to pre initialize
  113. * the linked list of chunks.
  114. *
  115. * XXX Balancing is needed between cpus. Balance will be handled through
  116. * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
  117. *
  118. * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
  119. * the new zone should be restricted to M_USE_RESERVE requests only.
  120. *
  121. * Alloc Size Chunking Number of zones
  122. * 0-127 8 16
  123. * 128-255 16 8
  124. * 256-511 32 8
  125. * 512-1023 64 8
  126. * 1024-2047 128 8
  127. * 2048-4095 256 8
  128. * 4096-8191 512 8
  129. * 8192-16383 1024 8
  130. * 16384-32767 2048 8
  131. * (if RT_MM_PAGE_SIZE is 4K the maximum zone allocation is 16383)
  132. *
  133. * Allocations >= zone_limit go directly to kmem.
  134. *
  135. * API REQUIREMENTS AND SIDE EFFECTS
  136. *
  137. * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
  138. * have remained compatible with the following API requirements:
  139. *
  140. * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
  141. * + all power-of-2 sized allocations are power-of-2 aligned (twe)
  142. * + malloc(0) is allowed and returns non-RT_NULL (ahc driver)
  143. * + ability to allocate arbitrarily large chunks of memory
  144. */
  145. /*
  146. * Chunk structure for free elements
  147. */
  148. typedef struct slab_chunk
  149. {
  150. struct slab_chunk *c_next;
  151. } slab_chunk;
  152. /*
  153. * The IN-BAND zone header is placed at the beginning of each zone.
  154. */
  155. typedef struct slab_zone
  156. {
  157. rt_int32_t z_magic; /* magic number for sanity check */
  158. rt_int32_t z_nfree; /* total free chunks / ualloc space in zone */
  159. rt_int32_t z_nmax; /* maximum free chunks */
  160. struct slab_zone *z_next; /* zoneary[] link if z_nfree non-zero */
  161. rt_uint8_t *z_baseptr; /* pointer to start of chunk array */
  162. rt_int32_t z_uindex; /* current initial allocation index */
  163. rt_int32_t z_chunksize; /* chunk size for validation */
  164. rt_int32_t z_zoneindex; /* zone index */
  165. slab_chunk *z_freechunk; /* free chunk list */
  166. } slab_zone;
  167. #define ZALLOC_SLAB_MAGIC 0x51ab51ab
  168. #define ZALLOC_ZONE_LIMIT (16 * 1024) /* max slab-managed alloc */
  169. #define ZALLOC_MIN_ZONE_SIZE (32 * 1024) /* minimum zone size */
  170. #define ZALLOC_MAX_ZONE_SIZE (128 * 1024) /* maximum zone size */
  171. #define NZONES 72 /* number of zones */
  172. #define ZONE_RELEASE_THRESH 2 /* threshold number of zones */
  173. static slab_zone *zone_array[NZONES]; /* linked list of zones NFree > 0 */
  174. static slab_zone *zone_free; /* whole zones that have become free */
  175. static int zone_free_cnt;
  176. static int zone_size;
  177. static int zone_limit;
  178. static int zone_page_cnt;
  179. /*
  180. * Misc constants. Note that allocations that are exact multiples of
  181. * RT_MM_PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
  182. */
  183. #define MIN_CHUNK_SIZE 8 /* in bytes */
  184. #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
  185. /*
  186. * Array of descriptors that describe the contents of each page
  187. */
  188. #define PAGE_TYPE_FREE 0x00
  189. #define PAGE_TYPE_SMALL 0x01
  190. #define PAGE_TYPE_LARGE 0x02
  191. struct memusage
  192. {
  193. rt_uint32_t type:2 ; /* page type */
  194. rt_uint32_t size:30; /* pages allocated or offset from zone */
  195. };
  196. static struct memusage *memusage = RT_NULL;
  197. #define btokup(addr) \
  198. (&memusage[((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS])
  199. static rt_uint32_t heap_start, heap_end;
  200. /* page allocator */
  201. struct rt_page_head
  202. {
  203. struct rt_page_head *next; /* next valid page */
  204. rt_size_t page; /* number of page */
  205. /* dummy */
  206. char dummy[RT_MM_PAGE_SIZE - (sizeof(struct rt_page_head*) + sizeof (rt_size_t))];
  207. };
  208. static struct rt_page_head *rt_page_list;
  209. static struct rt_semaphore heap_sem;
  210. void *rt_page_alloc(rt_size_t npages)
  211. {
  212. struct rt_page_head *b, *n;
  213. struct rt_page_head **prev;
  214. if(npages == 0)
