1
0

emac.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. #include <rtthread.h>
  2. #include "emac.h"
  3. #include "lwipopts.h"
  4. #include <netif/ethernetif.h>
  5. #define EMAC_PHY_AUTO 0
  6. #define EMAC_PHY_10MBIT 1
  7. #define EMAC_PHY_100MBIT 2
  8. #define MAX_ADDR_LEN 6
  9. struct lpc17xx_emac
  10. {
  11. /* inherit from ethernet device */
  12. struct eth_device parent;
  13. rt_uint8_t phy_mode;
  14. /* interface address info. */
  15. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  16. };
  17. static struct lpc17xx_emac lpc17xx_emac_device;
  18. static struct rt_semaphore sem_slot, sem_lock;
  19. /* Local Function Prototypes */
  20. static void write_PHY (rt_uint32_t PhyReg, rt_uint32_t Value);
  21. static rt_uint16_t read_PHY (rt_uint8_t PhyReg) ;
  22. void ENET_IRQHandler(void)
  23. {
  24. rt_uint32_t status;
  25. /* enter interrupt */
  26. rt_interrupt_enter();
  27. status = LPC_EMAC->IntStatus & LPC_EMAC->IntEnable;
  28. /* Clear the interrupt. */
  29. LPC_EMAC->IntClear = status;
  30. if (status & INT_RX_DONE)
  31. {
  32. /* Disable EMAC RxDone interrupts. */
  33. LPC_EMAC->IntEnable = INT_TX_DONE;
  34. /* a frame has been received */
  35. eth_device_ready(&(lpc17xx_emac_device.parent));
  36. }
  37. else if (status & INT_TX_DONE)
  38. {
  39. /* release one slot */
  40. rt_sem_release(&sem_slot);
  41. }
  42. /* leave interrupt */
  43. rt_interrupt_leave();
  44. }
  45. /* phy write */
  46. static void write_PHY (rt_uint32_t PhyReg, rt_uint32_t Value)
  47. {
  48. unsigned int tout;
  49. LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
  50. LPC_EMAC->MWTD = Value;
  51. /* Wait utill operation completed */
  52. tout = 0;
  53. for (tout = 0; tout < MII_WR_TOUT; tout++)
  54. {
  55. if ((LPC_EMAC->MIND & MIND_BUSY) == 0)
  56. {
  57. break;
  58. }
  59. }
  60. }
  61. /* phy read */
  62. static rt_uint16_t read_PHY (rt_uint8_t PhyReg)
  63. {
  64. rt_uint32_t tout;
  65. LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
  66. LPC_EMAC->MCMD = MCMD_READ;
  67. /* Wait until operation completed */
  68. tout = 0;
  69. for (tout = 0; tout < MII_RD_TOUT; tout++)
  70. {
  71. if ((LPC_EMAC->MIND & MIND_BUSY) == 0)
  72. {
  73. break;
  74. }
  75. }
  76. LPC_EMAC->MCMD = 0;
  77. return (LPC_EMAC->MRDD);
  78. }
  79. /* init rx descriptor */
  80. rt_inline void rx_descr_init (void)
  81. {
  82. rt_uint32_t i;
  83. for (i = 0; i < NUM_RX_FRAG; i++)
  84. {
  85. RX_DESC_PACKET(i) = RX_BUF(i);
  86. RX_DESC_CTRL(i) = RCTRL_INT | (ETH_FRAG_SIZE-1);
  87. RX_STAT_INFO(i) = 0;
  88. RX_STAT_HASHCRC(i) = 0;
  89. }
  90. /* Set EMAC Receive Descriptor Registers. */
  91. LPC_EMAC->RxDescriptor = RX_DESC_BASE;
  92. LPC_EMAC->RxStatus = RX_STAT_BASE;
  93. LPC_EMAC->RxDescriptorNumber = NUM_RX_FRAG-1;
  94. /* Rx Descriptors Point to 0 */
  95. LPC_EMAC->RxConsumeIndex = 0;
  96. }
  97. /* init tx descriptor */
  98. rt_inline void tx_descr_init (void)
  99. {
  100. rt_uint32_t i;
  101. for (i = 0; i < NUM_TX_FRAG; i++)
  102. {
  103. TX_DESC_PACKET(i) = TX_BUF(i);
  104. TX_DESC_CTRL(i) = (1ul<<31) | (1ul<<30) | (1ul<<29) | (1ul<<28) | (1ul<<26) | (ETH_FRAG_SIZE-1);
