drv_spi.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-08-30 tanek first implementation.
  9. */
  10. #include <rtthread.h>
  11. #include <rthw.h>
  12. #include <rtdevice.h>
  13. #include <stdbool.h>
  14. #include "drv_spi.h"
  15. #include "drv_gpio.h"
  16. #include "drv_clock.h"
  17. #define SPI_BUS_MAX_CLK (30 * 1000 * 1000)
  18. //#define DEBUG
  19. #define DBG_TAG "SPI"
  20. #ifdef DEBUG
  21. #define DBG_LVL DBG_LOG
  22. #else
  23. #define DBG_LVL DBG_WARNING
  24. #endif /* DEBUG */
  25. #include <rtdbg.h>
  26. #ifdef RT_USING_SPI
  27. #define ARR_LEN(__N) (sizeof(__N) / sizeof(__N[0]))
  28. #define __SPI_STATIC_INLINE__ rt_inline
  29. /*
  30. * @brief Hardware Layer Interface
  31. */
  32. __SPI_STATIC_INLINE__
  33. rt_uint32_t SPI_GetVersion(SPI_T *spi)
  34. {
  35. return spi->VER;
  36. }
  37. /*
  38. * @brief
  39. */
  40. __SPI_STATIC_INLINE__
  41. void SPI_Reset(SPI_T *spi)
  42. {
  43. HAL_SET_BIT(spi->CTRL, SPI_CTRL_RST_MASK);
  44. }
  45. /*
  46. * @brief
  47. */
  48. __SPI_STATIC_INLINE__
  49. void SPI_SetMode(SPI_T *spi, SPI_CTRL_Mode mode)
  50. {
  51. HAL_MODIFY_REG(spi->CTRL, SPI_CTRL_MODE_MASK, mode);
  52. }
  53. /*
  54. * @brief
  55. */
  56. __SPI_STATIC_INLINE__
  57. void SPI_Enable(SPI_T *spi)
  58. {
  59. HAL_SET_BIT(spi->CTRL, SPI_CTRL_EN_MASK);
  60. }
  61. __SPI_STATIC_INLINE__
  62. void SPI_Disable(SPI_T *spi)
  63. {
  64. HAL_CLR_BIT(spi->CTRL, SPI_CTRL_EN_MASK);
  65. }
  66. /*
  67. * @brief
  68. */
  69. __SPI_STATIC_INLINE__
  70. void SPI_StartTransmit(SPI_T *spi)
  71. {
  72. HAL_SET_BIT(spi->TCTRL, SPI_TCTRL_XCH_MASK);
  73. }
  74. /*
  75. * @brief
  76. */
  77. __SPI_STATIC_INLINE__
  78. void SPI_SetFirstTransmitBit(SPI_T *spi, SPI_TCTRL_Fbs bit)
  79. {
  80. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_FBS_MASK, bit);
  81. }
  82. /*
  83. * @brief
  84. */
  85. __SPI_STATIC_INLINE__
  86. void SPI_EnableRapidsMode(SPI_T *spi, bool delay_sample)
  87. {
  88. HAL_SET_BIT(spi->TCTRL, SPI_TCTRL_RPSM_MASK);
  89. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_SDC_MASK, delay_sample << SPI_TCTRL_SDC_SHIFT);
  90. }
  91. /*
  92. * @brief
  93. */
  94. __SPI_STATIC_INLINE__
  95. void SPI_DisableRapidsMode(SPI_T *spi)
  96. {
  97. HAL_CLR_BIT(spi->TCTRL, SPI_TCTRL_RPSM_MASK);
  98. }
  99. /*
  100. * @brief
  101. */
  102. __SPI_STATIC_INLINE__
  103. void SPI_SetDuplex(SPI_T *spi, SPI_TCTRL_DHB_Duplex duplex)
  104. {
  105. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_DHB_MASK, duplex);
  106. }
  107. /*
  108. * @brief
  109. */
  110. __SPI_STATIC_INLINE__
  111. void SPI_SetCsLevel(SPI_T *spi, bool level)
  112. {
  113. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_SS_LEVEL_MASK, level << SPI_TCTRL_SS_LEVEL_SHIFT);
  114. }
  115. /*
