drv_spi.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-5 SummerGift first version
  9. * 2018-12-11 greedyhao Porting for stm32f7xx
  10. * 2019-01-03 zylx modify DMA initialization and spixfer function
  11. * 2020-01-15 whj4674672 Porting for stm32h7xx
  12. * 2020-06-18 thread-liu Porting for stm32mp1xx
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. #include "board.h"
  18. #ifdef BSP_USING_SPI
  19. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  20. #include "drv_spi.h"
  21. #include "drv_config.h"
  22. #include <string.h>
  23. //#define DRV_DEBUG
  24. #define LOG_TAG "drv.spi"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI5
  41. SPI5_INDEX,
  42. #endif
  43. #ifdef BSP_USING_SPI6
  44. SPI6_INDEX,
  45. #endif
  46. };
  47. static struct stm32_spi_config spi_config[] =
  48. {
  49. #ifdef BSP_USING_SPI1
  50. SPI1_BUS_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_SPI2
  53. SPI2_BUS_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_SPI3
  56. SPI3_BUS_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_SPI4
  59. SPI4_BUS_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_SPI5
  62. SPI5_BUS_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_SPI6
  65. SPI6_BUS_CONFIG,
  66. #endif
  67. };
  68. static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  69. static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  70. {
  71. RT_ASSERT(spi_drv != RT_NULL);
  72. RT_ASSERT(cfg != RT_NULL);
  73. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  74. if (cfg->mode & RT_SPI_SLAVE)
  75. {
  76. spi_handle->Init.Mode = SPI_MODE_SLAVE;
  77. }
  78. else
  79. {
  80. spi_handle->Init.Mode = SPI_MODE_MASTER;
  81. }
  82. if (cfg->mode & RT_SPI_3WIRE)
  83. {
  84. spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
  85. }
  86. else
  87. {
  88. spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
  89. }
  90. if (cfg->data_width == 8)
  91. {
  92. spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
  93. spi_handle->TxXferSize = 8;
  94. spi_handle->RxXferSize = 8;
  95. }
  96. else if (cfg->data_width == 16)
  97. {
  98. spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
  99. }
  100. else
  101. {
  102. return RT_EIO;
  103. }
  104. if (cfg->mode & RT_SPI_CPHA)
  105. {
  106. spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
  107. }
  108. else
  109. {
  110. spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
  111. }
  112. if (cfg->mode & RT_SPI_CPOL)
  113. {
  114. spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
  115. }
  116. else
  117. {
  118. spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
  119. }
  120. spi_handle->Init.NSS = SPI_NSS_SOFT;
  121. uint32_t SPI_APB_CLOCK;
  122. /* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */
  123. #if defined(APBPERIPH_BASE)
  124. SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
  125. #elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE)
  126. if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE)
  127. {
  128. SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq();
  129. }
  130. else
  131. {
  132. SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
  133. }
  134. #endif
  135. if (cfg->max_hz >= SPI_APB_CLOCK / 2)
  136. {
  137. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  138. }
  139. else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
  140. {
  141. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  142. }
  143. else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
  144. {
  145. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  146. }
  147. else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
  148. {
  149. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  150. }
  151. else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
  152. {
  153. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  154. }
  155. else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
  156. {
  157. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  158. }
  159. else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
  160. {
  161. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
  162. }
  163. else
  164. {
  165. /* min prescaler 256 */
  166. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  167. }
  168. LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
  169. #if defined(SOC_SERIES_STM32MP1)
  170. HAL_RCC_GetSystemCoreClockFreq(),
  171. #else
  172. HAL_RCC_GetSysClockFreq(),
  173. #endif
  174. SPI_APB_CLOCK,
  175. cfg->max_hz,
  176. spi_handle->Init.BaudRatePrescaler);
  177. if (cfg->mode & RT_SPI_MSB)
  178. {
  179. spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
  180. }
  181. else
  182. {
  183. spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
  184. }
  185. spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
  186. spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  187. spi_handle->State = HAL_SPI_STATE_RESET;
  188. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
  189. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  190. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  191. spi_handle->Init.Mode = SPI_MODE_MASTER;
  192. spi_handle->Init.NSS = SPI_NSS_SOFT;
  193. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  194. spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  195. spi_handle->Init.CRCPolynomial = 7;
  196. spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  197. spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  198. spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  199. spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  200. spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  201. spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
  202. spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
  203. spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
  204. #endif
  205. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  206. {
  207. return RT_EIO;
  208. }
  209. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
