drv_flexspi_nor.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-07-05 ZYH the first version
  9. */
  10. #include <rtthread.h>
  11. #define PRINTF rt_kprintf
  12. #include "board.h"
  13. #include <rthw.h>
  14. #include "drv_flexspi.h"
  15. #define DBG_ENABLE
  16. #define DBG_SECTION_NAME "[FLEXSPI]"
  17. #define DBG_LEVEL DBG_LOG
  18. #define DBG_COLOR
  19. #include <rtdbg.h>
  20. #define FLEXSPI_CLOCK kCLOCK_FlexSpi
  21. #define NOR_CMD_LUT_SEQ_IDX_READ_NORMAL 0
  22. #define NOR_CMD_LUT_SEQ_IDX_READ_FAST 1
  23. #define NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD 2
  24. #define NOR_CMD_LUT_SEQ_IDX_READSTATUS 3
  25. #define NOR_CMD_LUT_SEQ_IDX_WRITEENABLE 4
  26. #define NOR_CMD_LUT_SEQ_IDX_ERASESECTOR 5
  27. #define NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE 6
  28. #define NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD 7
  29. #define NOR_CMD_LUT_SEQ_IDX_READID 8
  30. #define NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG 9
  31. #define NOR_CMD_LUT_SEQ_IDX_ENTERQPI 10
  32. #define NOR_CMD_LUT_SEQ_IDX_EXITQPI 11
  33. #define NOR_CMD_LUT_SEQ_IDX_READSTATUSREG 12
  34. #define NOR_CMD_LUT_SEQ_IDX_ERASECHIP 13
  35. #define CUSTOM_LUT_LENGTH 60
  36. #define FLASH_BUSY_STATUS_POL 1
  37. #define FLASH_BUSY_STATUS_OFFSET 0
  38. static flexspi_device_config_t deviceconfig =
  39. {
  40. .flexspiRootClk = 100000000,
  41. .flashSize = FLASH_SIZE,
  42. .CSIntervalUnit = kFLEXSPI_CsIntervalUnit1SckCycle,
  43. .CSInterval = 2,
  44. .CSHoldTime = 3,
  45. .CSSetupTime = 3,
  46. .dataValidTime = 0,
  47. .columnspace = 0,
  48. .enableWordAddress = 0,
  49. .AWRSeqIndex = 0,
  50. .AWRSeqNumber = 0,
  51. .ARDSeqIndex = NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD,
  52. .ARDSeqNumber = 1,
  53. .AHBWriteWaitUnit = kFLEXSPI_AhbWriteWaitUnit2AhbCycle,
  54. .AHBWriteWaitInterval = 0,
  55. };
  56. static uint32_t customLUT[CUSTOM_LUT_LENGTH] =
  57. {
  58. /* Normal read mode -SDR */
  59. [4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL] =
  60. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x03, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  61. [4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL + 1] =
  62. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  63. /* Fast read mode - SDR */
  64. [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST] =
  65. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x0B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  66. [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST + 1] = FLEXSPI_LUT_SEQ(
  67. kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
  68. /* Fast read quad mode - SDR */
  69. [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD] =
  70. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x6B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  71. [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD + 1] = FLEXSPI_LUT_SEQ(
  72. kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04),
  73. /* Read extend parameters */
  74. [4 * NOR_CMD_LUT_SEQ_IDX_READSTATUS] =
  75. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x05, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
  76. /* Write Enable */
  77. [4 * NOR_CMD_LUT_SEQ_IDX_WRITEENABLE] =
  78. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x06, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  79. /* Erase Sector */
  80. [4 * NOR_CMD_LUT_SEQ_IDX_ERASESECTOR] =
  81. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x20, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  82. /* Page Program - single mode */
  83. [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE] =
  84. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x02, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  85. [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE + 1] =
  86. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  87. /* Page Program - quad mode */
  88. [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD] =
  89. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x32, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  90. [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD + 1] =
