dm9000.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666
  1. #include <rtthread.h>
  2. #include <netif/ethernetif.h>
  3. #include "dm9000.h"
  4. #include <s3c24x0.h>
  5. /*
  6. * Davicom DM9000EP driver
  7. *
  8. * IRQ_LAN connects to EINT7(GPF7)
  9. * nLAN_CS connects to nGCS4
  10. */
  11. /* #define DM9000_DEBUG 1 */
  12. #if DM9000_DEBUG
  13. #define DM9000_TRACE rt_kprintf
  14. #else
  15. #define DM9000_TRACE(...)
  16. #endif
  17. /*
  18. * DM9000 interrupt line is connected to PF7
  19. */
  20. //--------------------------------------------------------
  21. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  22. #define MAX_ADDR_LEN 6
  23. enum DM9000_PHY_mode
  24. {
  25. DM9000_10MHD = 0, DM9000_100MHD = 1,
  26. DM9000_10MFD = 4, DM9000_100MFD = 5,
  27. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  28. };
  29. enum DM9000_TYPE
  30. {
  31. TYPE_DM9000E,
  32. TYPE_DM9000A,
  33. TYPE_DM9000B
  34. };
  35. struct rt_dm9000_eth
  36. {
  37. /* inherit from ethernet device */
  38. struct eth_device parent;
  39. enum DM9000_TYPE type;
  40. enum DM9000_PHY_mode mode;
  41. rt_uint8_t imr_all;
  42. rt_uint8_t packet_cnt; /* packet I or II */
  43. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  44. /* interface address info. */
  45. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  46. };
  47. static struct rt_dm9000_eth dm9000_device;
  48. static struct rt_semaphore sem_ack, sem_lock;
  49. void rt_dm9000_isr(int irqno);
  50. static void delay_ms(rt_uint32_t ms)
  51. {
  52. rt_uint32_t len;
  53. for (;ms > 0; ms --)
  54. for (len = 0; len < 100; len++ );
  55. }
  56. /* Read a byte from I/O port */
  57. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  58. {
  59. DM9000_IO = reg;
  60. return (rt_uint8_t) DM9000_DATA;
  61. }
  62. /* Write a byte to I/O port */
  63. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  64. {
  65. DM9000_IO = reg;
  66. DM9000_DATA = value;
  67. }
  68. /* Read a word from phyxcer */
  69. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  70. {
  71. rt_uint16_t val;
  72. /* Fill the phyxcer register into REG_0C */
  73. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  74. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  75. delay_ms(100); /* Wait read complete */
  76. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  77. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  78. return val;
  79. }
  80. /* Write a word to phyxcer */
  81. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  82. {
  83. /* Fill the phyxcer register into REG_0C */
  84. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  85. /* Fill the written data into REG_0D & REG_0E */
  86. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  87. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  88. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  89. delay_ms(500); /* Wait write complete */
  90. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  91. }
  92. /* Set PHY operationg mode */
  93. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  94. {
  95. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  96. if (!(media_mode & DM9000_AUTO))
  97. {
  98. switch (media_mode)
  99. {
  100. case DM9000_10MHD:
  101. phy_reg4 = 0x21;
  102. phy_reg0 = 0x0000;
  103. break;
  104. case DM9000_10MFD:
  105. phy_reg4 = 0x41;
  106. phy_reg0 = 0x1100;
  107. break;
  108. case DM9000_100MHD:
  109. phy_reg4 = 0x81;
  110. phy_reg0 = 0x2000;
  111. break;
  112. case DM9000_100MFD:
  113. phy_reg4 = 0x101;
  114. phy_reg0 = 0x3100;
  115. break;
  116. }
  117. phy_write(4, phy_reg4); /* Set PHY media mode */
  118. phy_write(0, phy_reg0); /* Tmp */
  119. }
  120. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  121. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  122. }
  123. /* interrupt service routine */
  124. void rt_dm9000_isr(int irqno)
  125. {
  126. rt_uint16_t int_status;
  127. rt_uint16_t last_io;
  128. rt_uint32_t eint_pend;
  129. eint_pend = EINTPEND;
  130. /* EINT7 for DM9000 */
  131. if((eint_pend & 0x80) == 0x80)
  132. {
  133. last_io = DM9000_IO;
  134. /* Disable all interrupts */
  135. // dm9000_io_write(DM9000_IMR, IMR_PAR);
  136. /* Got DM9000 interrupt status */
  137. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  138. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  139. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  140. /* receive overflow */
  141. if (int_status & ISR_ROS)
  142. {
  143. rt_kprintf("overflow\n");