  116. * @brief
  117. */
  118. __SPI_STATIC_INLINE__
  119. void SPI_ManualChipSelect(SPI_T *spi, SPI_TCTRL_SS_Sel cs)
  120. {
  121. HAL_SET_BIT(spi->TCTRL, SPI_TCTRL_SS_OWNER_MASK);
  122. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_SS_SEL_MASK, cs);
  123. }
  124. /*
  125. * @brief
  126. */
  127. __SPI_STATIC_INLINE__
  128. void SPI_AutoChipSelect(SPI_T *spi, SPI_TCTRL_SS_Sel cs, bool cs_remain)
  129. {
  130. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_SS_SEL_MASK, cs);
  131. HAL_CLR_BIT(spi->TCTRL, SPI_TCTRL_SS_OWNER_MASK);
  132. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_SS_CTL_MASK, (!cs_remain) << SPI_TCTRL_SS_CTL_SHIFT);
  133. }
  134. /*
  135. * @brief
  136. */
  137. __SPI_STATIC_INLINE__
  138. void SPI_SetCsIdle(SPI_T *spi, bool idle)
  139. {
  140. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_SPOL_MASK, (!!idle) << SPI_TCTRL_SPOL_SHIFT);
  141. }
  142. /*
  143. * @brief
  144. */
  145. __SPI_STATIC_INLINE__
  146. void SPI_SetSclkMode(SPI_T *spi, SPI_SCLK_Mode mode)
  147. {
  148. HAL_MODIFY_REG(spi->TCTRL, SPI_TCTRL_CPOL_MASK | SPI_TCTRL_CPHA_MASK, mode);
  149. }
  150. typedef enum
  151. {
  152. SPI_INT_CS_DESELECT = SPI_IER_SS_INT_EN_MASK,
  153. SPI_INT_TRANSFER_COMPLETE = SPI_IER_TC_INT_EN_MASK,
  154. SPI_INT_TXFIFO_UNDER_RUN = SPI_IER_TF_UDR_INT_EN_MASK,
  155. SPI_INT_TXFIFO_OVERFLOW = SPI_IER_TF_OVF_INT_EN_MASK,
  156. SPI_INT_RXFIFO_UNDER_RUN = SPI_IER_RF_UDR_INT_EN_MASK,
  157. SPI_INT_RXFIFO_OVERFLOW = SPI_IER_RF_OVF_INT_EN_MASK,
  158. SPI_INT_TXFIFO_FULL = SPI_IER_TF_FUL_INT_EN_MASK,
  159. SPI_INT_TXFIFO_EMPTY = SPI_IER_TX_EMP_INT_EN_MASK,
  160. SPI_INT_TXFIFO_READY = SPI_IER_TX_ERQ_INT_EN_MASK,
  161. SPI_INT_RXFIFO_FULL = SPI_IER_RF_FUL_INT_EN_MASK,
  162. SPI_INT_RXFIFO_EMPTY = SPI_IER_RX_EMP_INT_EN_MASK,
  163. SPI_INT_RXFIFO_READY = SPI_IER_RF_RDY_INT_EN_MASK
  164. } SPI_Int_Type;
  165. /*
  166. * @brief
  167. */
  168. __SPI_STATIC_INLINE__
  169. void SPI_EnableInt(SPI_T *spi, SPI_Int_Type type)
  170. {
  171. HAL_SET_BIT(spi->IER, type);
  172. }
  173. /*
  174. * @brief
  175. */
  176. __SPI_STATIC_INLINE__
  177. void SPI_DisableInt(SPI_T *spi, SPI_Int_Type type)
  178. {
  179. HAL_CLR_BIT(spi->IER, type);
  180. }
  181. /*
  182. * @brief
  183. */
  184. __SPI_STATIC_INLINE__
  185. bool SPI_IntState(SPI_T *spi, SPI_Int_Type type)
  186. {
  187. return !!HAL_GET_BIT(spi->STA, type);
  188. }
  189. /*
  190. * @brief
  191. */
  192. __SPI_STATIC_INLINE__
  193. bool SPI_ClearInt(SPI_T *spi, SPI_Int_Type type)
  194. {
  195. HAL_SET_BIT(spi->STA, type);
  196. return HAL_GET_BIT(spi->STA, type);
  197. }
  198. /*
  199. * @brief
  200. */
  201. __SPI_STATIC_INLINE__
  202. void SPI_DebugReadTx(SPI_T *spi, rt_uint32_t *data)
  203. {
  204. // tbc...