  91. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  92. /* Read ID */
  93. [4 * NOR_CMD_LUT_SEQ_IDX_READID] =
  94. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xAB, kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x18),
  95. [4 * NOR_CMD_LUT_SEQ_IDX_READID + 1] =
  96. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  97. /* Enable Quad mode */
  98. [4 * NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG] =
  99. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x01, kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04),
  100. /* Enter QPI mode */
  101. [4 * NOR_CMD_LUT_SEQ_IDX_ENTERQPI] =
  102. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x38, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  103. /* Exit QPI mode */
  104. [4 * NOR_CMD_LUT_SEQ_IDX_EXITQPI] =
  105. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_4PAD, 0xFF, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  106. /* Read status register */
  107. [4 * NOR_CMD_LUT_SEQ_IDX_READSTATUSREG] =
  108. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x05, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
  109. /* Erase Chip */
  110. [4 * NOR_CMD_LUT_SEQ_IDX_ERASECHIP] =
  111. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xC7, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  112. };
  113. SECTION("itcm") static status_t flexspi_nor_write_enable(FLEXSPI_Type *base, uint32_t baseAddr)
  114. {
  115. flexspi_transfer_t flashXfer;
  116. status_t status;
  117. /* Write neable */
  118. flashXfer.deviceAddress = baseAddr;
  119. flashXfer.port = kFLEXSPI_PortA1;
  120. flashXfer.cmdType = kFLEXSPI_Command;
  121. flashXfer.SeqNumber = 1;
  122. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITEENABLE;
  123. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  124. return status;
  125. }
  126. SECTION("itcm") static status_t flexspi_nor_wait_bus_busy(FLEXSPI_Type *base)
  127. {
  128. /* Wait status ready. */
  129. bool isBusy;
  130. uint32_t readValue;
  131. status_t status;
  132. flexspi_transfer_t flashXfer;
  133. flashXfer.deviceAddress = 0;
  134. flashXfer.port = kFLEXSPI_PortA1;
  135. flashXfer.cmdType = kFLEXSPI_Read;
  136. flashXfer.SeqNumber = 1;
  137. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_READSTATUSREG;
  138. flashXfer.data = &readValue;
  139. flashXfer.dataSize = 1;
  140. do
  141. {
  142. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  143. if (status != kStatus_Success)
  144. {
  145. return status;
  146. }
  147. if (FLASH_BUSY_STATUS_POL)
  148. {
  149. if (readValue & (1U << FLASH_BUSY_STATUS_OFFSET))
  150. {
  151. isBusy = true;
  152. }
  153. else
  154. {
  155. isBusy = false;
  156. }
  157. }
  158. else
  159. {
  160. if (readValue & (1U << FLASH_BUSY_STATUS_OFFSET))
  161. {
  162. isBusy = false;
  163. }
  164. else
  165. {
  166. isBusy = true;
  167. }
  168. }
  169. }
  170. while (isBusy);
  171. return status;
  172. }
  173. SECTION("itcm") static status_t flexspi_nor_enable_quad_mode(FLEXSPI_Type *base)
  174. {
  175. flexspi_transfer_t flashXfer;
  176. status_t status;
  177. uint32_t writeValue = 0x40;
  178. /* Write neable */
  179. status = flexspi_nor_write_enable(base, 0);
  180. if (status != kStatus_Success)
  181. {
  182. return status;
  183. }
  184. /* Enable quad mode. */
  185. flashXfer.deviceAddress = 0;
  186. flashXfer.port = kFLEXSPI_PortA1;
  187. flashXfer.cmdType = kFLEXSPI_Write;
  188. flashXfer.SeqNumber = 1;
  189. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG;
  190. flashXfer.data = &writeValue;
  191. flashXfer.dataSize = 1;
  192. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  193. if (status != kStatus_Success)
  194. {
  195. dbg_log(DBG_ERROR, "flexspi tranfer error\n");
  196. dbg_here
  197. return status;
  198. }
  199. status = flexspi_nor_wait_bus_busy(base);
  200. return status;
  201. }
  202. SECTION("itcm") status_t flexspi_nor_flash_erase_sector(FLEXSPI_Type *base, uint32_t address)
  203. {
  204. status_t status;
  205. flexspi_transfer_t flashXfer;