  215. return RT_NULL;
  216. /* lock heap */
  217. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  218. for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next))
  219. {
  220. if (b->page > npages)
  221. {
  222. /* splite pages */
  223. n = b + npages;
  224. n->next = b->next;
  225. n->page = b->page - npages;
  226. *prev = n;
  227. break;
  228. }
  229. if (b->page == npages)
  230. {
  231. /* this node fit, remove this node */
  232. *prev = b->next;
  233. break;
  234. }
  235. }
  236. /* unlock heap */
  237. rt_sem_release(&heap_sem);
  238. return b;
  239. }
  240. void rt_page_free(void *addr, rt_size_t npages)
  241. {
  242. struct rt_page_head *b, *n;
  243. struct rt_page_head **prev;
  244. RT_ASSERT(addr != RT_NULL);
  245. RT_ASSERT((rt_uint32_t)addr % RT_MM_PAGE_SIZE == 0);
  246. RT_ASSERT(npages != 0);
  247. n = (struct rt_page_head *)addr;
  248. /* lock heap */
  249. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  250. for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next))
  251. {
  252. RT_ASSERT(b->page > 0);
  253. RT_ASSERT(b > n || b + b->page <= n);
  254. if (b + b->page == n)
  255. {
  256. if (b + (b->page += npages) == b->next)
  257. {
  258. b->page += b->next->page;
  259. b->next = b->next->next;
  260. }
  261. goto _return;
  262. }
  263. if (b == n + npages)
  264. {
  265. n->page = b->page + npages;
  266. n->next = b->next;
  267. *prev = n;
  268. goto _return;
  269. }
  270. if (b > n + npages)
  271. break;
  272. }
  273. n->page = npages;
  274. n->next = b;
  275. *prev = n;
  276. _return:
  277. /* unlock heap */
  278. rt_sem_release(&heap_sem);
  279. }
  280. /*
  281. * Initialize the page allocator
  282. */
  283. static void rt_page_init(void *addr, rt_size_t npages)
  284. {
  285. RT_ASSERT(addr != RT_NULL);
  286. RT_ASSERT(npages != 0);
  287. rt_page_list = RT_NULL;
  288. rt_page_free(addr, npages);
  289. }
  290. /**
  291. * @ingroup SystemInit
  292. *
  293. * This function will init system heap
  294. *
  295. * @param begin_addr the beginning address of system page
  296. * @param end_addr the end address of system page
  297. */
  298. void rt_system_heap_init(void *begin_addr, void *end_addr)
  299. {
  300. rt_uint32_t limsize, npages;
  301. RT_DEBUG_NOT_IN_INTERRUPT;
  302. /* align begin and end addr to page */
  303. heap_start = RT_ALIGN((rt_uint32_t)begin_addr, RT_MM_PAGE_SIZE);
  304. heap_end = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_MM_PAGE_SIZE);
  305. if (heap_start >= heap_end)
  306. {
  307. rt_kprintf("rt_system_heap_init, wrong address[0x%x - 0x%x]\n",
  308. (rt_uint32_t)begin_addr, (rt_uint32_t)end_addr);
  309. return;
  310. }
  311. limsize = heap_end - heap_start;
  312. npages = limsize / RT_MM_PAGE_SIZE;
  313. /* initialize heap semaphore */
  314. rt_sem_init(&heap_sem, "heap", 1, RT_IPC_FLAG_FIFO);
  315. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("heap[0x%x - 0x%x], size 0x%x, 0x%x pages\n",
  316. heap_start, heap_end, limsize, npages));
  317. /* init pages */
  318. rt_page_init((void *)heap_start, npages);
  319. /* calculate zone size */
  320. zone_size = ZALLOC_MIN_ZONE_SIZE;
  321. while (zone_size < ZALLOC_MAX_ZONE_SIZE && (zone_size << 1) < (limsize/1024))
  322. zone_size <<= 1;
  323. zone_limit = zone_size / 4;
  324. if (zone_limit > ZALLOC_ZONE_LIMIT)
  325. zone_limit = ZALLOC_ZONE_LIMIT;
  326. zone_page_cnt = zone_size / RT_MM_PAGE_SIZE;
  327. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("zone size 0x%x, zone page count 0x%x\n",
  328. zone_size, zone_page_cnt));
  329. /* allocate memusage array */
  330. limsize = npages * sizeof(struct memusage);
  331. limsize = RT_ALIGN(limsize, RT_MM_PAGE_SIZE);
  332. memusage = rt_page_alloc(limsize/RT_MM_PAGE_SIZE);
  333. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("memusage 0x%x, size 0x%x\n",
  334. (rt_uint32_t)memusage, limsize));
  335. }
  336. /*
  337. * Calculate the zone index for the allocation request size and set the
  338. * allocation request size to that particular zone's chunk size.