  205. }
  206. /*
  207. * @brief
  208. */
  209. __SPI_STATIC_INLINE__
  210. void SPI_DebugWriteRx(SPI_T *spi, rt_uint32_t *data)
  211. {
  212. // tbc...
  213. }
  214. /*
  215. * @brief
  216. */
  217. __SPI_STATIC_INLINE__
  218. void SPI_ResetTxFifo(SPI_T *spi)
  219. {
  220. HAL_SET_BIT(spi->FCTL, SPI_FCTL_TF_RST_MASK);
  221. while (HAL_GET_BIT(spi->FCTL, SPI_FCTL_TF_RST_MASK) != 0);
  222. }
  223. /*
  224. * @brief
  225. */
  226. __SPI_STATIC_INLINE__
  227. void SPI_ResetRxFifo(SPI_T *spi)
  228. {
  229. HAL_SET_BIT(spi->FCTL, SPI_FCTL_RF_RST_MASK);
  230. while (HAL_GET_BIT(spi->FCTL, SPI_FCTL_RF_RST_MASK) != 0);
  231. }
  232. /*
  233. * @brief
  234. */
  235. __SPI_STATIC_INLINE__
  236. void SPI_DMA(SPI_T *spi, bool txEn, bool rxEn)
  237. {
  238. HAL_MODIFY_REG(spi->FCTL,
  239. SPI_FCTL_TF_DRQ_EN_MASK | SPI_FCTL_RF_DRQ_EN_MASK,
  240. ((!!txEn) << SPI_FCTL_TF_DRQ_EN_SHIFT) | ((!!rxEn) << SPI_FCTL_RF_DRQ_EN_SHIFT));
  241. }
  242. /*
  243. * @brief
  244. */
  245. __SPI_STATIC_INLINE__
  246. void SPI_SetTxFifoThreshold(SPI_T *spi, rt_uint8_t threshold)
  247. {
  248. HAL_MODIFY_REG(spi->FCTL, SPI_FCTL_TX_TRIG_LEVEL_MASK, threshold << SPI_FCTL_TX_TRIG_LEVEL_SHIFT);
  249. }
  250. /*
  251. * @brief
  252. */
  253. __SPI_STATIC_INLINE__
  254. void SPI_SetRxFifoThreshold(SPI_T *spi, rt_uint8_t threshold)
  255. {
  256. HAL_MODIFY_REG(spi->FCTL, SPI_FCTL_RX_TRIG_LEVEL_MASK, threshold << SPI_FCTL_RX_TRIG_LEVEL_SHIFT);
  257. }
  258. /*
  259. * @brief
  260. */
  261. __SPI_STATIC_INLINE__
  262. rt_uint8_t SPI_GetTxFifoCounter(SPI_T *spi)
  263. {
  264. return (rt_uint8_t)((spi->FST & SPI_FST_TF_CNT_MASK) >> SPI_FST_TF_CNT_SHIFT);
  265. }
  266. /*
  267. * @brief
  268. */
  269. __SPI_STATIC_INLINE__
  270. rt_uint8_t SPI_GetRxFifoCounter(SPI_T *spi)
  271. {
  272. return (rt_uint8_t)((spi->FST & SPI_FST_RF_CNT_MASK) >> SPI_FST_RF_CNT_SHIFT);
  273. }
  274. /*
  275. * @brief
  276. */
  277. __SPI_STATIC_INLINE__
  278. void SPI_EnableDualMode(SPI_T *spi)
  279. {
  280. HAL_SET_BIT(spi->BCC, SPI_BCC_DRM_MASK);
  281. }
  282. /*
  283. * @brief
  284. */
  285. __SPI_STATIC_INLINE__
  286. void SPI_DisableDualMode(SPI_T *spi)
  287. {
  288. HAL_CLR_BIT(spi->BCC, SPI_BCC_DRM_MASK);
  289. }
  290. /*
  291. * @brief
  292. */
  293. __SPI_STATIC_INLINE__
  294. void SPI_SetInterval(SPI_T *spi, rt_uint16_t nSCLK)
  295. {
  296. HAL_MODIFY_REG(spi->WAIT, SPI_WAIT_WCC_MASK, nSCLK << SPI_WAIT_WCC_SHIFT);
  297. }
  298. /*
  299. * @brief
  300. */
  301. static void SPI_SetClkDiv(SPI_T *spi, rt_uint16_t div)
  302. {
  303. rt_uint8_t n = 0;