  105. TX_STAT_INFO(i) = 0;
  106. }
  107. /* Set EMAC Transmit Descriptor Registers. */
  108. LPC_EMAC->TxDescriptor = TX_DESC_BASE;
  109. LPC_EMAC->TxStatus = TX_STAT_BASE;
  110. LPC_EMAC->TxDescriptorNumber = NUM_TX_FRAG-1;
  111. /* Tx Descriptors Point to 0 */
  112. LPC_EMAC->TxProduceIndex = 0;
  113. }
  114. static rt_err_t lpc17xx_emac_init(rt_device_t dev)
  115. {
  116. /* Initialize the EMAC ethernet controller. */
  117. rt_uint32_t regv, tout, id1, id2;
  118. /* Power Up the EMAC controller. */
  119. LPC_SC->PCONP |= 0x40000000;
  120. /* Enable P1 Ethernet Pins. */
  121. LPC_PINCON->PINSEL2 = 0x50150105;
  122. LPC_PINCON->PINSEL3 = (LPC_PINCON->PINSEL3 & ~0x0000000F) | 0x00000005;
  123. /* Reset all EMAC internal modules. */
  124. LPC_EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX | MAC1_RES_MCS_RX |
  125. MAC1_SIM_RES | MAC1_SOFT_RES;
  126. LPC_EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES;
  127. /* A short delay after reset. */
  128. for (tout = 100; tout; tout--);
  129. /* Initialize MAC control registers. */
  130. LPC_EMAC->MAC1 = MAC1_PASS_ALL;
  131. LPC_EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;
  132. LPC_EMAC->MAXF = ETH_MAX_FLEN;
  133. LPC_EMAC->CLRT = CLRT_DEF;
  134. LPC_EMAC->IPGR = IPGR_DEF;
  135. /* PCLK=18MHz, clock select=6, MDC=18/6=3MHz */
  136. /* Enable Reduced MII interface. */
  137. LPC_EMAC->MCFG = MCFG_CLK_DIV20 | MCFG_RES_MII;
  138. for (tout = 100; tout; tout--);
  139. LPC_EMAC->MCFG = MCFG_CLK_DIV20;
  140. /* Enable Reduced MII interface. */
  141. LPC_EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM | CR_PASS_RX_FILT;
  142. /* Reset Reduced MII Logic. */
  143. LPC_EMAC->SUPP = SUPP_RES_RMII | SUPP_SPEED;
  144. for (tout = 100; tout; tout--);
  145. LPC_EMAC->SUPP = SUPP_SPEED;
  146. /* Put the PHY in reset mode */
  147. write_PHY (PHY_REG_BMCR, 0x8000);
  148. for (tout = 1000; tout; tout--);
  149. /* Wait for hardware reset to end. */
  150. for (tout = 0; tout < 0x100000; tout++)
  151. {
  152. regv = read_PHY (PHY_REG_BMCR);
  153. if (!(regv & 0x8000))
  154. {
  155. /* Reset complete */
  156. break;
  157. }
  158. }
  159. if (tout >= 0x100000) return -RT_ERROR; /* reset failed */
  160. /* Check if this is a DP83848C PHY. */
  161. id1 = read_PHY (PHY_REG_IDR1);
  162. id2 = read_PHY (PHY_REG_IDR2);
  163. if (((id1 << 16) | (id2 & 0xFFF0)) != DP83848C_ID)
  164. return -RT_ERROR;
  165. /* Configure the PHY device */
  166. /* Configure the PHY device */
  167. switch (lpc17xx_emac_device.phy_mode)
  168. {
  169. case EMAC_PHY_AUTO:
  170. /* Use autonegotiation about the link speed. */
  171. write_PHY (PHY_REG_BMCR, PHY_AUTO_NEG);
  172. /* Wait to complete Auto_Negotiation. */
  173. for (tout = 0; tout < 0x100000; tout++)
  174. {
  175. regv = read_PHY (PHY_REG_BMSR);
  176. if (regv & 0x0020)
  177. {
  178. /* Autonegotiation Complete. */
  179. break;
  180. }
  181. }
  182. break;
  183. case EMAC_PHY_10MBIT:
  184. /* Connect at 10MBit */
  185. write_PHY (PHY_REG_BMCR, PHY_FULLD_10M);
  186. break;
  187. case EMAC_PHY_100MBIT:
  188. /* Connect at 100MBit */
  189. write_PHY (PHY_REG_BMCR, PHY_FULLD_100M);
  190. break;
  191. }