  210. || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
  211. SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
  212. #endif
  213. /* DMA configuration */
  214. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  215. {
  216. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  217. __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
  218. /* NVIC configuration for DMA transfer complete interrupt */
  219. HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
  220. HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
  221. }
  222. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  223. {
  224. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  225. __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
  226. /* NVIC configuration for DMA transfer complete interrupt */
  227. HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 0, 1);
  228. HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
  229. }
  230. if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  231. {
  232. HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
  233. HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
  234. }
  235. LOG_D("%s init done", spi_drv->config->bus_name);
  236. return RT_EOK;
  237. }
  238. static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  239. {
  240. HAL_StatusTypeDef state;
  241. rt_size_t message_length, already_send_length;
  242. rt_uint16_t send_length;
  243. rt_uint8_t *recv_buf;
  244. const rt_uint8_t *send_buf;
  245. RT_ASSERT(device != RT_NULL);
  246. RT_ASSERT(device->bus != RT_NULL);
  247. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  248. RT_ASSERT(message != RT_NULL);
  249. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  250. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  251. struct stm32_hw_spi_cs *cs = device->parent.user_data;
  252. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
  253. {
  254. if (device->config.mode & RT_SPI_CS_HIGH)
  255. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
  256. else
  257. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
  258. }
  259. LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
  260. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
  261. spi_drv->config->bus_name,
  262. (uint32_t)message->send_buf,
  263. (uint32_t)message->recv_buf, message->length);
  264. message_length = message->length;
  265. recv_buf = message->recv_buf;
  266. send_buf = message->send_buf;
  267. while (message_length)
  268. {
  269. /* the HAL library use uint16 to save the data length */
  270. if (message_length > 65535)
  271. {
  272. send_length = 65535;
  273. message_length = message_length - 65535;
  274. }
  275. else
  276. {
  277. send_length = message_length;
  278. message_length = 0;
  279. }
  280. /* calculate the start address */
  281. already_send_length = message->length - send_length - message_length;
  282. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  283. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  284. /* start once data exchange in DMA mode */
  285. if (message->send_buf && message->recv_buf)
  286. {
  287. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
  288. {
  289. state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
  290. }
  291. else
  292. {
  293. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
  294. }
  295. }
  296. else if (message->send_buf)
  297. {
  298. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  299. {
  300. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
  301. }
  302. else
  303. {
  304. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
  305. }
  306. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  307. {
  308. /* release the CS by disable SPI when using 3 wires SPI */
  309. __HAL_SPI_DISABLE(spi_handle);
  310. }
  311. }
  312. else
  313. {
  314. memset((uint8_t *)recv_buf, 0xff, send_length);
  315. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  316. {
  317. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
  318. }
  319. else
  320. {
  321. /* clear the old error flag */
  322. __HAL_SPI_CLEAR_OVRFLAG(spi_handle);
  323. state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
  324. }
  325. }
  326. if (state != HAL_OK)
  327. {
  328. LOG_I("spi transfer error : %d", state);
  329. message->length = 0;
  330. spi_handle->State = HAL_SPI_STATE_READY;
  331. }
  332. else
  333. {
  334. LOG_D("%s transfer done", spi_drv->config->bus_name);
  335. }
  336. /* For simplicity reasons, this example is just waiting till the end of the
  337. transfer, but application may perform other tasks while transfer operation
  338. is ongoing. */
  339. if (spi_drv->spi_dma_flag & (SPI_USING_TX_DMA_FLAG | SPI_USING_RX_DMA_FLAG))
  340. {
  341. /* blocking the thread,and the other tasks can run */
  342. rt_completion_wait(&spi_drv->cpt, RT_WAITING_FOREVER);
  343. }
  344. else
  345. {
  346. while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
  347. }
  348. }
  349. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
  350. {
  351. if (device->config.mode & RT_SPI_CS_HIGH)
  352. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
  353. else
  354. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
  355. }
  356. return message->length;
  357. }
  358. static rt_err_t spi_configure(struct rt_spi_device *device,
  359. struct rt_spi_configuration *configuration)
  360. {
  361. RT_ASSERT(device != RT_NULL);
  362. RT_ASSERT(configuration != RT_NULL);
  363. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  364. spi_drv->cfg = configuration;
  365. return stm32_spi_init(spi_drv, configuration);
  366. }
  367. static const struct rt_spi_ops stm_spi_ops =
  368. {
  369. .configure = spi_configure,
  370. .xfer = spixfer,
  371. };
  372. static int rt_hw_spi_bus_init(void)
  373. {
  374. rt_err_t result;
  375. for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  376. {
  377. spi_bus_obj[i].config = &spi_config[i];
  378. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  379. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  380. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  381. {