  144. }
  145. if (int_status & ISR_ROOS)
  146. {
  147. rt_kprintf("overflow counter overflow\n");
  148. }
  149. /* Received the coming packet */
  150. if (int_status & ISR_PRS)
  151. {
  152. /* disable receive interrupt */
  153. dm9000_io_write(DM9000_IMR, IMR_PAR);
  154. dm9000_device.imr_all = IMR_PAR | IMR_PTM;
  155. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  156. /* a frame has been received */
  157. eth_device_ready(&(dm9000_device.parent));
  158. }
  159. /* Transmit Interrupt check */
  160. if (int_status & ISR_PTS)
  161. {
  162. /* transmit done */
  163. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  164. if (tx_status & (NSR_TX2END | NSR_TX1END))
  165. {
  166. dm9000_device.packet_cnt --;
  167. if (dm9000_device.packet_cnt > 0)
  168. {
  169. DM9000_TRACE("dm9000 isr: tx second packet\n");
  170. /* transmit packet II */
  171. /* Set TX length to DM9000 */
  172. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  173. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  174. /* Issue TX polling command */
  175. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  176. }
  177. /* One packet sent complete */
  178. rt_sem_release(&sem_ack);
  179. }
  180. }
  181. /* Re-enable interrupt mask */
  182. // dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  183. DM9000_IO = last_io;
  184. }
  185. /* clear EINT pending bit */
  186. EINTPEND = eint_pend;
  187. }
  188. /* RT-Thread Device Interface */
  189. /* initialize the interface */
  190. static rt_err_t rt_dm9000_init(rt_device_t dev)
  191. {
  192. int i, oft, lnk;
  193. rt_uint32_t value;
  194. /* RESET device */
  195. dm9000_io_write(DM9000_NCR, NCR_RST);
  196. delay_ms(1000); /* delay 1ms */
  197. /* identfy DM9000 */
  198. value = dm9000_io_read(DM9000_VIDL);
  199. value |= dm9000_io_read(DM9000_VIDH) << 8;
  200. value |= dm9000_io_read(DM9000_PIDL) << 16;
  201. value |= dm9000_io_read(DM9000_PIDH) << 24;
  202. if (value == DM9000_ID)
  203. {
  204. rt_kprintf("dm9000 id: 0x%x\n", value);
  205. }
  206. else
  207. {
  208. rt_kprintf("dm9000 id: 0x%x\n", value);
  209. return -RT_ERROR;
  210. }
  211. /* GPIO0 on pre-activate PHY */
  212. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  213. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  214. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  215. /* Set PHY */
  216. phy_mode_set(dm9000_device.mode);
  217. /* Program operating register */
  218. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  219. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  220. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  221. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  222. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  223. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  224. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  225. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  226. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  227. /* set mac address */
  228. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  229. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  230. /* set multicast address */
  231. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  232. dm9000_io_write(oft, 0xff);
  233. /* Activate DM9000 */
  234. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  235. dm9000_io_write(DM9000_IMR, IMR_PAR);
  236. if (dm9000_device.mode == DM9000_AUTO)
  237. {
  238. while (!(phy_read(1) & 0x20))
  239. {
  240. /* autonegation complete bit */
  241. rt_thread_delay( 10 );
  242. i++;
  243. if (i > 20)
  244. {
  245. rt_kprintf("could not establish link\n");
  246. return 0;
  247. }
  248. }
  249. }
  250. /* see what we've got */
  251. lnk = phy_read(17) >> 12;
  252. rt_kprintf("operating at ");
  253. switch (lnk)
  254. {
  255. case 1:
  256. rt_kprintf("10M half duplex ");
  257. break;
  258. case 2:
  259. rt_kprintf("10M full duplex ");
  260. break;
  261. case 4:
  262. rt_kprintf("100M half duplex ");
  263. break;
  264. case 8:
  265. rt_kprintf("100M full duplex ");
  266. break;
  267. default:
  268. rt_kprintf("unknown: %d ", lnk);
  269. break;
  270. }
  271. rt_kprintf("mode\n");
  272. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  273. return RT_EOK;
  274. }
  275. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  276. {
  277. return RT_EOK;
  278. }
  279. static rt_err_t rt_dm9000_close(rt_device_t dev)
  280. {
  281. /* RESET devie */
  282. phy_write(0, 0x8000); /* PHY RESET */