  304. if (div < 1)
  305. {
  306. return;
  307. }
  308. if (div > 2 * (0xFF + 1))
  309. {
  310. HAL_CLR_BIT(spi->CCTR, SPI_CCTR_DRS_MASK);
  311. do
  312. {
  313. div = (div == 1) ? 0 : ((div + 1) / 2);
  314. n++;
  315. }
  316. while (div);
  317. HAL_MODIFY_REG(spi->CCTR, SPI_CCTR_CDR1_MASK, (n & 0x0F) << SPI_CCTR_CDR1_SHIFT);
  318. }
  319. else
  320. {
  321. HAL_SET_BIT(spi->CCTR, SPI_CCTR_DRS_MASK);
  322. n = ((div + 1) / 2) - 1;
  323. HAL_MODIFY_REG(spi->CCTR, SPI_CCTR_CDR2_MASK, (n & 0xFF) << SPI_CCTR_CDR2_SHIFT);
  324. }
  325. }
  326. /*
  327. * @brief
  328. */
  329. __SPI_STATIC_INLINE__
  330. void SPI_SetDataSize(SPI_T *spi, rt_uint32_t data_size, rt_uint32_t dummy_size)
  331. {
  332. HAL_MODIFY_REG(spi->BC, SPI_BC_MBC_MASK, data_size + dummy_size);
  333. HAL_MODIFY_REG(spi->TC, SPI_TC_MWTC_MASK, data_size);
  334. HAL_MODIFY_REG(spi->BCC, SPI_BCC_STC_MASK, data_size);
  335. }
  336. /*
  337. * @brief
  338. */
  339. __SPI_STATIC_INLINE__
  340. void SPI_Write(SPI_T *spi, rt_uint8_t *data)
  341. {
  342. HAL_REG_8BIT(&spi->TXD) = *data;
  343. }
  344. /*
  345. * @brief
  346. */
  347. __SPI_STATIC_INLINE__
  348. void SPI_Read(SPI_T *spi, rt_uint8_t *data)
  349. {
  350. *data = HAL_REG_8BIT(&spi->RXD);
  351. }
  352. /*
  353. * @brief
  354. */
  355. __SPI_STATIC_INLINE__
  356. rt_uint8_t *SPI_TxAddress(SPI_T *spi)
  357. {
  358. return (rt_uint8_t *)&spi->TXD;
  359. }
  360. /*
  361. * @brief
  362. */
  363. __SPI_STATIC_INLINE__
  364. rt_uint8_t *SPI_RxAddress(SPI_T *spi)
  365. {
  366. return (rt_uint8_t *)&spi->RXD;
  367. }
  368. /* private rt-thread spi ops function */
  369. static rt_err_t configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration);
  370. static rt_uint32_t xfer(struct rt_spi_device *device, struct rt_spi_message *message);
  371. static struct rt_spi_ops tina_spi_ops =
  372. {
  373. configure,
  374. xfer
  375. };
  376. static rt_err_t configure(struct rt_spi_device *device,
  377. struct rt_spi_configuration *configuration)
  378. {
  379. struct rt_spi_bus *spi_bus = (struct rt_spi_bus *)device->bus;
  380. struct tina_spi_cs *tina_spi_cs = device->parent.user_data;
  381. struct tina_spi *_spi_info = (struct tina_spi *)spi_bus->parent.user_data;
  382. SPI_T *spi = _spi_info->spi;
  383. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  384. RT_ASSERT(device != RT_NULL);
  385. RT_ASSERT(configuration != RT_NULL);
  386. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  387. LOG_D("spi address: %08X", (rt_uint32_t)spi);
  388. SPI_Disable(spi);
  389. SPI_Reset(spi);