  192. if (tout >= 0x100000) return -RT_ERROR; // auto_neg failed
  193. /* Check the link status. */
  194. for (tout = 0; tout < 0x10000; tout++)
  195. {
  196. regv = read_PHY (PHY_REG_STS);
  197. if (regv & 0x0001)
  198. {
  199. /* Link is on. */
  200. break;
  201. }
  202. }
  203. if (tout >= 0x10000) return -RT_ERROR;
  204. /* Configure Full/Half Duplex mode. */
  205. if (regv & 0x0004)
  206. {
  207. /* Full duplex is enabled. */
  208. LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
  209. LPC_EMAC->Command |= CR_FULL_DUP;
  210. LPC_EMAC->IPGT = IPGT_FULL_DUP;
  211. }
  212. else
  213. {
  214. /* Half duplex mode. */
  215. LPC_EMAC->IPGT = IPGT_HALF_DUP;
  216. }
  217. /* Configure 100MBit/10MBit mode. */
  218. if (regv & 0x0002)
  219. {
  220. /* 10MBit mode. */
  221. LPC_EMAC->SUPP = 0;
  222. }
  223. else
  224. {
  225. /* 100MBit mode. */
  226. LPC_EMAC->SUPP = SUPP_SPEED;
  227. }
  228. /* Set the Ethernet MAC Address registers */
  229. LPC_EMAC->SA0 = (lpc17xx_emac_device.dev_addr[1]<<8) | lpc17xx_emac_device.dev_addr[0];
  230. LPC_EMAC->SA1 = (lpc17xx_emac_device.dev_addr[3]<<8) | lpc17xx_emac_device.dev_addr[2];
  231. LPC_EMAC->SA2 = (lpc17xx_emac_device.dev_addr[5]<<8) | lpc17xx_emac_device.dev_addr[4];
  232. /* Initialize Tx and Rx DMA Descriptors */
  233. rx_descr_init ();
  234. tx_descr_init ();
  235. /* Receive Broadcast and Perfect Match Packets */
  236. LPC_EMAC->RxFilterCtrl = RFC_BCAST_EN | RFC_PERFECT_EN;
  237. /* Reset all interrupts */
  238. LPC_EMAC->IntClear = 0xFFFF;
  239. /* Enable EMAC interrupts. */
  240. LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE;
  241. /* Enable receive and transmit mode of MAC Ethernet core */
  242. LPC_EMAC->Command |= (CR_RX_EN | CR_TX_EN);
  243. LPC_EMAC->MAC1 |= MAC1_REC_EN;
  244. /* Enable the ENET Interrupt */
  245. NVIC_EnableIRQ(ENET_IRQn);
  246. return RT_EOK;
  247. }
  248. static rt_err_t lpc17xx_emac_open(rt_device_t dev, rt_uint16_t oflag)
  249. {
  250. return RT_EOK;
  251. }
  252. static rt_err_t lpc17xx_emac_close(rt_device_t dev)
  253. {
  254. return RT_EOK;
  255. }
  256. static rt_size_t lpc17xx_emac_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  257. {
  258. rt_set_errno(-RT_ENOSYS);
  259. return 0;
  260. }
  261. static rt_size_t lpc17xx_emac_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  262. {
  263. rt_set_errno(-RT_ENOSYS);
  264. return 0;
  265. }
  266. static rt_err_t lpc17xx_emac_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  267. {
  268. switch (cmd)
  269. {
  270. case NIOCTL_GADDR:
  271. /* get mac address */
  272. if (args) rt_memcpy(args, lpc17xx_emac_device.dev_addr, 6);
  273. else return -RT_ERROR;
  274. break;
  275. default :
  276. break;
  277. }
  278. return RT_EOK;
  279. }
  280. /* EtherNet Device Interface */
  281. /* transmit packet. */
  282. rt_err_t lpc17xx_emac_tx( rt_device_t dev, struct pbuf* p)
  283. {
  284. rt_uint32_t Index, IndexNext;
  285. struct pbuf *q;
  286. rt_uint8_t *ptr;
  287. /* take a slot */
  288. rt_sem_take(&sem_slot, RT_WAITING_FOREVER);
  289. /* lock EMAC device */
  290. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  291. /* get produce index */