  206. /* Write enable */
  207. flashXfer.deviceAddress = address;
  208. flashXfer.port = kFLEXSPI_PortA1;
  209. flashXfer.cmdType = kFLEXSPI_Command;
  210. flashXfer.SeqNumber = 1;
  211. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITEENABLE;
  212. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  213. if (status != kStatus_Success)
  214. {
  215. dbg_log(DBG_ERROR, "flexspi tranfer error\n");
  216. dbg_here
  217. return status;
  218. }
  219. flashXfer.deviceAddress = address;
  220. flashXfer.port = kFLEXSPI_PortA1;
  221. flashXfer.cmdType = kFLEXSPI_Command;
  222. flashXfer.SeqNumber = 1;
  223. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_ERASESECTOR;
  224. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  225. if (status != kStatus_Success)
  226. {
  227. dbg_log(DBG_ERROR, "flexspi tranfer error\n");
  228. dbg_here
  229. return status;
  230. }
  231. status = flexspi_nor_wait_bus_busy(base);
  232. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
  233. rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
  234. return status;
  235. }
  236. SECTION("itcm") status_t flexspi_nor_flash_page_program(FLEXSPI_Type *base, uint32_t address, const uint32_t *src)
  237. {
  238. status_t status;
  239. flexspi_transfer_t flashXfer;
  240. /* Write neable */
  241. status = flexspi_nor_write_enable(base, address);
  242. if (status != kStatus_Success)
  243. {
  244. return status;
  245. }
  246. /* Prepare page program command */
  247. flashXfer.deviceAddress = address;
  248. flashXfer.port = kFLEXSPI_PortA1;
  249. flashXfer.cmdType = kFLEXSPI_Write;
  250. flashXfer.SeqNumber = 1;
  251. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD;
  252. flashXfer.data = (uint32_t *)src;
  253. flashXfer.dataSize = FLASH_PAGE_SIZE;
  254. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  255. if (status != kStatus_Success)
  256. {
  257. return status;
  258. }
  259. status = flexspi_nor_wait_bus_busy(base);
  260. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
  261. rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
  262. return status;
  263. }
  264. SECTION("itcm") static status_t flexspi_nor_get_vendor_id(FLEXSPI_Type *base, uint8_t *vendorId)
  265. {
  266. uint32_t temp;
  267. flexspi_transfer_t flashXfer;
  268. flashXfer.deviceAddress = 0;
  269. flashXfer.port = kFLEXSPI_PortA1;
  270. flashXfer.cmdType = kFLEXSPI_Read;
  271. flashXfer.SeqNumber = 1;
  272. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_READID;
  273. flashXfer.data = &temp;
  274. flashXfer.dataSize = 1;
  275. status_t status = FLEXSPI_TransferBlocking(base, &flashXfer);
  276. *vendorId = temp;
  277. return status;
  278. }
  279. SECTION("itcm") int rt_hw_flexspi_init(void)
  280. {
  281. flexspi_config_t config;
  282. status_t status;
  283. uint8_t vendorID = 0;
  284. const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
  285. rt_uint32_t level;
  286. level = rt_hw_interrupt_disable();
  287. CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
  288. CLOCK_InitUsb1Pfd(kCLOCK_Pfd0, 24); /* Set PLL3 PFD0 clock 360MHZ. */
  289. CLOCK_SetMux(kCLOCK_FlexspiMux, 0x3); /* Choose PLL3 PFD0 clock as flexspi source clock. */
  290. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 2); /* flexspi clock 120M. */
  291. dbg_log(DBG_INFO, "NorFlash Init\r\n");
  292. FLEXSPI_GetDefaultConfig(&config);
  293. config.ahbConfig.enableAHBPrefetch = true;
  294. FLEXSPI_Init(FLEXSPI, &config);
  295. FLEXSPI_SetFlashConfig(FLEXSPI, &deviceconfig, kFLEXSPI_PortA1);
  296. FLEXSPI_UpdateLUT(FLEXSPI, 0, customLUT, CUSTOM_LUT_LENGTH);
  297. status = flexspi_nor_get_vendor_id(FLEXSPI, &vendorID);
  298. if (status != kStatus_Success)
  299. {
  300. return status;
  301. }
  302. dbg_log(DBG_INFO, "Vendor ID: 0x%x\r\n", vendorID);
  303. status = flexspi_nor_enable_quad_mode(FLEXSPI);
  304. if (status != kStatus_Success)
  305. {
  306. dbg_log(DBG_ERROR, "Entry Quad mode failed\r\n");
  307. return status;
  308. }
  309. dbg_log(DBG_INFO, "NorFlash Init Done\r\n");
  310. rt_hw_interrupt_enable(level);
  311. return 0;
  312. }