  390. SPI_ResetRxFifo(spi);
  391. SPI_ResetTxFifo(spi);
  392. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  393. /* data_width */
  394. if (configuration->data_width != 8)
  395. {
  396. LOG_D("error: data_width is %d", configuration->data_width);
  397. return RT_EIO;
  398. }
  399. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  400. SPI_SetDuplex(spi, SPI_TCTRL_DHB_FULL_DUPLEX);
  401. SPI_SetMode(spi, SPI_CTRL_MODE_MASTER);
  402. /* MSB or LSB */
  403. if (configuration->mode & RT_SPI_MSB)
  404. {
  405. SPI_SetFirstTransmitBit(spi, SPI_TCTRL_FBS_MSB);
  406. }
  407. else
  408. {
  409. SPI_SetFirstTransmitBit(spi, SPI_TCTRL_FBS_LSB);
  410. }
  411. switch (configuration->mode & RT_SPI_MODE_3)
  412. {
  413. case RT_SPI_MODE_0:
  414. SPI_SetSclkMode(spi, SPI_SCLK_Mode0);
  415. break;
  416. case RT_SPI_MODE_1:
  417. SPI_SetSclkMode(spi, SPI_SCLK_Mode1);
  418. break;
  419. case RT_SPI_MODE_2:
  420. SPI_SetSclkMode(spi, SPI_SCLK_Mode2);
  421. break;
  422. case RT_SPI_MODE_3:
  423. SPI_SetSclkMode(spi, SPI_SCLK_Mode3);
  424. break;
  425. }
  426. /* baudrate */
  427. {
  428. unsigned int spi_clock = 0;
  429. rt_uint32_t max_hz;
  430. rt_uint32_t div;
  431. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  432. max_hz = configuration->max_hz;
  433. if (max_hz > SPI_BUS_MAX_CLK)
  434. {
  435. max_hz = SPI_BUS_MAX_CLK;
  436. }
  437. spi_clock = ahb_get_clk();
  438. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  439. div = (spi_clock + max_hz - 1) / max_hz;
  440. LOG_D("configuration->max_hz: %d", configuration->max_hz);
  441. LOG_D("max freq: %d", max_hz);
  442. LOG_D("spi_clock: %d", spi_clock);
  443. LOG_D("div: %d", div);
  444. SPI_SetClkDiv(spi, div / 2);
  445. } /* baudrate */
  446. SPI_ManualChipSelect(spi, tina_spi_cs->cs);
  447. SPI_SetDataSize(spi, 0, 0);
  448. SPI_Enable(spi);
  449. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  450. return RT_EOK;
  451. };
  452. static rt_uint32_t xfer(struct rt_spi_device *device, struct rt_spi_message *message)
  453. {
  454. struct rt_spi_bus *r6_spi_bus = (struct rt_spi_bus *)device->bus;
  455. struct tina_spi *_spi_info = (struct tina_spi *)r6_spi_bus->parent.user_data;
  456. SPI_T *spi = _spi_info->spi;
  457. struct rt_spi_configuration *config = &device->config;
  458. struct tina_spi_cs *tina_spi_cs = device->parent.user_data;
  459. RT_ASSERT(device != NULL);
  460. RT_ASSERT(message != NULL);
  461. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  462. LOG_D("spi_info: %08X", (rt_uint32_t)_spi_info);
  463. LOG_D("spi address: %08X", (rt_uint32_t)spi);