  339. */
  340. rt_inline int zoneindex(rt_uint32_t *bytes)
  341. {
  342. /* unsigned for shift opt */
  343. rt_uint32_t n = (rt_uint32_t)*bytes;
  344. if (n < 128)
  345. {
  346. *bytes = n = (n + 7) & ~7;
  347. /* 8 byte chunks, 16 zones */
  348. return(n / 8 - 1);
  349. }
  350. if (n < 256)
  351. {
  352. *bytes = n = (n + 15) & ~15;
  353. return(n / 16 + 7);
  354. }
  355. if (n < 8192)
  356. {
  357. if (n < 512)
  358. {
  359. *bytes = n = (n + 31) & ~31;
  360. return(n / 32 + 15);
  361. }
  362. if (n < 1024)
  363. {
  364. *bytes = n = (n + 63) & ~63;
  365. return(n / 64 + 23);
  366. }
  367. if (n < 2048)
  368. {
  369. *bytes = n = (n + 127) & ~127;
  370. return(n / 128 + 31);
  371. }
  372. if (n < 4096)
  373. {
  374. *bytes = n = (n + 255) & ~255;
  375. return(n / 256 + 39);
  376. }
  377. *bytes = n = (n + 511) & ~511;
  378. return(n / 512 + 47);
  379. }
  380. if (n < 16384)
  381. {
  382. *bytes = n = (n + 1023) & ~1023;
  383. return(n / 1024 + 55);
  384. }
  385. rt_kprintf("Unexpected byte count %d", n);
  386. return 0;
  387. }
  388. /**
  389. * @addtogroup MM
  390. */
  391. /*@{*/
  392. /**
  393. * This function will allocate a block from system heap memory.
  394. * - If the nbytes is less than zero,
  395. * or
  396. * - If there is no nbytes sized memory valid in system,
  397. * the RT_NULL is returned.
  398. *
  399. * @param size the size of memory to be allocated
  400. *
  401. * @return the allocated memory
  402. */
  403. void *rt_malloc(rt_size_t size)
  404. {
  405. slab_zone *z;
  406. rt_int32_t zi;
  407. slab_chunk *chunk;
  408. struct memusage *kup;
  409. /* zero size, return RT_NULL */
  410. if (size == 0)
  411. return RT_NULL;
  412. #ifdef RT_USING_MODULE
  413. if (rt_module_self() != RT_NULL)
  414. return rt_module_malloc(size);
  415. #endif
  416. /*
  417. * Handle large allocations directly. There should not be very many of
  418. * these so performance is not a big issue.
  419. */
  420. if (size >= zone_limit)
  421. {
  422. size = RT_ALIGN(size, RT_MM_PAGE_SIZE);
  423. chunk = rt_page_alloc(size >> RT_MM_PAGE_BITS);
  424. if (chunk == RT_NULL)
  425. return RT_NULL;
  426. /* set kup */
  427. kup = btokup(chunk);
  428. kup->type = PAGE_TYPE_LARGE;
  429. kup->size = size >> RT_MM_PAGE_BITS;
  430. RT_DEBUG_LOG(RT_DEBUG_SLAB,
  431. ("malloc a large memory 0x%x, page cnt %d, kup %d\n",
  432. size,
  433. size >> RT_MM_PAGE_BITS,
  434. ((rt_uint32_t)chunk - heap_start) >> RT_MM_PAGE_BITS));
  435. /* lock heap */
  436. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  437. #ifdef RT_MEM_STATS
  438. used_mem += size;
  439. if (used_mem > max_mem)
  440. max_mem = used_mem;
  441. #endif
  442. goto done;
  443. }
  444. /* lock heap */
  445. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  446. /*
  447. * Attempt to allocate out of an existing zone. First try the free list,
  448. * then allocate out of unallocated space. If we find a good zone move
  449. * it to the head of the list so later allocations find it quickly
  450. * (we might have thousands of zones in the list).