  292. Index = LPC_EMAC->TxProduceIndex;
  293. /* calculate next index */
  294. IndexNext = LPC_EMAC->TxProduceIndex + 1;
  295. if(IndexNext > LPC_EMAC->TxDescriptorNumber)
  296. IndexNext = 0;
  297. /* copy data to tx buffer */
  298. q = p;
  299. ptr = (rt_uint8_t*)TX_BUF(Index);
  300. while (q)
  301. {
  302. memcpy(ptr, q->payload, q->len);
  303. ptr += q->len;
  304. q = q->next;
  305. }
  306. TX_DESC_CTRL(Index) &= ~0x7ff;
  307. TX_DESC_CTRL(Index) |= (p->tot_len - 1) & 0x7ff;
  308. /* change index to the next */
  309. LPC_EMAC->TxProduceIndex = IndexNext;
  310. /* unlock EMAC device */
  311. rt_sem_release(&sem_lock);
  312. return RT_EOK;
  313. }
  314. /* reception packet. */
  315. struct pbuf *lpc17xx_emac_rx(rt_device_t dev)
  316. {
  317. struct pbuf* p;
  318. rt_uint32_t size;
  319. rt_uint32_t Index;
  320. /* init p pointer */
  321. p = RT_NULL;
  322. /* lock EMAC device */
  323. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  324. Index = LPC_EMAC->RxConsumeIndex;
  325. if(Index != LPC_EMAC->RxProduceIndex)
  326. {
  327. size = (RX_STAT_INFO(Index) & 0x7ff)+1;
  328. if (size > ETH_FRAG_SIZE) size = ETH_FRAG_SIZE;
  329. /* allocate buffer */
  330. p = pbuf_alloc(PBUF_LINK, size, PBUF_RAM);
  331. if (p != RT_NULL)
  332. {
  333. struct pbuf* q;
  334. rt_uint8_t *ptr;
  335. ptr = (rt_uint8_t*)RX_BUF(Index);
  336. for (q = p; q != RT_NULL; q= q->next)
  337. {
  338. memcpy(q->payload, ptr, q->len);
  339. ptr += q->len;
  340. }
  341. }
  342. /* move Index to the next */
  343. if(++Index > LPC_EMAC->RxDescriptorNumber)
  344. Index = 0;
  345. /* set consume index */
  346. LPC_EMAC->RxConsumeIndex = Index;
  347. }
  348. else
  349. {
  350. /* Enable RxDone interrupt */
  351. LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE;
  352. }
  353. /* unlock EMAC device */
  354. rt_sem_release(&sem_lock);
  355. return p;
  356. }
  357. void lpc17xx_emac_hw_init(void)
  358. {
  359. rt_sem_init(&sem_slot, "tx_slot", NUM_TX_FRAG, RT_IPC_FLAG_FIFO);
  360. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  361. /* set autonegotiation mode */
  362. lpc17xx_emac_device.phy_mode = EMAC_PHY_AUTO;
  363. /* set mac address: (only for test) */
  364. lpc17xx_emac_device.dev_addr[0] = 0x1E;
  365. lpc17xx_emac_device.dev_addr[1] = 0x30;
  366. lpc17xx_emac_device.dev_addr[2] = 0x6C;
  367. lpc17xx_emac_device.dev_addr[3] = 0xA2;
  368. lpc17xx_emac_device.dev_addr[4] = 0x45;
  369. lpc17xx_emac_device.dev_addr[5] = 0x5E;
  370. lpc17xx_emac_device.parent.parent.init = lpc17xx_emac_init;
  371. lpc17xx_emac_device.parent.parent.open = lpc17xx_emac_open;
  372. lpc17xx_emac_device.parent.parent.close = lpc17xx_emac_close;
  373. lpc17xx_emac_device.parent.parent.read = lpc17xx_emac_read;
  374. lpc17xx_emac_device.parent.parent.write = lpc17xx_emac_write;
  375. lpc17xx_emac_device.parent.parent.control = lpc17xx_emac_control;
  376. lpc17xx_emac_device.parent.parent.private = RT_NULL;
  377. lpc17xx_emac_device.parent.eth_rx = lpc17xx_emac_rx;
  378. lpc17xx_emac_device.parent.eth_tx = lpc17xx_emac_tx;
  379. eth_device_init(&(lpc17xx_emac_device.parent), "e0");
  380. }