  382. /* Configure the DMA handler for Transmission process */
  383. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  384. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  385. spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
  386. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  387. spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
  388. #endif
  389. spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
  390. spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  391. spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
  392. spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  393. spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  394. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  395. spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
  396. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  397. spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  398. spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  399. spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
  400. spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
  401. #endif
  402. {
  403. rt_uint32_t tmpreg = 0x00U;
  404. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  405. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  406. SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  407. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  408. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  409. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  410. /* Delay after an RCC peripheral clock enabling */
  411. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  412. #elif defined(SOC_SERIES_STM32MP1)
  413. __HAL_RCC_DMAMUX_CLK_ENABLE();
  414. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  415. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  416. #endif
  417. UNUSED(tmpreg); /* To avoid compiler warnings */
  418. }
  419. }
  420. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  421. {
  422. /* Configure the DMA handler for Transmission process */
  423. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  424. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  425. spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
  426. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  427. spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
  428. #endif
  429. spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  430. spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  431. spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
  432. spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  433. spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  434. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  435. spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
  436. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  437. spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  438. spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  439. spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
  440. spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
  441. #endif
  442. {
  443. rt_uint32_t tmpreg = 0x00U;
  444. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  445. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  446. SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  447. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  448. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  449. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  450. /* Delay after an RCC peripheral clock enabling */
  451. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  452. #elif defined(SOC_SERIES_STM32MP1)
  453. __HAL_RCC_DMAMUX_CLK_ENABLE();
  454. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  455. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  456. #endif
  457. UNUSED(tmpreg); /* To avoid compiler warnings */
  458. }
  459. }
  460. /* initialize completion object */
  461. rt_completion_init(&spi_bus_obj[i].cpt);
  462. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
  463. RT_ASSERT(result == RT_EOK);
  464. LOG_D("%s bus init done", spi_config[i].bus_name);
  465. }
  466. return result;
  467. }
  468. /**
  469. * Attach the spi device to SPI bus, this function must be used after initialization.
  470. */
  471. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
  472. {
  473. RT_ASSERT(bus_name != RT_NULL);
  474. RT_ASSERT(device_name != RT_NULL);
  475. rt_err_t result;
  476. struct rt_spi_device *spi_device;
  477. struct stm32_hw_spi_cs *cs_pin;
  478. /* initialize the cs pin && select the slave*/
  479. GPIO_InitTypeDef GPIO_Initure;
  480. GPIO_Initure.Pin = cs_gpio_pin;
  481. GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
  482. GPIO_Initure.Pull = GPIO_PULLUP;
  483. GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH;
  484. HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
  485. HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET);
  486. /* attach the device to spi bus*/
  487. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  488. RT_ASSERT(spi_device != RT_NULL);
  489. cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
  490. RT_ASSERT(cs_pin != RT_NULL);
  491. cs_pin->GPIOx = cs_gpiox;
  492. cs_pin->GPIO_Pin = cs_gpio_pin;
  493. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  494. if (result != RT_EOK)
  495. {
  496. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  497. }
  498. RT_ASSERT(result == RT_EOK);
  499. LOG_D("%s attach to %s done", device_name, bus_name);
  500. return result;
  501. }
  502. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  503. void SPI1_IRQHandler(void)
  504. {
  505. /* enter interrupt */
  506. rt_interrupt_enter();
  507. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  508. /* leave interrupt */
  509. rt_interrupt_leave();
  510. }
  511. #endif
  512. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  513. /**
  514. * @brief This function handles DMA Rx interrupt request.