  464. /* take CS */
  465. if (message->cs_take)
  466. {
  467. SPI_ManualChipSelect(spi, tina_spi_cs->cs);
  468. SPI_SetCsLevel(spi, false);
  469. LOG_D("spi take cs");
  470. }
  471. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  472. {
  473. if ((config->data_width <= 8) && (message->length > 0))
  474. {
  475. const rt_uint8_t *send_ptr = message->send_buf;
  476. rt_uint8_t *recv_ptr = message->recv_buf;
  477. rt_uint32_t tx_size = message->length;
  478. rt_uint32_t rx_size = message->length;
  479. LOG_D("spi poll transfer start: %d", tx_size);
  480. SPI_ResetTxFifo(spi);
  481. SPI_ResetRxFifo(spi);
  482. SPI_SetDataSize(spi, tx_size, 0);
  483. SPI_StartTransmit(spi);
  484. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  485. while (tx_size > 0 || rx_size > 0)
  486. {
  487. rt_uint8_t tx_data = 0xFF;
  488. rt_uint8_t rx_data = 0xFF;
  489. while ((SPI_GetTxFifoCounter(spi) < SPI_FIFO_SIZE) && (tx_size > 0))
  490. {
  491. if (send_ptr != RT_NULL)
  492. {
  493. tx_data = *send_ptr++;
  494. }
  495. SPI_Write(spi, &tx_data);
  496. tx_size--;
  497. }
  498. while (SPI_GetRxFifoCounter(spi) > 0)
  499. {
  500. rx_size--;
  501. SPI_Read(spi, &rx_data);
  502. if (recv_ptr != RT_NULL)
  503. {
  504. *recv_ptr++ = rx_data;
  505. }
  506. }
  507. }
  508. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  509. if ((tx_size != 0) || (rx_size != 0))
  510. {
  511. LOG_D("spi_tx_rx error with tx count = %d, rx count = %d.", tx_size, rx_size);
  512. return 0;
  513. }
  514. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  515. while (SPI_IntState(spi, SPI_INT_TRANSFER_COMPLETE) == 0);
  516. SPI_ClearInt(spi, SPI_INT_TRANSFER_COMPLETE);
  517. LOG_D("spi poll transfer finsh");
  518. }
  519. else if (config->data_width > 8)
  520. {
  521. LOG_D("data width: %d", config->data_width);
  522. RT_ASSERT(NULL);
  523. }
  524. }
  525. /* release CS */
  526. if (message->cs_release)
  527. {
  528. SPI_SetCsLevel(spi, true);
  529. LOG_D("spi release cs");
  530. }
  531. return message->length;
  532. };
  533. #ifdef TINA_USING_SPI0
  534. static struct rt_spi_bus spi_bus0;
  535. #endif
  536. #ifdef TINA_USING_SPI1
  537. static struct rt_spi_bus spi_bus1;
  538. #endif
  539. static const struct tina_spi spis[] =
  540. {
  541. #ifdef TINA_USING_SPI0
  542. {(SPI_T *)SPI0_BASE_ADDR, SPI0_GATING, &spi_bus0},
  543. #endif
  544. #ifdef TINA_USING_SPI1
  545. {(SPI_T *)SPI1_BASE_ADDR, SPI1_GATING, &spi_bus1},
  546. #endif
  547. };
  548. /** \brief init and register r6 spi bus.
  549. *
  550. * \param SPI: R6 SPI, e.g: SPI1,SPI2,SPI3.