  451. *
  452. * Note: zoneindex() will panic of size is too large.
  453. */
  454. zi = zoneindex(&size);
  455. RT_ASSERT(zi < NZONES);
  456. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("try to malloc 0x%x on zone: %d\n", size, zi));
  457. if ((z = zone_array[zi]) != RT_NULL)
  458. {
  459. RT_ASSERT(z->z_nfree > 0);
  460. /* Remove us from the zone_array[] when we become empty */
  461. if (--z->z_nfree == 0)
  462. {
  463. zone_array[zi] = z->z_next;
  464. z->z_next = RT_NULL;
  465. }
  466. /*
  467. * No chunks are available but nfree said we had some memory, so
  468. * it must be available in the never-before-used-memory area
  469. * governed by uindex. The consequences are very serious if our zone
  470. * got corrupted so we use an explicit rt_kprintf rather then a KASSERT.
  471. */
  472. if (z->z_uindex + 1 != z->z_nmax)
  473. {
  474. z->z_uindex = z->z_uindex + 1;
  475. chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size);
  476. }
  477. else
  478. {
  479. /* find on free chunk list */
  480. chunk = z->z_freechunk;
  481. /* remove this chunk from list */
  482. z->z_freechunk = z->z_freechunk->c_next;
  483. }
  484. #ifdef RT_MEM_STATS
  485. used_mem += z->z_chunksize;
  486. if (used_mem > max_mem)
  487. max_mem = used_mem;
  488. #endif
  489. goto done;
  490. }
  491. /*
  492. * If all zones are exhausted we need to allocate a new zone for this
  493. * index.
  494. *
  495. * At least one subsystem, the tty code (see CROUND) expects power-of-2
  496. * allocations to be power-of-2 aligned. We maintain compatibility by
  497. * adjusting the base offset below.
  498. */
  499. {
  500. rt_int32_t off;
  501. if ((z = zone_free) != RT_NULL)
  502. {
  503. /* remove zone from free zone list */
  504. zone_free = z->z_next;
  505. -- zone_free_cnt;
  506. }
  507. else
  508. {
  509. /* unlock heap, since page allocator will think about lock */
  510. rt_sem_release(&heap_sem);
  511. /* allocate a zone from page */
  512. z = rt_page_alloc(zone_size / RT_MM_PAGE_SIZE);
  513. if (z == RT_NULL)
  514. goto fail;
  515. /* lock heap */
  516. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  517. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("alloc a new zone: 0x%x\n",
  518. (rt_uint32_t)z));
  519. /* set message usage */
  520. for (off = 0, kup = btokup(z); off < zone_page_cnt; off ++)
  521. {
  522. kup->type = PAGE_TYPE_SMALL;
  523. kup->size = off;
  524. kup ++;
  525. }
  526. }
  527. /* clear to zero */
  528. rt_memset(z, 0, sizeof(slab_zone));
  529. /* offset of slab zone struct in zone */
  530. off = sizeof(slab_zone);
  531. /*
  532. * Guarentee power-of-2 alignment for power-of-2-sized chunks.
  533. * Otherwise just 8-byte align the data.
  534. */
  535. if ((size | (size - 1)) + 1 == (size << 1))
  536. off = (off + size - 1) & ~(size - 1);
  537. else
  538. off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
  539. z->z_magic = ZALLOC_SLAB_MAGIC;
  540. z->z_zoneindex = zi;
  541. z->z_nmax = (zone_size - off) / size;
  542. z->z_nfree = z->z_nmax - 1;
  543. z->z_baseptr = (rt_uint8_t *)z + off;
  544. z->z_uindex = 0;
  545. z->z_chunksize = size;
  546. chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size);
  547. /* link to zone array */
  548. z->z_next = zone_array[zi];
  549. zone_array[zi] = z;
  550. #ifdef RT_MEM_STATS
  551. used_mem += z->z_chunksize;
  552. if (used_mem > max_mem)
  553. max_mem = used_mem;
  554. #endif
  555. }
  556. done:
  557. rt_sem_release(&heap_sem);
  558. RT_OBJECT_HOOK_CALL(rt_malloc_hook, ((char *)chunk, size));
  559. return chunk;
  560. fail:
  561. rt_sem_release(&heap_sem);
  562. return RT_NULL;
  563. }
  564. RTM_EXPORT(rt_malloc);
  565. /**
  566. * This function will change the size of previously allocated memory block.