  515. * @param None
  516. * @retval None
  517. */
  518. void SPI1_DMA_RX_IRQHandler(void)
  519. {
  520. /* enter interrupt */
  521. rt_interrupt_enter();
  522. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
  523. /* leave interrupt */
  524. rt_interrupt_leave();
  525. }
  526. #endif
  527. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  528. /**
  529. * @brief This function handles DMA Tx interrupt request.
  530. * @param None
  531. * @retval None
  532. */
  533. void SPI1_DMA_TX_IRQHandler(void)
  534. {
  535. /* enter interrupt */
  536. rt_interrupt_enter();
  537. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
  538. /* leave interrupt */
  539. rt_interrupt_leave();
  540. }
  541. #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
  542. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  543. void SPI2_IRQHandler(void)
  544. {
  545. /* enter interrupt */
  546. rt_interrupt_enter();
  547. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  548. /* leave interrupt */
  549. rt_interrupt_leave();
  550. }
  551. #endif
  552. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  553. /**
  554. * @brief This function handles DMA Rx interrupt request.
  555. * @param None
  556. * @retval None
  557. */
  558. void SPI2_DMA_RX_IRQHandler(void)
  559. {
  560. /* enter interrupt */
  561. rt_interrupt_enter();
  562. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
  563. /* leave interrupt */
  564. rt_interrupt_leave();
  565. }
  566. #endif
  567. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  568. /**
  569. * @brief This function handles DMA Tx interrupt request.
  570. * @param None
  571. * @retval None
  572. */
  573. void SPI2_DMA_TX_IRQHandler(void)
  574. {
  575. /* enter interrupt */
  576. rt_interrupt_enter();
  577. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
  578. /* leave interrupt */
  579. rt_interrupt_leave();
  580. }
  581. #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
  582. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  583. void SPI3_IRQHandler(void)
  584. {
  585. /* enter interrupt */
  586. rt_interrupt_enter();
  587. HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
  588. /* leave interrupt */
  589. rt_interrupt_leave();
  590. }
  591. #endif
  592. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  593. /**
  594. * @brief This function handles DMA Rx interrupt request.
  595. * @param None
  596. * @retval None
  597. */
  598. void SPI3_DMA_RX_IRQHandler(void)
  599. {
  600. /* enter interrupt */
  601. rt_interrupt_enter();
  602. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
  603. /* leave interrupt */
  604. rt_interrupt_leave();
  605. }
  606. #endif
  607. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  608. /**
  609. * @brief This function handles DMA Tx interrupt request.
  610. * @param None
  611. * @retval None
  612. */
  613. void SPI3_DMA_TX_IRQHandler(void)
  614. {
  615. /* enter interrupt */
  616. rt_interrupt_enter();
  617. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
  618. /* leave interrupt */
  619. rt_interrupt_leave();
  620. }
  621. #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
  622. #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
  623. void SPI4_IRQHandler(void)
  624. {
  625. /* enter interrupt */
  626. rt_interrupt_enter();
  627. HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
  628. /* leave interrupt */
  629. rt_interrupt_leave();
  630. }
  631. #endif
  632. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  633. /**
  634. * @brief This function handles DMA Rx interrupt request.
  635. * @param None
  636. * @retval None
  637. */
  638. void SPI4_DMA_RX_IRQHandler(void)
  639. {
  640. /* enter interrupt */
  641. rt_interrupt_enter();
  642. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
  643. /* leave interrupt */
  644. rt_interrupt_leave();
  645. }
  646. #endif
  647. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  648. /**
  649. * @brief This function handles DMA Tx interrupt request.
  650. * @param None
  651. * @retval None
  652. */
  653. void SPI4_DMA_TX_IRQHandler(void)
  654. {
  655. /* enter interrupt */
  656. rt_interrupt_enter();
  657. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
  658. /* leave interrupt */
  659. rt_interrupt_leave();
  660. }
  661. #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
  662. #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
  663. void SPI5_IRQHandler(void)
  664. {
  665. /* enter interrupt */
  666. rt_interrupt_enter();
  667. HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
  668. /* leave interrupt */
  669. rt_interrupt_leave();
  670. }
  671. #endif
  672. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  673. /**
  674. * @brief This function handles DMA Rx interrupt request.