  551. * \param spi_bus_name: spi bus name, e.g: "spi1"
  552. * \return
  553. *
  554. */
  555. rt_err_t tina_spi_bus_register(SPI_T *spi, const char *spi_bus_name)
  556. {
  557. int i;
  558. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  559. RT_ASSERT(spi_bus_name != RT_NULL);
  560. for (i = 0; i < ARR_LEN(spis); i++)
  561. {
  562. if (spi == spis[i].spi)
  563. {
  564. bus_software_reset_disalbe(spis[i].spi_gate);
  565. bus_gate_clk_enalbe(spis[i].spi_gate);
  566. spis[i].spi_bus->parent.user_data = (void *)&spis[i];
  567. LOG_D("bus addr: %08X", (rt_uint32_t)spis[i].spi_bus);
  568. LOG_D("user_data: %08X", (rt_uint32_t)spis[i].spi_bus->parent.user_data);
  569. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  570. rt_spi_bus_register(spis[i].spi_bus, spi_bus_name, &tina_spi_ops);
  571. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  572. return RT_EOK;
  573. }
  574. }
  575. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  576. return RT_ERROR;
  577. }
  578. int rt_hw_spi_init(void)
  579. {
  580. LOG_D("register spi bus");
  581. #ifdef TINA_USING_SPI0
  582. /* register spi bus */
  583. {
  584. rt_err_t result;
  585. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  586. gpio_set_func(GPIO_PORT_C, GPIO_PIN_0, IO_FUN_1);
  587. gpio_set_func(GPIO_PORT_C, GPIO_PIN_2, IO_FUN_1);
  588. gpio_set_func(GPIO_PORT_C, GPIO_PIN_3, IO_FUN_1);
  589. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  590. result = tina_spi_bus_register((SPI_T *)SPI0_BASE_ADDR, "spi0");
  591. if (result != RT_EOK)
  592. {
  593. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  594. return result;
  595. }
  596. }
  597. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  598. /* attach cs */
  599. {
  600. static struct rt_spi_device spi_device;
  601. static struct tina_spi_cs spi_cs;
  602. rt_err_t result;
  603. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  604. spi_cs.cs = SPI_TCTRL_SS_SEL_SS0;
  605. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  606. gpio_set_func(GPIO_PORT_C, GPIO_PIN_1, IO_FUN_1);
  607. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  608. result = rt_spi_bus_attach_device(&spi_device, "spi00", "spi0", (void *)&spi_cs);
  609. if (result != RT_EOK)
  610. {
  611. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  612. return result;
  613. }
  614. }
  615. LOG_D("%s -> %d", __FUNCTION__, __LINE__);
  616. #endif
  617. #ifdef TINA_USING_SPI1
  618. /* register spi bus */
  619. {
  620. rt_err_t result;
  621. gpio_set_func(GPIO_PORT_A, GPIO_PIN_1, IO_FUN_5);
  622. gpio_set_func(GPIO_PORT_A, GPIO_PIN_2, IO_FUN_5);
  623. gpio_set_func(GPIO_PORT_A, GPIO_PIN_3, IO_FUN_5);
  624. result = tina_spi_bus_register((SPI_T *)SPI1_BASE_ADDR, "spi1");
  625. if (result != RT_EOK)
  626. {
  627. LOG_D("register spi bus faild: %d", result);
  628. return result;
  629. }
  630. }
  631. LOG_D("attach cs");
  632. /* attach cs */
  633. {
  634. static struct rt_spi_device spi_device;
  635. static struct tina_spi_cs spi_cs;
  636. rt_err_t result;
  637. spi_cs.cs = SPI_TCTRL_SS_SEL_SS0;
  638. gpio_set_func(GPIO_PORT_A, GPIO_PIN_0, IO_FUN_5);
  639. result = rt_spi_bus_attach_device(&spi_device, "spi10", "spi1", (void *)&spi_cs);
  640. if (result != RT_EOK)
  641. {
  642. LOG_D("attach cs faild: %d", result);
  643. return result;
  644. }
  645. }
  646. #endif
  647. return RT_EOK;
  648. }
  649. INIT_BOARD_EXPORT(rt_hw_spi_init);
  650. #endif