  567. *
  568. * @param ptr the previously allocated memory block
  569. * @param size the new size of memory block
  570. *
  571. * @return the allocated memory
  572. */
  573. void *rt_realloc(void *ptr, rt_size_t size)
  574. {
  575. void *nptr;
  576. slab_zone *z;
  577. struct memusage *kup;
  578. if (ptr == RT_NULL)
  579. return rt_malloc(size);
  580. if (size == 0)
  581. {
  582. rt_free(ptr);
  583. return RT_NULL;
  584. }
  585. #ifdef RT_USING_MODULE
  586. if (rt_module_self() != RT_NULL)
  587. return rt_module_realloc(ptr, size);
  588. #endif
  589. /*
  590. * Get the original allocation's zone. If the new request winds up
  591. * using the same chunk size we do not have to do anything.
  592. */
  593. kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  594. if (kup->type == PAGE_TYPE_LARGE)
  595. {
  596. rt_size_t osize;
  597. osize = kup->size << RT_MM_PAGE_BITS;
  598. if ((nptr = rt_malloc(size)) == RT_NULL)
  599. return RT_NULL;
  600. rt_memcpy(nptr, ptr, size > osize ? osize : size);
  601. rt_free(ptr);
  602. return nptr;
  603. }
  604. else if (kup->type == PAGE_TYPE_SMALL)
  605. {
  606. z = (slab_zone *)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) -
  607. kup->size * RT_MM_PAGE_SIZE);
  608. RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
  609. zoneindex(&size);
  610. if (z->z_chunksize == size)
  611. return(ptr); /* same chunk */
  612. /*
  613. * Allocate memory for the new request size. Note that zoneindex has
  614. * already adjusted the request size to the appropriate chunk size, which
  615. * should optimize our bcopy(). Then copy and return the new pointer.
  616. */
  617. if ((nptr = rt_malloc(size)) == RT_NULL)
  618. return RT_NULL;
  619. rt_memcpy(nptr, ptr, size > z->z_chunksize ? z->z_chunksize : size);
  620. rt_free(ptr);
  621. return nptr;
  622. }
  623. return RT_NULL;
  624. }
  625. RTM_EXPORT(rt_realloc);
  626. /**
  627. * This function will contiguously allocate enough space for count objects
  628. * that are size bytes of memory each and returns a pointer to the allocated
  629. * memory.
  630. *
  631. * The allocated memory is filled with bytes of value zero.
  632. *
  633. * @param count number of objects to allocate
  634. * @param size size of the objects to allocate
  635. *
  636. * @return pointer to allocated memory / NULL pointer if there is an error
  637. */
  638. void *rt_calloc(rt_size_t count, rt_size_t size)
  639. {
  640. void *p;
  641. /* allocate 'count' objects of size 'size' */
  642. p = rt_malloc(count * size);
  643. /* zero the memory */
  644. if (p)
  645. rt_memset(p, 0, count * size);
  646. return p;
  647. }
  648. RTM_EXPORT(rt_calloc);
  649. /**
  650. * This function will release the previous allocated memory block by rt_malloc.
  651. * The released memory block is taken back to system heap.