  283. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  284. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  285. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  286. return RT_EOK;
  287. }
  288. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  289. {
  290. rt_set_errno(-RT_ENOSYS);
  291. return 0;
  292. }
  293. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  294. {
  295. rt_set_errno(-RT_ENOSYS);
  296. return 0;
  297. }
  298. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  299. {
  300. switch (cmd)
  301. {
  302. case NIOCTL_GADDR:
  303. /* get mac address */
  304. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  305. else return -RT_ERROR;
  306. break;
  307. default :
  308. break;
  309. }
  310. return RT_EOK;
  311. }
  312. /* ethernet device interface */
  313. /* transmit packet. */
  314. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  315. {
  316. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  317. /* lock DM9000 device */
  318. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  319. /* disable dm9000a interrupt */
  320. dm9000_io_write(DM9000_IMR, IMR_PAR);
  321. /* Move data to DM9000 TX RAM */
  322. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  323. {
  324. /* q traverses through linked list of pbuf's
  325. * This list MUST consist of a single packet ONLY */
  326. struct pbuf *q;
  327. rt_uint16_t pbuf_index = 0;
  328. rt_uint8_t word[2], word_index = 0;
  329. q = p;
  330. /* Write data into dm9000a, two bytes at a time
  331. * Handling pbuf's with odd number of bytes correctly
  332. * No attempt to optimize for speed has been made */
  333. while (q)
  334. {
  335. if (pbuf_index < q->len)
  336. {
  337. word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
  338. if (word_index == 2)
  339. {
  340. DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
  341. word_index = 0;
  342. }
  343. }
  344. else
  345. {
  346. q = q->next;
  347. pbuf_index = 0;
  348. }
  349. }
  350. /* One byte could still be unsent */
  351. if (word_index == 1)
  352. {
  353. DM9000_outw(DM9000_DATA_BASE, word[0]);
  354. }
  355. }
  356. if (dm9000_device.packet_cnt == 0)
  357. {
  358. DM9000_TRACE("dm9000 tx: first packet\n");
  359. dm9000_device.packet_cnt ++;
  360. /* Set TX length to DM9000 */
  361. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  362. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  363. /* Issue TX polling command */
  364. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  365. }
  366. else
  367. {
  368. DM9000_TRACE("dm9000 tx: second packet\n");
  369. dm9000_device.packet_cnt ++;
  370. dm9000_device.queue_packet_len = p->tot_len;
  371. }
  372. /* enable dm9000a interrupt */
  373. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  374. /* unlock DM9000 device */
  375. rt_sem_release(&sem_lock);
  376. /* wait ack */
  377. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  378. DM9000_TRACE("dm9000 tx done\n");
  379. return RT_EOK;
  380. }
  381. /* reception packet. */
  382. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  383. {
  384. struct pbuf* p;
  385. rt_uint32_t rxbyte;
  386. rt_uint16_t rx_status, rx_len;
  387. rt_uint16_t* data;
  388. /* init p pointer */
  389. p = RT_NULL;
  390. /* lock DM9000 device */
  391. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  392. __error_retry:
  393. /* Check packet ready or not */
  394. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  395. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  396. if (rxbyte)
  397. {
  398. if (rxbyte > 1)
  399. {
  400. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  401. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  402. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  403. }
  404. /* A packet ready now & Get status/length */
  405. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  406. rx_status = DM9000_inw(DM9000_DATA_BASE);
  407. rx_len = DM9000_inw(DM9000_DATA_BASE);
  408. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  409. /* allocate buffer */
  410. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  411. if (p != RT_NULL)
  412. {
  413. struct pbuf* q;
  414. rt_int32_t len;
  415. for (q = p; q != RT_NULL; q= q->next)
  416. {
  417. data = (rt_uint16_t*)q->payload;
  418. len = q->len;
  419. while (len > 0)
  420. {
  421. *data = DM9000_inw(DM9000_DATA_BASE);
  422. data ++;
  423. len -= 2;
  424. }
  425. }
  426. }
  427. else
  428. {
  429. rt_uint16_t dummy;