  675. * @param None
  676. * @retval None
  677. */
  678. void SPI5_DMA_RX_IRQHandler(void)
  679. {
  680. /* enter interrupt */
  681. rt_interrupt_enter();
  682. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
  683. /* leave interrupt */
  684. rt_interrupt_leave();
  685. }
  686. #endif
  687. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  688. /**
  689. * @brief This function handles DMA Tx interrupt request.
  690. * @param None
  691. * @retval None
  692. */
  693. void SPI5_DMA_TX_IRQHandler(void)
  694. {
  695. /* enter interrupt */
  696. rt_interrupt_enter();
  697. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
  698. /* leave interrupt */
  699. rt_interrupt_leave();
  700. }
  701. #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
  702. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  703. /**
  704. * @brief This function handles DMA Rx interrupt request.
  705. * @param None
  706. * @retval None
  707. */
  708. void SPI6_DMA_RX_IRQHandler(void)
  709. {
  710. /* enter interrupt */
  711. rt_interrupt_enter();
  712. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
  713. /* leave interrupt */
  714. rt_interrupt_leave();
  715. }
  716. #endif
  717. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  718. /**
  719. * @brief This function handles DMA Tx interrupt request.
  720. * @param None
  721. * @retval None
  722. */
  723. void SPI6_DMA_TX_IRQHandler(void)
  724. {
  725. /* enter interrupt */
  726. rt_interrupt_enter();
  727. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
  728. /* leave interrupt */
  729. rt_interrupt_leave();
  730. }
  731. #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
  732. static void stm32_get_dma_info(void)
  733. {
  734. #ifdef BSP_SPI1_RX_USING_DMA
  735. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  736. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  737. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  738. #endif
  739. #ifdef BSP_SPI1_TX_USING_DMA
  740. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  741. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  742. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  743. #endif
  744. #ifdef BSP_SPI2_RX_USING_DMA
  745. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  746. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  747. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  748. #endif
  749. #ifdef BSP_SPI2_TX_USING_DMA
  750. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  751. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  752. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  753. #endif
  754. #ifdef BSP_SPI3_RX_USING_DMA
  755. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  756. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  757. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  758. #endif
  759. #ifdef BSP_SPI3_TX_USING_DMA
  760. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  761. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  762. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  763. #endif
  764. #ifdef BSP_SPI4_RX_USING_DMA
  765. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  766. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  767. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  768. #endif
  769. #ifdef BSP_SPI4_TX_USING_DMA
  770. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  771. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  772. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  773. #endif
  774. #ifdef BSP_SPI5_RX_USING_DMA
  775. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  776. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  777. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  778. #endif
  779. #ifdef BSP_SPI5_TX_USING_DMA
  780. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  781. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  782. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  783. #endif
  784. #ifdef BSP_SPI6_RX_USING_DMA
  785. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  786. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  787. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  788. #endif
  789. #ifdef BSP_SPI6_TX_USING_DMA
  790. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  791. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  792. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  793. #endif
  794. }
  795. void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
  796. {
  797. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  798. rt_completion_done(&spi_drv->cpt);
  799. }
  800. void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
  801. {
  802. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  803. rt_completion_done(&spi_drv->cpt);
  804. }
  805. void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
  806. {
  807. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  808. rt_completion_done(&spi_drv->cpt);
  809. }
  810. #if defined(SOC_SERIES_STM32F0)
  811. void SPI1_DMA_RX_TX_IRQHandler(void)
  812. {
  813. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  814. SPI1_DMA_TX_IRQHandler();
  815. #endif
  816. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  817. SPI1_DMA_RX_IRQHandler();
  818. #endif
  819. }
  820. void SPI2_DMA_RX_TX_IRQHandler(void)
  821. {
  822. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  823. SPI2_DMA_TX_IRQHandler();
  824. #endif
  825. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  826. SPI2_DMA_RX_IRQHandler();
  827. #endif
  828. }
  829. #endif /* SOC_SERIES_STM32F0 */
  830. int rt_hw_spi_init(void)
  831. {
  832. stm32_get_dma_info();
  833. return rt_hw_spi_bus_init();
  834. }
  835. INIT_BOARD_EXPORT(rt_hw_spi_init);
  836. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
  837. #endif /* BSP_USING_SPI */