  652. *
  653. * @param ptr the address of memory which will be released
  654. */
  655. void rt_free(void *ptr)
  656. {
  657. slab_zone *z;
  658. slab_chunk *chunk;
  659. struct memusage *kup;
  660. /* free a RT_NULL pointer */
  661. if (ptr == RT_NULL)
  662. return ;
  663. RT_OBJECT_HOOK_CALL(rt_free_hook, (ptr));
  664. #ifdef RT_USING_MODULE
  665. if(rt_module_self() != RT_NULL)
  666. {
  667. rt_module_free(rt_module_self(), ptr);
  668. return;
  669. }
  670. #endif
  671. /* get memory usage */
  672. #if RT_DEBUG_SLAB
  673. {
  674. rt_uint32_t addr = ((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  675. RT_DEBUG_LOG(RT_DEBUG_SLAB,
  676. ("free a memory 0x%x and align to 0x%x, kup index %d\n",
  677. (rt_uint32_t)ptr,
  678. (rt_uint32_t)addr,
  679. ((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS));
  680. }
  681. #endif
  682. kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  683. /* release large allocation */
  684. if (kup->type == PAGE_TYPE_LARGE)
  685. {
  686. rt_uint32_t size;
  687. /* lock heap */
  688. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  689. /* clear page counter */
  690. size = kup->size;
  691. kup->size = 0;
  692. #ifdef RT_MEM_STATS
  693. used_mem -= size * RT_MM_PAGE_SIZE;
  694. #endif
  695. rt_sem_release(&heap_sem);
  696. RT_DEBUG_LOG(RT_DEBUG_SLAB,
  697. ("free large memory block 0x%x, page count %d\n",
  698. (rt_uint32_t)ptr, size));
  699. /* free this page */
  700. rt_page_free(ptr, size);
  701. return;
  702. }
  703. /* lock heap */
  704. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  705. /* zone case. get out zone. */
  706. z = (slab_zone *)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) -
  707. kup->size * RT_MM_PAGE_SIZE);
  708. RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
  709. chunk = (slab_chunk *)ptr;
  710. chunk->c_next = z->z_freechunk;
  711. z->z_freechunk = chunk;
  712. #ifdef RT_MEM_STATS
  713. used_mem -= z->z_chunksize;
  714. #endif
  715. /*
  716. * Bump the number of free chunks. If it becomes non-zero the zone
  717. * must be added back onto the appropriate list.
  718. */
  719. if (z->z_nfree++ == 0)
  720. {
  721. z->z_next = zone_array[z->z_zoneindex];
  722. zone_array[z->z_zoneindex] = z;
  723. }
  724. /*
  725. * If the zone becomes totally free, and there are other zones we
  726. * can allocate from, move this zone to the FreeZones list. Since
  727. * this code can be called from an IPI callback, do *NOT* try to mess
  728. * with kernel_map here. Hysteresis will be performed at malloc() time.
  729. */
  730. if (z->z_nfree == z->z_nmax &&
  731. (z->z_next || zone_array[z->z_zoneindex] != z))
  732. {
  733. slab_zone **pz;
  734. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("free zone 0x%x\n",
  735. (rt_uint32_t)z, z->z_zoneindex));
  736. /* remove zone from zone array list */
  737. for (pz = &zone_array[z->z_zoneindex]; z != *pz; pz = &(*pz)->z_next)
  738. ;
  739. *pz = z->z_next;
  740. /* reset zone */
  741. z->z_magic = -1;
  742. /* insert to free zone list */
  743. z->z_next = zone_free;
  744. zone_free = z;
  745. ++ zone_free_cnt;
  746. /* release zone to page allocator */
  747. if (zone_free_cnt > ZONE_RELEASE_THRESH)
  748. {
  749. register rt_base_t i;
  750. z = zone_free;
  751. zone_free = z->z_next;
  752. -- zone_free_cnt;
  753. /* set message usage */
  754. for (i = 0, kup = btokup(z); i < zone_page_cnt; i ++)
  755. {
  756. kup->type = PAGE_TYPE_FREE;
  757. kup->size = 0;
  758. kup ++;
  759. }
  760. /* unlock heap */
  761. rt_sem_release(&heap_sem);
  762. /* release pages */
  763. rt_page_free(z, zone_size / RT_MM_PAGE_SIZE);
  764. return;
  765. }
  766. }
  767. /* unlock heap */
  768. rt_sem_release(&heap_sem);
  769. }
  770. RTM_EXPORT(rt_free);
  771. #ifdef RT_MEM_STATS
  772. void rt_memory_info(rt_uint32_t *total,
  773. rt_uint32_t *used,
  774. rt_uint32_t *max_used)
  775. {
  776. if (total != RT_NULL)
  777. *total = heap_end - heap_start;
  778. if (used != RT_NULL)
  779. *used = used_mem;
  780. if (max_used != RT_NULL)
  781. *max_used = max_mem;
  782. }
  783. #ifdef RT_USING_FINSH
  784. #include <finsh.h>
  785. void list_mem(void)
  786. {
  787. rt_kprintf("total memory: %d\n", heap_end - heap_start);
  788. rt_kprintf("used memory : %d\n", used_mem);
  789. rt_kprintf("maximum allocated memory: %d\n", max_mem);
  790. }
  791. FINSH_FUNCTION_EXPORT(list_mem, list memory usage information)
  792. #endif
  793. #endif
  794. /*@}*/
  795. #endif