  430. rt_kprintf("dm9000 rx: no pbuf\n");
  431. /* no pbuf, discard data from DM9000 */
  432. data = &dummy;
  433. while (rx_len)
  434. {
  435. *data = DM9000_inw(DM9000_DATA_BASE);
  436. rx_len -= 2;
  437. }
  438. }
  439. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  440. || (rx_len > DM9000_PKT_MAX))
  441. {
  442. rt_kprintf("rx error: status %04x, rx_len: %d\n", rx_status, rx_len);
  443. if (rx_status & 0x100)
  444. {
  445. rt_kprintf("rx fifo error\n");
  446. }
  447. if (rx_status & 0x200)
  448. {
  449. rt_kprintf("rx crc error\n");
  450. }
  451. if (rx_status & 0x8000)
  452. {
  453. rt_kprintf("rx length error\n");
  454. }
  455. if (rx_len > DM9000_PKT_MAX)
  456. {
  457. rt_kprintf("rx length too big\n");
  458. /* RESET device */
  459. dm9000_io_write(DM9000_NCR, NCR_RST);
  460. rt_thread_delay(1); /* delay 5ms */
  461. }
  462. /* it issues an error, release pbuf */
  463. if (p != RT_NULL) pbuf_free(p);
  464. p = RT_NULL;
  465. goto __error_retry;
  466. }
  467. }
  468. else
  469. {
  470. /* clear packet received latch status */
  471. dm9000_io_write(DM9000_ISR, ISR_PTS);
  472. /* restore receive interrupt */
  473. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  474. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  475. }
  476. /* unlock DM9000 device */
  477. rt_sem_release(&sem_lock);
  478. return p;
  479. }
  480. #define B4_Tacs 0x0
  481. #define B4_Tcos 0x0
  482. #define B4_Tacc 0x7
  483. #define B4_Tcoh 0x0
  484. #define B4_Tah 0x0
  485. #define B4_Tacp 0x0
  486. #define B4_PMC 0x0
  487. void rt_hw_dm9000_init()
  488. {
  489. /* Set GPF7 as EINT7 */
  490. GPFCON = GPFCON & (~(3 << 14)) | (2 << 14);
  491. GPFUP = GPFUP | (1 << 7);
  492. /* EINT7 High level interrupt */
  493. EXTINT0 = (EXTINT0 & (~(0x7 << 28))) | (0x1 << 28);
  494. /* Enable EINT7 */
  495. EINTMASK = EINTMASK & (~(1<<7));
  496. /* Set GPA15 as nGCS4 */
  497. GPACON |= 1 << 15;
  498. /* DM9000 width 16, wait enable */
  499. BWSCON = BWSCON & (~(0x7<<16)) | (0x5<<16);
  500. BANKCON4 = (1<<13) | (1<<11) | (0x6<<8) | (1<<6) | (1<<4) | (0<<2) | (0);
  501. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  502. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  503. dm9000_device.type = TYPE_DM9000A;
  504. dm9000_device.mode = DM9000_AUTO;
  505. dm9000_device.packet_cnt = 0;
  506. dm9000_device.queue_packet_len = 0;
  507. /*
  508. * SRAM Tx/Rx pointer automatically return to start address,
  509. * Packet Transmitted, Packet Received
  510. */
  511. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  512. dm9000_device.dev_addr[0] = 0x01;
  513. dm9000_device.dev_addr[1] = 0x60;
  514. dm9000_device.dev_addr[2] = 0x6E;
  515. dm9000_device.dev_addr[3] = 0x11;
  516. dm9000_device.dev_addr[4] = 0x02;
  517. dm9000_device.dev_addr[5] = 0x0F;
  518. dm9000_device.parent.parent.init = rt_dm9000_init;
  519. dm9000_device.parent.parent.open = rt_dm9000_open;
  520. dm9000_device.parent.parent.close = rt_dm9000_close;
  521. dm9000_device.parent.parent.read = rt_dm9000_read;
  522. dm9000_device.parent.parent.write = rt_dm9000_write;
  523. dm9000_device.parent.parent.control = rt_dm9000_control;
  524. dm9000_device.parent.parent.private = RT_NULL;
  525. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  526. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  527. eth_device_init(&(dm9000_device.parent), "e0");
  528. /* instal interrupt */
  529. rt_hw_interrupt_install(INTEINT4_7, rt_dm9000_isr, RT_NULL);
  530. rt_hw_interrupt_umask(INTEINT4_7);
  531. }
  532. void dm9000a(void)
  533. {
  534. rt_kprintf("\n");
  535. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  536. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  537. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  538. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  539. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  540. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  541. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  542. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  543. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  544. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  545. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  546. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  547. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  548. rt_kprintf("\n");
  549. }
  550. #ifdef RT_USING_FINSH
  551. #include <finsh.h>
  552. FINSH_FUNCTION_EXPORT(dm9000a, dm9000a register dump);
  553. #endif